
Introduction

Those who have meditated on the beauty and utility of the general method of
Lagrange – who have felt the power and dignity of that central dynamical theorem
which he deduced from a combination of the principle of virtual velocities with the
principle of D’Alembert – and who have appreciated the simplicity and harmony
which he introduced by the idea of the variation of parameters, must feel the
unfolding of a central idea.

W. R. Hamilton [41]

Structures are to be found in various shapes and sizes for various purposes and
uses. These range from the human-made structures of bridges carrying traffic,
buildings housing offices, and airplanes carrying passengers all the way down to
the biologic structures of cells and proteins carrying genetic information. Structural
mechanics is concerned with the behavior of structures under the action of applied
loads – their deformations and internal loads. We present, in the following chapters,
versatile methods to tackle some of the most common (and most difficult) problems
facing engineers in the analysis of structures. This volume specifically considers the
situations where the loads vary in time such that inertia effects are important in
computing the responses.

The modeling of the dynamic response of structures introduces many additional
considerations not anticipated from a static analysis. It is therefore worth our
while to say just a little about structural dynamics and its place in structural
analyses. The subject of rigid-body dynamics treats physical objects as bodies that
undergo motion without any change of shape. This has many applications: the
movement of machine parts, the flight of an aircraft or space vehicle, the motion
of the Earth and the planets. In many instances, however, the primary concern is
dynamic response involving changes of shape. This is particularly so in the design of
structures as encountered in automobiles, ships, aircraft, space vehicles, offshore
platforms, buildings, and bridges. Dynamic response involving deformations is
usually oscillatory in nature; the structure vibrates about a configuration of stable
equilibrium. For example, suppose that a building structure is in a state of static
equilibrium under the gravity loads acting on it; when subjected to wind loading, the
structure oscillates about this position of static equilibrium. An airplane provides
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2 Introduction

an example of oscillatory motion about an equilibrium configuration that involves
rigid-body motion. When in flight, the whole system moves as a rigid body but is
also subjected to oscillatory motion due to engine and aerodynamic loads.

With the increasing use being made of lightweight, high-strength materials,
structures today are more susceptible than ever before to critical vibrations. Modern
buildings and bridges are lighter and more flexible and are made of materials
that provide much lower energy dissipation; all these contribute to more intense
vibration responses. Dynamic analysis of structures is therefore important for
modern structures and is likely to become even more so.

Structural Analysis and Models

The term model is widely used in many different contexts, but here we mean a
representation of a physical system that may be used to predict the behavior of a
system in some desired respect. The actual physical system for which the predictions
are to be made is called the prototype.

There are two broad classes of models: physical models and mathematical
models. The physical model resembles the prototype in appearance but is usually
of a different size, may involve different materials, and frequently operates under
loads, temperatures, and so on that differ from those of the prototype. The use
of these models belongs to the category of “experimental methods of structural
analysis.” The mathematical model consists of one or more equations (and, more
likely nowadays, a numerical finite-element model) that describe the behavior of the
system of interest. The equations of the model are based on certain basic laws and
principles of mechanics and usually involve simplifying assumptions. These models
broadly belong to the category of “analytical methods of structural analysis” (which
sounds a bit tautological). The equations themselves may or may not be solved on a
computer.

With the development of a valid model, it is possible to predict the immediate
and future behavior of the prototype under a set of specified inputs and to examine
a priori the effect of various possible design modifications.

We deal with models of different types in this book. Our primary model for
“solving the problem” is finite-element (FE)–based and represents the structure in
terms of a finite number of discrete unknowns. This approach is chosen because it is
easily implemented on a computer and is scalable to large systems. It is also true that
current commercial FE codes are such that once the geometry, material properties,
and so on are correctly specified, then very high quality models are produced that
give high quality predictive capability, and this must inform how structural dynamics
should now be done.

Two practical finite elements are emphasized: the frame FE and the solid
FE. These represent extremes in a way: the frame FE embeds many structural
assumptions about behavior of slender members and consequently is very efficient
where applicable, and the solid FE has no structural assumptions and hence is
applicable to frames, shells, and solids alike, but it can be computationally expensive
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Introduction 3

to use. With these two element models available, almost any structural problem can
be solved in the sense that given the geometry, material properties, loads, and so on,
responses can be generated. This is where a different level of model enters, one that
helps to explain the computed numbers; these are of the “simple model” type. That
is, when trying to understand a complex system, it is quite useful (and arguably
necessary) to have available these simple models – not as solutions per se but
as organizational principles for seeing through the voluminous numbers produced
by the FE codes. They identify the model parameters that play a significant role.
Sometimes they are constructed to go deeper into the mechanics of a problem;
for example, there are the plate and shell simple models that follow the structural
consequence of the thickness being thin, but there are also the modal, spectral, and
wave-propagation analysis models that give insight into how to view and understand
structural dynamics.

Goals and Outline of the Book

The primary goals of this book are

• To develop solution methods, general enough and scalable enough, to solve “big
dynamics problems”

• To develop methods of analysis to “make sense” of the generated solutions
• Because geometric nonlinearities are an intimate aspect of flexible structures,

to make the solution and analysis methods general enough to seamlessly handle
nonlinear problems

The book is divided into two parts roughly corresponding to the first two objectives.
Part I develops the mechanics and computer models to handle general problems,
Part II develops the analytical models. The nonlinear analyses are distributed
throughout the chapters.

Chapter 1 introduces some foundational ideas in the dynamics of elastic
systems, ideas such as resonance and damping. Chapter 2 develops the mechanics
needed to handle large, complex systems; the key concept introduced is that
of virtual work. The formulation is in terms of discretized systems and is
general enough to be applicable to static/dynamic, linear/nonlinear, and conser-
vative/nonconservative systems alike. The only restriction is that the system be
discretized. Chapter 3 uses the Ritz method to convert continuous systems into
discrete form and then formalizes the process via the FE method. Chapter 4
is an attempt to classify the various types of dynamic problems based on the
space-time variation of their loadings; this sets the contexts for the computational
tools required and for the types of analysis procedures introduced. Chapter 5 ends
Part I with a review of some of the computer methods used to implement our
models. The essential algorithms discussed in detail are those for time integration
of simultaneous equations and for solving eigenvalue problems.

Part II is the compilation of analytical models: modal analysis and eigenvalue
problems in Chapter 6, spectral analysis and strong formulations in Chapter 7,
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4 Introduction

flexible plates and shells in Chapter 8, and wave propagation and high-frequency
analysis in Chapter 9. Chapter 10 ends Part II with an introduction to the concept
of the stability of the motion. This is fundamentally a nonlinear notion, and the
preceding chapters are developed general enough to anticipate this.

There are a good number of example problems distributed throughout the
chapters. A few are straightforward “finger exercises” in that they take a previously
established result and apply it to some problem. A few others do direct extensions
of some developed model or result. A very exciting new type of example problem
is made available because of Chapters 3 and 5 and is the predominant type of
example problem in Part II; here the computer programs are used to produce
results, but the analysis challenge is to “explain” the results. This is akin to the
experimental challenge of collecting data on some partially unfamiliar or unknown
dynamic problem and then trying to explain the data. The objective of the example
problem is not so much to explain this or that result per se, but to show how the
programs can be interacted with to produce additional data to aid discovering the
explanation of the results. Remember that unlike the experimental analogue, the
FE solution can provide almost unlimited information about the solution presented
in almost unlimited different forms. Therefore, having control of the postprocessing
capabilities is an important aspect of the analysis.

In terms of philosophy, any FE program can be used for the underlying
computations, but to affirm the integral aspect of the computations and the
analyses, source code and executables are provided on the accompanying website:
www.cambridge.org/doyle structures FEM. These codes and executables can be
used to re-create the data used in the majority of the examples as well as extend
them. The two major codes are SDframe/SDsolid; these are leaner versions of
the programs used in the QED package [28]. Also, as additional encouragement to
reproduce the results, all example problems are documented in terms of dimensions,
material properties, boundary conditions, and loadings, as well as mesh information.

As a final point, structural analysis computer programs generally do not
use a built-in system of units and do not utilize any dimensional conversion
constants. Therefore, any consistent system of units may be used for input, and the
corresponding calculated results are output in the same units. All the relevant data
for the example problems are presented in both SI units and common units. Because
both systems of units are used in this book, we generally prefer (when convenient)
to present the results in nondimensional form; however, for units that are common
to both systems (e.g., time, frequency, angle), they are left as is.
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PART I

MECHANICS AND MODELS
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1 Dynamics of Simple Elastic Systems

This chapter is concerned with the formulation of the equations of motion (EoM) of
simple systems. What is meant by simple is that the systems have just a single degree
of freedom (SDoF) and does not imply that the underlying mechanics is simple or
elementary in any way.

The concept of vibration is fundamental to understanding the dynamics of
elastic structures. The study of vibration is concerned with the oscillatory motion
of bodies; all bodies with elasticity and mass are capable of exhibiting vibrations.
Resonant (or natural) frequencies are the frequencies at which a structure
exhibits relatively large response amplitudes for relatively small inputs. Even if
the excitation forces are not sinusoidal, these frequencies tend to dominate the
response. In practice, large resonant responses are mitigated by the presence of
damping and nonlinear effects. Damping is considered in this chapter, whereas
the effects of nonlinearities are distributed throughout the other chapters. The
use of Fourier analysis (or spectral analysis) as a means of describing time-varying
behavior is essential to the study of structural dynamics, and this too is developed
in this chapter.

1.1 Motion of Simple Systems

This section reviews the dynamics of elastic systems in the form of a spring-mass-
dashpot. We restrict the emphasis to concepts that are used directly in this and later
chapters. References 45, 81, and 83 are good sources for additional details on the
material covered here.

Newton’s Laws for Moving Masses

Everyday experience of mass is as a weight, so much so that the words mass and
weight are often used interchangeably. In dynamics, these two words are associated
with quite distinct concepts – the first with inertia and the second with gravitation
attraction. We elaborate on the difference between the two.

Consider a particle as an object with negligible dimensions but definite mass M
and definite position in three-dimensional (3D) space r̂ = xı̂ + yĵ + zk̂, where ı̂ , ĵ ,
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8 Dynamics of Simple Elastic Systems
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Figure 1.1. Motions of a particle: (a) uniform motion, no forces acting; (b) change of direction
due to load.

and k̂ are unit vectors in the x-, y-, and z-directions, respectively. Its position may
change over time giving

Velocity:
dr̂(t)

dt
= ˙̂r = v̂(t)

Acceleration:
d2r̂(t)

dt2
= ¨̂r = dv̂(t)

dt
= ˙̂v = â(t)

This contrasts with real objects (a ball or a brick, say), which do have dimension
(diameter, length, etc.) and therefore can also rotate or spin.

Newton’s first law says that a particle continues to move in a straight line with
uniform motion unless acted on by unbalanced forces; this is shown in Figure 1.1(a).
Newton’s second law says that the acceleration of a particle is proportional to the
resultant force

∑
P̂ acting on it. This is expressed variously as

∑
P̂(t) = Mâ(t) = d

dt
Mv̂ = dp̂

dt

where the proportionality constant is the mass, and p̂ ≡ Mv̂ is the momentum. This
is a vector relation, so a particle with initial velocity Vo in the x-direction and acted
on by a constant force Po in the y-direction gives a trajectory

r̂(t) = Votı̂ + 1
2

Pot2ĵ or y = Pox2

2Vo

The path followed is a curved trajectory in space, as shown in Figure 1.1(b). Mass is
thus associated with inertia in the sense that if it is not moving, then effort must be
exerted to get it moving; conversely, if it is moving, effort must be exerted to get it
to stop or change direction.

Newton’s third law says that the forces of action and reaction between
interacting particles are equal in magnitude, opposite in direction, and collinear.
The prime example is the force between two bodies in pressing contact; the
gravitation force between two masses M1 and M2 is also a good example given by

P = GM1M2

r2 r =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

where r is the separation distance, and G = 66.73×10−12 m3/(kgs2) is the universal
gravitation constant. The surprising aspect of this is that a small object (a human,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04570-5 - Nonlinear Structural Dynamics: Using FE Methods
James F. Doyle
Excerpt
More information

http://www.cambridge.org/9781107045705
http://www.cambridge.org
http://www.cambridge.org


1.1 Motion of Simple Systems 9

say) has the same gravitational effect on a large object (the moon, say) as the large
object has on the small object. Another simple example of forces between objects is
two masses connected by a spring as shown in Figure 1.2(a). If the spring is linear
of natural length Lo and the separation between the masses is L, then the forces on
the left and right masses are, respectively,

F1 = +K(L − Lo) = +K(x2 − x1 − Lo) = +K(u2 − u1)

F2 = −K(L − Lo) = −K(x2 − x1 − Lo) = −K(u2 − u1)

where K is the spring constant, and x1, x2, u1, and u2 are the particle positions and
displacements, respectively.

All objects experience some sort of dissipation of energy (or damping) when set
in motion. This is due to such factors as friction with the surrounding air or water
and internal friction of the material itself. There are many models of damping; in
the viscous damping model, for example, the retarding force is proportional to the
instantaneous velocity, so F̂d = Cˆ̇r = Cv̂, where C is the damping constant.

In these examples of interaction forces, because the force depends on particle
position and/or velocity, its effect on the motion is quite different from the effect if
it were an external applied load. We illustrate this by considering the response of
the masses when set in motion by an initial disturbance. For simplicity, set one of
the masses as fixed so that the free-body diagram of the moving mass attached to the
spring looks like Figure 1.2(b). We identify four forces acting on the mass displaced
by an amount u(t). The applied force Po(t) is the agent causing the displacement,
the elastic force Ku attempts to return the mass to its original position, the inertia
force −Mü acts so as to keep the mass doing whatever it is doing, and finally, the
damping force Fd = Cu̇ attempts to slow down the motion. The balance of forces is

Po − Ku − Fd = Mü or Mü + Cu̇+ Ku = P(t) (1.1)

This is the governing equation of motion (EoM); in this instance, it is a single, non-
homogeneous linear ordinary differential equation (ODE) with constant coeffi-
cients, but more generally, it is a system of nonlinear ODEs.

In addition to Newton’s laws of motion, there are a couple of concepts that are
very useful for our later developments, and these concern the various forms of work
and energy. The work done by a force in moving a distance dû is given by the vector

FF

Lo

1 2

(a) (b)

............................

.................. K M
Po

u

Po

F d

Ku
M ü

Figure 1.2. Simple spring-mass systems: (a) stretched spring showing equal (but opposite)
forces on each mass; (b) the free-body diagram shows the retarding forces acting on the mass
set in motion by the applied load Po.
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10 Dynamics of Simple Elastic Systems

dot product

dW = P̂ · dr̂ = Pxdu + Pydv+ Pzdw

Work is a scalar and has the units of force (N) times displacement (m) or N · m.
This unit is given the special name joule (J), which is defined as the work done by
1N moving through a distance of 1m. Because work is a scalar, the work done by a
system of forces is the simple scalar sum of the individual contributions. The work
done by a force in stretching a spring between two states is

�W =
∫ 2

1
P̂o · dû =

∫
Po du =

∫
Kudu = 1

2
K(u2

2 − u2
1) = U2 − U1

This form of work is called the strain energy, and we use the symbol U = 1/2Ku2.
The work done on a particle during a finite time is

�W =
∫ 2

1
P̂ · dû =

∫
d(Mv̂)

dt
· dû

dt
dt =

∫
Mv̂ · dv̂ = 1

2
M(v2

2 − v2
1) = T2 − T1

This form of work is called the kinetic energy of the particle, and we use the symbol
T = 1/2Mv2. Although related to each other, work and energy are distinct concepts.
We can say that forces perform work, but the system possesses energy. Therefore,
when work is performed on a system, a change of energy occurs. When there are no
dissipation mechanisms, energy is conserved, so

E = U + T = constant or
dE
dt

= d
dt

(
U + T

)= 0 (1.2)

This is useful for the simple single degree of freedom (SDoF) systems considered in
this chapter but must be amended considerably for the complex systems of interest
in the remaining chapters.

The concepts of work and energy form the foundation of our mechanics
formulation in Chapter 2.

EXAMPLE 1.1. Establish the equation of motion for the simple pendulum
shown in Figure 1.3.

............................
..................

Mc

Lφ

g

F̄o

Mcg

(a)

0. 5. 10. 15. 20.

φ

t [s]

(b)

Figure 1.3. Simple pendulum system: (a) geometry and free body; (b) numerically generated
time response.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-04570-5 - Nonlinear Structural Dynamics: Using FE Methods
James F. Doyle
Excerpt
More information

http://www.cambridge.org/9781107045705
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107045705: 


