
Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Part I

Introduction

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Introduction

In this chapter we introduce the motivation for studying Cognition and

Intractability. We provide an intuitive introduction to the problem of intractabil-

ity as it arises for models of cognition using an illustrative everyday problem as

running example: selecting toppings on a pizza. Next, we review relevant back-

ground information about the conceptual foundations of cognitive explanation,

computability, and tractability. At the end of this chapter the reader should have

a good understanding of the conceptual foundations of the Tractable Cognition

thesis, including its variants: The P-Cognition thesis and the FPT-Cognition

thesis, which motivates diving into the technical concepts and proof techniques

covered in Chapters 2–7.

1.1 Selecting Pizza Toppings

Imagine you enter a pizzeria to buy a pizza. You can choose any

combination of toppings from a given set, e.g., {pepperoni, salami,

ham,mushroom,pineapple, . . . }. What will you choose?

According to one account of human decision-making, your choice will be

such that you maximize utility. Here utility, denoted by u(.), is to be understood

as the subjective value of each possible choice option (e.g., if you prefer salami

to ham, then u(salami) > u(ham)). Since you can choose combinations of

toppings, we need to think of the choice options as subsets of the set of all

available toppings. This includes subsets with only one element (e.g., {salami}

or {olives}), but also combinations of multiple toppings (e.g., {ham,pineapple}

or {salami,mushrooms,olives}). On this account of human decision-making,

we can formally describe your toppings selection problem as an instance of the

following computational problem:

Generalized Subset Choice

Input: A set X = {x1,x2,...,xn} of n available items and a value

function u assigning a value to every subset S ⊆ X.

Output: A subset S ⊆ X such that u(S) is maximized over all possible

S ⊆ X.

3

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Introduction

Note that many other choice problems that one may encounter in everyday life

can be cast in this way, ranging from inviting a subset of friends to a party or

buying groceries in the grocery store to selecting people for a committee or

prescribing combinations of medicine to a patient.

But how – using what algorithm – could your brain come to select a subset

S with maximum utility? A conceivable algorithm could be the following:

Consider each possible subset S ⊆ X, in serial or parallel (in whatever way we

may think the brain implements such an algorithm), and select the one that has

the highest utility u(S). Conceptually this is a straightforward procedure. But it

has an important problem. The number of possible subsets grows exponentially

with the number of items in X. Given that in real-world situations one cannot

generally assume that X is small, the algorithm will be searching prohibitively

large search spaces.

Stop and Think

These days pizzerias may provide for 30 or more different toppings.

How many distinct pizzas do you think can be made with 30 different

pizza toppings?

If n denotes the number of items in X, then 2n expresses the number of

distinct possible subsets of X. In other words, with 30 toppings one can

make 230 > 1,000,000,000 (a billion) distinct pizzas. Of course, in practice

pizzerias typically list 20–30 distinct pizzas on their menus. But consider that

some pizzerias also provide the option to construct your own pizza, implicitly

allowing a customer to pick any of the billion pizza options available.

Stop and Think

Imagine that the brain would use the exhaustive algorithm described

earlier for selecting the preferred pizza. Assume that the brain’s algo-

rithm would process 100 possible combinations, in serial or parallel,

per second. How long would it take the brain to select a pizza if it

could choose from 30 different pizza toppings? What if it could choose

from 40 different toppings?

You may be surprised to find that the answer is 4 months. That is the time it

takes in this scenario for your brain to consider all the distinct pizzas that can be

made with 30 toppings in order to find the best tasting one (maximum utility).

If the choice would be from 40 toppings, it would even take 3.5 centuries.

Evidently, this is an unrealistic scenario. The pizzeria would be long closed

before you would have made up your mind!

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Selecting Pizza Toppings 5

There is an important lesson to draw from our pizza example: Explaining

how agents (human or artificial) can make decisions in the real world,

where time is a costly resource and choice options can be plentiful, requires

algorithms that run in a realistic amount of time. The exhaustive algorithm

that we considered in our pizza scenario does not meet this criterion. It is an

exponential-time algorithm. The time it takes grows exponentially with the

input size n (i.e., grows as cn for some constant c > 1). Exponential time

grows faster than any polynomial function (a function of the form nc for some

constant c), and is therefore also referred to as non-polynomial time. Another

example of non-polynomial time is factorial time (grows as n!). An example

of a factorial-time algorithm would be an algorithm that exhaustively searches

all possible orderings of n events or actions in order to select the best possible

ordering. Consider, for instance, planning n activities in a day: going to the

hairdresser, doing the laundry, buying groceries, cooking food, washing the

dishes, posting a letter, answering an email, watching TV, etc. Even for as

few as 10 activities, there would be 3.6 million possible orderings, and for 20

activities there would be more than 1018 possible orderings. Planning one’s

daily activities by exhaustive search would be as implausible as selecting pizza

toppings by exhaustive search.

Table 1.1 illustrates why non-polynomial time (e.g., exponential or factorial)

algorithms generally are considered intractable for all but small input sizes n,

whereas polynomial-time algorithms (e.g., linear or quadratic) are considered

tractable even for larger input sizes. Informally, intractable means that the

Table 1.1 Illustration of the running times of polynomial time versus super-polynomial time

algorithms. The function t(n) expresses the number of steps performed by an algorithm

(linear, quadratic, exponential, or factorial). For illustrative purposes it is assumed that 100

steps can be performed per second.

Input size Polynomial time Non-polynomial time

n t(n) = n t(n) = n2 t(n) = 2n t(n) = n!

5 50 ms 250 ms 320 ms 1 sec

10 100 ms 1 sec 10 sec 10.1 hr

20 200 ms 4 sec 2.9 hr 7.7 × 106 centuries

30 299 ms 9 sec 4.1 months 8.4 × 1020 centuries

40 400 ms 16 sec 3.5 centuries 2.6 × 1036 centuries

50 500 ms 25 sec 3.6 × 103 centuries 9.6 × 1052 centuries

100 1 sec 1.7 min 4.0 × 1018 centuries 3.0 × 10146 centuries

500 5 sec 41.7 min 1.0 × 10139 centuries 4.0 × 101124 centuries

1,000 10 sec 2.8 hr 3.4 × 10289 centuries 1.3 × 102558 centuries

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Introduction

algorithm requires an unrealistic amount of computational resources (in this

case, time) for its completion. This intractability is the main topic of this

book. In this book we explore formal notions of (in)tractability to assess the

computational-resource demands of different (potentially competing) scientific

accounts of cognition, be they about decision-making, planning, perception,

categorization, reasoning, learning, etc. Even though brains are quite remark-

able, their speed of operation is limited, and this fact can be exploited to assess

the plausibility of different ideas scientists may have about “what” and “how”

the brain computes.

For illustrative purposes, Table 1.1 assumed that the listed algorithms could

perform 100 steps per second. To see that this assumption has little effect on

the large difference between polynomial and non-polynomial running times

perform the next practice.

Practice 1.1.1 Recompute the contents of Table 1.1 under the assumption

that the algorithms can perform as many as 1,000 steps per second.

Let us return to our pizza example. We saw that the exhaustive algorithm

(searching all possible subsets) to maximize utility of the chosen subset of

toppings is an intractable algorithm. Does this mean that the idea that humans

maximize utility in such a situation is false? Possibly, but not necessarily. Note

that the trouble may have arisen from the specific way in which we formalized

the maximum utility account of decision-making for subset choice. In the

Generalized Subset Choice problem we allowed for any possible utility

function u that assigned any possible value to every subset X. As a result, there

is only one way to be sure that we output a subset with maximum utility: We

need to consider each and every subset.

The situation would be less dire if somehow there would be regularity in

one’s preferences over pizza toppings. This regularity could then perhaps be

exploited to more efficiently search the space of choice options. For instance, if

subjective preferences would be structured such that the utility of a subset could

be expressed as the sum of the value of its elements (i.e., u(S) =
∑

x∈S u(x)),

then we could change the formalization as follows:

Additive Subset Choice

Input: A set X = {x1,x2,...,xn} of n available items and a value

function u assigning a value to every element x ∈ X.

Output: A subset S ⊆ X such that u(S) =
∑

x∈S u(x) is maximized

over all possible S ⊆ X.

If the pizza selection problem would be an instance of this formal problem,

then the brain could select a maximum utility subset by using the following

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 Selecting Pizza Toppings 7

simple linear-time algorithm: Consider each item x ∈ X, and if u(x) ≥ 0 then

add x to the subset S, otherwise discard the option x. Since each item in X has

to be considered only once, and the inequality u(x) ≥ 0 checked for each item

only once, the number of steps performed by this algorithm grows at worst

linearly with the number of options in X. As can be seen in Table 1.1, such a

linear-time algorithm is clearly tractable in practice, even when you have larger

numbers of toppings to choose from.

The maximum utility account of decision-making would thus be saved from

intractability, if indeed real-world subset choice problems could all be cast as

instances of the Additive Subset Choice problem. But is this a plausible

possibility?

Stop and Think

Consider selecting pizza toppings for your pizza using the linear-time

algorithm described earlier? Why may you not be happy with the actual

result?

If you would use the linear-time algorithm to select your pizza top-

pings, you would always end up with all positive valued toppings on your

pizza. Besides that this may make for an overcrowded pizza, it also fails

to take into account that you may like some toppings individually but

not in particular combinations. For instance, each of the items in the set

{pepperoni,salami,ham,mushroom,pineapple} could have individually posi-

tive value for you, in the sense that you would prefer a pizza with any one of

them individually over a pizza with no toppings. Yet, at the same time, you may

prefer {ham,pineapple} or {salami,mushrooms,olives} over a pizza will all the

toppings (e.g., because you dislike the taste of the combination of pineapple

with olives). In other words, in real-world subset choice problems, there may

be interactions between items that affect the utility of their combinations.

This makes u(S) =
∑

x∈S u(x) an invalid assumption. From this exploration,

we should learn an important lesson: Intractable formalizations of cognitive

problems (decision-making, planning, reasoning, etc.) can be recast into

tractable formalizations by introducing additional constraints on the input

domains. Yet, it is important to make sure that those constraints do not make

the new formalization too simplistic and unable to model real-world problem

situations.

A balance may be struck by introducing the idea of pair-wise interactions

between k items in the choice set. Then we can adapt the formalization as

follows:

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Introduction

Binary Subset Choice

Input: A set X = {x1,x2,...,xn} of n available items. For every item

x ∈ X there is an associated value u(x), and for every pair of items

(xi,xj ) there is an associated value δ(xi,xj ).

Output: A subset S ⊆ X, such that u(S) =
∑

x∈S u(x) +
∑

x,y∈S δ(x,y) is maximum.

If situations allow for three-way interactions, this model may also fail as a

computational account of subset choice. It is certainly conceivable that three-

way interactions can occur in practice (see, e.g., van Rooij, Stege, and Kadlec,

2005). Leaving that discussion for another day, we may ask ourselves the

following question: Would computing this Binary Subset Choice problem

be in principle tractable? It is not so easy to tell as for Generalized Subset

Choice, because the utility function is constrained. But is it constrained

enough to yield tractability of this computation? Probably not. Using the tools

that you will learn about in this book, you will be able to show that this problem

belongs to class of so-called NP-hard problems. This is the class of problems

for which no polynomial-time algorithms exist unless a widely conjectured

inequality P �= NP would be false. This P �= NP conjecture, although

formally unproven (and perhaps even unprovable), is widely believed to be

true among computer scientists and cognitive scientists alike (see Chapter 4

for more details). Likewise, we will adopt this conjecture in the remainder of

this book.

1.2 Conceptual Foundations

In our pizza example we have introduced many of the key scientific concepts

on which this book builds. For instance, we used the distinction made in

cognitive science between explaining the “what” and the “how” of cognition,

the notion of “algorithm” as agreed upon by computer scientists, and the idea

that “intractability” can be characterized in terms of the time complexity of

algorithms. In this section, we explain the conceptual foundations of these

concepts in a bit more detail.

1.2.1 Conceptual Foundations of Cognitive Explanation

One of the primary aims of cognitive science is to explain human cognitive

capacities. Ultimately, the goal is to answer questions such as: How do humans

make decisions? How do they learn language, concepts, and categories? How

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Conceptual Foundations 9

do they form beliefs, based on reasons or otherwise? In order to come up

with answers for such “how”-questions it can be useful to first answer “what”-

questions: What is decision-making? What is language learning? What is

categorization? What is belief fixation? What is reasoning?

This distinction between “what is being computed” (the input-output map-

ping) and “how it is computed” (the algorithm) is also reflected in the

influential and widely used explanatory framework proposed by David Marr

(1981). Marr proposed that, ideally, theories in cognitive science should explain

the workings of a cognitive system (whether natural or artificial) on three

different levels (see Table 1.2). The first level, called the computational level,

specifies the nature of the input-output mapping that is computed (we will

also refer to this as the cognitive function).1 The second level, the algorithmic

level, specifies the nature of the algorithmic process by which the computation

described at the computational level is performed (cognitive process). The third

and final level, the implementation level, specifies how the algorithm defined

at the second level is physically implemented by the “hardware” of the system

(or “wetware” in the case of the brain) performing the computation (physical

implementation of the cognitive process/function).

Hence, in David Marr’s terminology, the description of a cognitive system

in terms of the function that it computes (or problem that it solves)2 is called a

computational-level theory. We already saw examples when we discussed the

pizza example: i.e., Generalized, Additive, and Binary Subset Choice

were three different candidate computational-level theories of how humans

choose subsets of options. Since one and the same function can be computed by

1 We should note that Marr also intended the computational-level analysis to include an account

of “why” the cognitive function is the appropriate function for the system to compute, given its

goals and environment of operation. This idea has been used to argue for certain

computational-level explanations based on appeals to rationality and/or evolutionary

selection – i.e., that specific functions would be rational or adaptive for the system to compute.

The intractability analysis of computational-level accounts as pursued in this book are neutral

with respect to such normative motivations for specific computational-level accounts, in the

sense that tractability and rational analysis are compatible, but the former can be done

independent of the latter (see Section 8.5).
2 Since the words “function” and “problem” refer to the same type of mathematical object (an

input-output mapping) we will use the terms interchangeably. A difference between the terms is

a matter of perspective: the word “problem” has a more prescriptive connotation of an

input-output mapping that is to be realized (i.e., a problem is to be solved), while the word

“function” has a more descriptive connotation of an input-output that is being realized (i.e., a

function is computed). The reader may notice that we will tend to adopt the convention of

speaking of “problems” whenever we discuss computational complexity concepts and methods

from computer science (e.g., in Chapters 2–7), and adopt the terms “function” or

“computational-level theory” in the context of applications and debates in cognitive science

(e.g., in Chapters 8–12).

www.cambridge.org/9781107043992
www.cambridge.org


Cambridge University Press
978-1-107-04399-2 — Cognition and Intractability
Iris van Rooij , Mark Blokpoel , Johan Kwisthout , Todd Wareham 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Introduction

Table 1.2 Marr’s levels of explanation: What is the type of question asked at each level, what

counts as an answer (the explanans), and labels for the thing to be explained (explanandum)

per level.

Level Question Answer Label

Computation What is the

nature of the

computational

problem solved?

An input-output

mapping F : I → O

Cognitive

function

Algorithm How is the

computational

problem solved?

An algorithm A that

computes F

Cognitive

process

Implementation How is the

algorithm

implemented?

A specification of how

the computational steps

of A are realizable by

the relevant “stuff”

(e.g., neuronal

processes)

Physical

implementation

many different algorithms (e.g., serial or parallel), we can describe a cognitive

system at the computational level more or less independently of the algorithmic

level. Similarly, since an algorithm can be implemented in many different

physical systems (e.g., carbon or silicon), we can describe the algorithmic level

more or less independently of physical considerations.

David Marr, in his seminal 1981 book, illustrated this idea with the example

of a cash register, i.e., a system that has the ability to perform addition

(see Figure 1.1). A computational-level theory for a cash register would

be the Addition function F (a,b) = a + b. An algorithmic-level theory

could, for instance, be an algorithm operating on decimal numbers or an

algorithm operating on binary numbers. Either algorithm would compute the

function Addition, albeit in different ways. The implementational-level theory

would depend on the physical make-up of the system. For instance, different

physical systems can implement algorithms for Addition: cash registers, pocket

calculators, and even human brains. An implementational-level theory would

specify by some sort of blueprint how the algorithm could be realized by that

particular physical system.

Practice 1.2.1 Study the cash-register example in Figure 1.1. Can you come

up with different computational-, algorithmic- and implementational-level

www.cambridge.org/9781107043992
www.cambridge.org

