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Many optimal decision problems in scientific, engineering, and public sector
applications involve both discrete decisions and nonlinear system dynamics
that affect the quality of the final design or plan. These decision problems
lead to mixed-integer nonlinear programming (MINLP) problems that com-
bine the combinatorial difficulty of optimizing over discrete variable sets with
the challenges of handling nonlinear functions. We review models and appli-
cations of MINLP, and survey the state of the art in methods for solving this
challenging class of problems.
Most solution methods for MINLP apply some form of tree search. We

distinguish two broad classes of methods: single-tree and multitree methods.
We discuss these two classes of methods first in the case where the underlying
problem functions are convex. Classical single-tree methods include nonlin-
ear branch-and-bound and branch-and-cut methods, while classical multitree
methods include outer approximation and Benders decomposition. The most
efficient class of methods for convex MINLP are hybrid methods that combine
the strengths of both classes of classical techniques.
Non-convex MINLPs pose additional challenges, because they contain non-

convex functions in the objective function or the constraints; hence even when
the integer variables are relaxed to be continuous, the feasible region is gen-
erally non-convex, resulting in many local minima. We discuss a range of
approaches for tackling this challenging class of problems, including piecewise
linear approximations, generic strategies for obtaining convex relaxations for
non-convex functions, spatial branch-and-bound methods, and a small sample
of techniques that exploit particular types of non-convex structures to obtain
improved convex relaxations.
We finish our survey with a brief discussion of three important aspects

of MINLP. First, we review heuristic techniques that can obtain good fea-
sible solution in situations where the search-tree has grown too large or we
require real-time solutions. Second, we describe an emerging area of mixed-
integer optimal control that adds systems of ordinary differential equations
to MINLP. Third, we survey the state of the art in software for MINLP.
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Mixed-integer nonlinear optimization 3

1. Introduction

Many optimal decision problems in scientific, engineering, and public sector
applications involve both discrete decisions and nonlinear system dynamics
that affect the quality of the final design or plan. Mixed-integer nonlinear
programming (MINLP)1 problems combine the combinatorial difficulty of
optimizing over discrete variable sets with the challenges of handling non-
linear functions. MINLP is one of the most general modelling paradigms in
optimization and includes both nonlinear programming (NLP) and mixed-
integer linear programming (MILP) as subproblems. MINLPs are conve-
niently expressed as























minimize
x

f(x),

subject to c(x) f 0,

x * X,

xi * Z, "i * I,

(1.1)

where f : Rn ³ R and c : Rn ³ R
m are twice continuously differentiable

functions, X ¢ R
n is a bounded polyhedral set, and I ¦ {1, . . . , n} is

the index set of integer variables. We note that we can readily include
maximization and more general constraints, such as equality constraints, or
lower and upper bounds l f c(x) f u. More general discrete constraints
that are not integers can be modelled by using so-called special-ordered sets
of type I (Beale and Tomlin 1970, Beale and Forrest 1976).

Problem (1.1) is an NP-hard combinatorial problem, because it includes
MILP (Kannan and Monma 1978), and its solution typically requires search-
ing enormous search trees: see Figure 1.1. Worse, non-convex integer op-
timization problems are in general undecidable (Jeroslow 1973). Jeroslow
provides an example of a quadratically constrained integer program and
shows that no computing device exists that can compute the optimum for
all problems in this class. In the remainder of this paper, we concentrate on
the case where (1.1) is decidable, which we can achieve either by ensuring
that X is compact or by assuming that the problem functions are convex.

1.1. MINLP notation and basic definitions

Throughout this paper we use x(k) to indicate iterates of x and f (k) = f(x(k))
to denote the evaluation of the objective at x(k). Similar conventions apply
to constraints, gradients, or Hessians at x(k); for example,'f (k) = 'f(x(k)).
We use subscripts to denote components; for example, xi is the ith compo-
nent of vector x. For a set J ¢ {1, . . . , n} we let xJ denote the components

1 Note that we use ‘MINLP’ to refer to both ‘mixed-integer nonlinear programming’ and

‘mixed-integer nonlinear program’.
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Figure 1.1. A branch-and-bound tree without presolve
after 360 s CPU time has more than 10 000 nodes.

of x corresponding to J . In particular, xI are the integer variables. We
also define C = {1, . . . , n} 2 I and let xC denote the continuous variables.
We denote by p the dimension of the integer space, p = |I|. We denote the
floor and ceiling operator by ÿxiÿ and ÿxiÿ, which denote the largest integer
smaller than or equal to xi and the smallest integer larger than or equal to xi,
respectively. Given two n×n matrices Q and X, Q"X =

∑n
i=1

∑n
j=1QijXij

represents their inner product.
In general, the presence of integer variables xi * Z implies that the feasible

set of (1.1) is not convex. In a slight abuse of terminology, we distinguish
convex from non-convex MINLPs.

Definition 1.1. We say that (1.1) is a convex MINLP if the problem
functions f(x) and c(x) are convex functions. If either f(x) or any ci(x) is
a non-convex function, then we say that (1.1) is a non-convex MINLP.

Throughout this paper, we use the notion of a convex hull of a set S.

Definition 1.2. Given a set S, the convex hull of S is denoted by conv(S)
and defined as

conv(S) :=
{

x : x = λx(1) + (12 λ)x(0), "0 f λ f 1, "x(0), x(1) * S
}

.

If X = {x * Z
p : l f x f u} and l * Z

p, u * Z
p, then conv(X) = [l, u] is

simply the hypercube. In general, however, even when X itself is polyhedral,
it is not easy to find conv(X). The convex hull plays an important role in
mixed-integer linear programming. Because an LP obtains a solution at
a vertex, we can solve an MILP by solving an LP over its convex hull.
Unfortunately, finding the convex hull of an MILP is just as hard as solving
the MILP.
The same result does not hold for MINLP, as the following example illus-

trates:

minimize
x

n
∑

i=1

(xi 2
1
2)

2, subject to xi * {0, 1}.
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x1

x2

(x̂1, x̂2)

η

Figure 1.2. Small MINLP to illustrate
the need for a linear objective function.

The solution of the continuous relaxation is x =
ÿ

1

2
, . . . , 1

2

ÿ

, which is not an
extreme point of the feasible set and, in fact, lies in the strict interior of
the MINLP: see Figure 1.2. Because the continuous minimizer lies in the
interior of the convex hull of the integer feasible set, it cannot be separated
from the feasible set. However, we can reformulate (1.1) by introducing an
objective variable z and a constraint z g f(x). We obtain the following
equivalent MINLP:

§

«

«

«

«

«

«

«

«

«

«

«

«

«

«

minimize
z,x

z,

subject to f(x) f z,

c(x) f 0,

x * X,

xi * Z, "i * I.

(1.2)

The optimal solution of (1.2) always lies on the boundary of the convex hull
of the feasible set and therefore allows us to use cutting-plane techniques.

1.2. Preview of key building blocks of MINLP algorithms

A wide variety of methods exists for solving MINLP. Here, we briefly intro-
duce the two fundamental concepts underlying these algorithms: relaxation
and constraint enforcement. A relaxation is used to compute a lower bound
on the optimal solution of (1.1). A relaxation is obtained by enlarging the
feasible set of the MINLP, for example, by ignoring some constraints of the
problem. Typically, we are interested in relaxations that are substantially
easier to solve than the MINLP itself. Together with upper bounds, which
can be obtained from any feasible point, relaxations allow us to terminate
the search for a solution whenever the lower bound is larger than the current
upper bound. Constraint enforcement refers to procedures used to exclude
solutions that are feasible for the relaxation but not to the original MINLP.
Constraint enforcement may be accomplished by refining or tightening the
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relaxation, often by adding valid inequalities, or by branching, where the
relaxation is divided into two or more separate problems.

In general, upper bounds are obtained from any feasible point. Often, we
fix the integer variables at an integral value and solve the resulting NLP to
obtain an upper bound (which we set to infinity if the NLP is infeasible).

Relaxations. Formally, an optimization problem min{ξR(x) : x * SR} is a
relaxation of a problem min{ξ(x) : x * S} if (i) SR ⊇ S and (ii) ξR(x) ≤ ξ(x)
for each x * S. The feasible set R of a relaxation of a problem with feasible
set F contains all feasible points of F . The main role of the relaxation is to
provide a problem that is easier to solve and for which we can obtain globally
optimal solutions that allow us to derive a lower bound. Relaxations that fall
into this category are convex NLPs, for which nonlinear optimization solvers
will converge to the global minimum, and MILPs, which can often be solved
efficiently (for practical purposes) by using a branch-and-cut approach.
Several strategies are used to obtain relaxations of MINLPs.

(1) Relaxing integrality. Integrality constraints xi * Z can be relaxed to
xi * R for all i * I. This procedure yields a nonlinear relaxation

of MINLP. This type of relaxation is used in branch-and-bound algo-
rithms (Section 3.1) and is given by











minimize
x

f(x),

subject to c(x) f 0,

x * X.

(1.3)

(2) Relaxing convex constraints. Constraints c(x) f 0 and f(x) f z con-
taining convex functions c and f can be relaxed with a set of supporting
hyperplanes obtained from first-order Taylor series approximation,

z g f (k) +'f (k)T (x2 x(k)), (1.4)

0 g c(k) +'c(k)
T

(x2 x(k)), (1.5)

for a set of points x(k), k = 1, . . . ,K. When c and f are convex, any
collection of such hyperplanes forms a polyhedral relaxation of these
constraints. This class of relaxations is used in the outer approximation
methods discussed in Section 3.2.1.

(3) Relaxing non-convex constraints. Constraints c(x) f 0 and f(x) f z

containing non-convex functions require more work to be relaxed. One
approach is to derive convex underestimators, f̆(x) and c̆(x), which are
convex functions that satisfy

f̆(x) f f(x) and c̆(x) f c(x), for all x * conv(X). (1.6)
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Figure 1.3. Illustration of the two classes of relaxation.
(a) The mixed-integer feasible set, (b) the nonlinear
relaxation, and (c) the polyhedral relaxation.

Then the constraints z g f(x) and 0 g c(x) are relaxed by replacing
them with the constraints

z g f̆(x) and 0 g c̆(x).

In Section 5 we review classes of nonlinear functions for which convex
underestimators are known, and we describe a general procedure to
derive underestimators for more complex nonlinear functions.

All these relaxations enlarge the feasible set of (1.2), and they can be com-
bined with each other. For example, a convex underestimator of a non-
convex function can be further relaxed by using supporting hyperplanes,
yielding a polyhedral relaxation.
Figure 1.3 illustrates the relaxation of integrality constraints and con-

vex nonlinear constraints: (a) the mixed-integer feasible set (the union of
the vertical segments), (b) the nonlinear relaxation obtained by relaxing
the integrality constraints (the shaded area is the NLP feasible set), and
(c) a polyhedral relaxation (the union of the vertical segments) as well as
its LP relaxation (the shaded area). We note that an infinite number of
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(a) (b)

Figure 1.4. Separation of infeasible point (black dot)
by adding a separating hyperplane. The dashed line
with arrows (b) shows a separating hyperplane with
arrows indicating the feasible side.

possible polyhedral relaxations exists, depending on the choice of the points
x(k) * conv(X), k = 1, . . . ,K.

If the solution to a relaxation is feasible in (1.2), then it also solves the
MINLP. In general, however, the solution is not feasible in (1.2), and we
must somehow exclude this solution from the relaxation.

Constraint enforcement. Given a point x̂ that is feasible for a relaxation
but is not feasible for the MINLP, the goal of constraint enforcement is to
exclude this solution, so that the algorithm can eventually converge to a
solution that satisfies all the constraints. Two broad classes of constraint
enforcement strategies exist: relaxation refinement and branching. Most
modern MINLP algorithms use both classes.

The goal of relaxation refinement is to tighten the relaxation in such a
way that a solution x̂ of the relaxation that is infeasible for the MINLP is
removed from the relaxation. Most commonly, this is achieved by adding
a new valid inequality to the relaxation. A valid inequality is an inequal-
ity that is satisfied by all feasible solutions for the MINLP. When a valid
inequality successfully excludes a given infeasible solution, it is often called
a cut. Valid inequalities are usually linear but may be convex. For exam-
ple, after relaxing a convex constraint with a polyhedral relaxation, a valid
inequality can be obtained by linearizing the nonlinear functions about x̂.
This valid inequality will successfully cut off x̂, unless x̂ satisfies the nonlin-
ear constraints, c(x̂) f 0: see Figure 1.4. This class of separation is used in
outer approximation, Benders decomposition, and the ECP algorithm dis-
cussed in Section 3.2.1. Valid inequalities can also be useful after relaxing
integrality. In this case, the goal is to obtain an inequality that is valid
because it does not cut off any integer feasible solution but will cut off an
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Figure 1.5. Branching on the values of an integer variable
creates two new nonlinear subproblems that both exclude
the infeasible point, denoted by the black dot.

integer infeasible solution x̂. This technique has been critical to the success
of algorithms for solving mixed-integer linear programs.
The second class of constraint enforcement strategy is branching. Branch-

ing consists in dividing the feasible region into subsets such that every so-
lution to MINLP is feasible in one of the subsets. When integrality is
relaxed, it can be enforced by branching on an integer variable that takes
a fractional value x̂i for some i * I. Branching creates two new separate
relaxations: the constraint xi f ÿx̂iÿ is added to the first relaxation, and
the constraint xi g ÿx̂iÿ is added to the second relaxation (see Figure 1.5).
All solutions of the MINLP now lie in one of these two new relaxations.
The resulting subproblems are managed in a search tree that keeps track of
all subproblems that remain to be solved. This approach is the basis of the
branch-and-bound algorithms described in detail in Section 3.1.

Constraint enforcement for relaxed non-convex constraints involves a com-
bination of branching and relaxation refinement. These techniques are dis-
cussed in detail in Section 5, but here we outline the general idea using
Figure 1.6. Following the solution of the relaxation (given by the dashed
objective function in Figure 1.6(a)), we branch on a continuous variable
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(a) (b)

Figure 1.6. Constraint enforcement by using spatial
branching for global optimization.

and hence split its domain into two subdomains. We then compute new un-
derestimators for use in (1.6) that are valid on each of the two subdomains
(i.e., we refine the relaxation). In the example, these refined underestima-
tors are indicated by the two dashed objective functions in Figure 1.6(b).
This approach, which we refer to as spatial branching, results in a branch-
and-bound algorithm similar to the one for discrete variables. We continue
to divide the domain into smaller subdomains until the lower bound on a
subdomain is larger than the upper bound, at which point we can exclude
this domain from our search. For MINLPs having both integer variables
and non-convex constraints, branching may be required on both integer
and continuous decision variables.

1.3. Scope and outline

The past 20 years or so have seen a dramatic increase in new mixed-integer
nonlinear models and applications, which has motivated the development
of a broad range of new techniques to tackle this challenging class of prob-
lems. This survey presents a broad overview of deterministic methodologies

for solving mixed-integer nonlinear programs. In Section 2 we motivate our
interest in MINLP methods by presenting some small examples, and we
briefly discuss good modelling practices. In Section 3 we present deter-
ministic methods for convex MINLPs, including branch-and-bound, outer
approximation, and hybrid techniques. We also discuss advanced implemen-
tation considerations for these methods. Cutting planes have long played
a fundamental role in mixed-integer linear programming, and in Section 4
we discuss their extension to MINLP. We review a range of cutting planes
such as conic MIR cuts, disjunctive cuts, and perspective cuts. In Section 5
we outline methods for solving non-convex MINLPs. A range of heuris-
tics to obtain good incumbent solutions quickly is discussed in Section 6.
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