# Climate Change and Terrestrial Ecosystem Modeling

Climate models have evolved into Earth system models with representation of the physics, chemistry, and biology of terrestrial ecosystems. This companion book to Gordon Bonan's *Ecological Climatology: Concepts and Applications, Third Edition*, builds on the concepts introduced there and provides the mathematical foundation upon which to develop and understand ecosystem models and their relevance for these Earth system models. The book bridges the disciplinary gap among land surface models developed by atmospheric scientists; biogeochemical models, dynamic global vegetation models, and ecosystem demography models developed by ecologists; and ecohydrology models developed by hydrologists. Review questions, supplemental code, and modeling projects are provided to aid with understanding how the equations are used. The book is an invaluable guide to climate change and terrestrial ecosystem modeling for graduate students and researchers in climate change, climatology, ecology, hydrology, biogeochemistry, meteorology, environmental science, mathematical modeling, and environmental biophysics.

**Gordon Bonan** is Senior Scientist and Head of the Terrestrial Sciences Section at the National Center for Atmospheric Research in Boulder, Colorado. He studies the interactions of terrestrial ecosystems with climate, using models of Earth's biosphere, atmosphere, hydrosphere, and geosphere. He is the author of *Ecological Climatology: Concepts and Applications* (now in its third edition) and has published 150 peer-reviewed articles in atmospheric science, geoscience, and ecological journals on terrestrial ecosystems, climate, and their coupling. He is a fellow of the American Geophysical Union and the American Meteorological Society and has served on advisory boards for numerous national and international organizations and as an editor for several journals.

> "This is a thoroughly comprehensive overview, and must be the definitive text for this field. The breadth of topics and the depth of knowledge displayed here is unparalleled. For students and expert practitioners alike, this is an extraordinarily useful resource, expertly presented using a thoughtful balance of text, figures, data tables and equations."

#### Mathew Williams, University of Edinburgh

"Terrestrial ecosystem models are a fundamental basis for the science of global change impacts and biospheric climate, and an essential tool to investigate options to understand and mitigate climate change. This comprehensive overview of the history, theoretical underpinnings and application of terrestrial ecosystem models, paired with an in-depth discussion of the mathematical fundaments of the model, and complemented with clear and helpful practical examples, is a must-read for anyone interested in using or developing models of land ecosystems, from the scale of individual ecosystems, to studies of the role of land surface dynamics in comprehensive Earth system models. I wish this book had been available at the beginning of my career."

Sönke Zaehle, Max Planck Institute for Biogeochemistry

"Bonan's excellent text is comprehensive, covering all the components needed to model the land surface and its interactions with the atmosphere and climate system. For each topic Bonan provides not only historical perspective and a comprehensive theoretical overview, but also the critically important discussion of how these theoretical approaches can be put into practice numerically. This book is the new definitive reference for anyone working on understanding and modeling all aspects of the land surface."

Abigail L. S. Swann, University of Washington

"I highly recommend this groundbreaking book to everyone who wants to learn the nuts and bolts of land surface modeling and/or Earth system modeling. For many years I have been teaching *Ecological Climatology: Concepts and Applications* to geoscience and engineering students but struggling to supplement them with appropriate materials on modeling blocks and for modeling projects. Now this book arrives as a perfect addition and companion as it provides exactly the kind of materials I wanted to have."

Zong-Liang Yang, University of Texas at Austin

# Climate Change and Terrestrial Ecosystem Modeling

Gordon Bonan

National Center for Atmospheric Research, Boulder, Colorado



#### **CAMBRIDGE** UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107043787 DOI: 10.1017/9781107339217

© Gordon Bonan 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Bonan, Gordon B., author.

Title: Climate change and terrestrial ecosystem modeling / Gordon B. Bonan,

National Center for Atmospheric Research, Boulder, Colorado.

Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019. | Includes bibliographical references and index.

Identifiers: LCCN 2018035968| ISBN 9781107043787 (hardback) | ISBN 9781107619074 (paperback) Subjects: LCSH: Biotic communities–Mathematical models. | Ecology–Mathematical models. |

Climatic changes. | Global environmental change.

Classification: LCC QH541.15.M3 B66 2019 | DDC 577.8/2-dc23 LC record available at https://lccn.loc.gov/2018035968

ic record available at https://iccii.ioc.gov/201805590

ISBN 978-1-107-04378-7 Hardback ISBN 978-1-107-61907-4 Paperback

Additional resources for this publication at www.cambridge.org/bonanmodeling

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Amie, again

Cambridge University Press 978-1-107-04378-7 — Climate Change and Terrestrial Ecosystem Modeling Gordon Bonan Frontmatter <u>More Information</u>

## Contents

| Pref<br>List | ace<br>of Mathematical Symbols                    | þage xiii<br>xv |
|--------------|---------------------------------------------------|-----------------|
| I            | Terrestrial Biosphere Models                      | I               |
| Cha          | apter Overview                                    | 1               |
|              | 1 Introduction                                    | 1               |
| 1.           | 2 The Ecological Ecosystem                        | 4               |
| 1.           | 3 The Atmospheric Ecosystem                       | 8               |
| 1.           | 4 The Hydrological Ecosystem                      | 12              |
| 1.           | 5 One Biosphere                                   | 13              |
|              | 6 Common Language                                 | 14              |
|              | 7 Constructing a Terrestrial Biosphere Model      | 16              |
|              | 8 The Goals of Modeling                           | 20              |
|              | 9 Complexity and Uncertainty                      | 20              |
| 1.1          | 0 Intent of the Book                              | 23              |
| 2            | Quantitative Description of Ecosystems            | 25              |
| Cha          | apter Overview                                    | 25              |
| 2.           | 1 Leaf Area Index                                 | 25              |
|              | 2 Leaf Angle Distribution                         | 28              |
|              | 3 Leaf Mass per Area                              | 32              |
|              | 4 Canopy Nitrogen Profile                         | 33              |
|              | 5 Root Profile                                    | 34              |
|              | 6 Ecosystem Structure                             | 36              |
| 2.           | 7 Supplemental Programs                           | 39              |
| 3            | Fundamentals of Energy and Mass Transfer          | 40              |
| Cha          | apter Overview                                    | 40              |
| 3.           | 1 Heat Storage                                    | 40              |
| 3.           | 2 Radiation                                       | 41              |
|              | 3 Conduction                                      | 43              |
|              | 4 Molecular Diffusion                             | 43              |
|              | 5 Gas Relationships                               | 44              |
|              | 6 Atmospheric Humidity                            | 46              |
|              | 7 Diffusive Flux Equations                        | 48              |
|              | 8 Conductance and Resistance Networks             | 50              |
| 3.           | 9 Chapter Appendix – Diffusive Flux Notation      | 51              |
| 4            | Mathematical Formulation of Biological Flux Rates | 53              |
| Cha          | apter Overview                                    | 53              |
|              | 1 Michaelis–Menten Equation                       | 53              |
|              | 2 Arrhenius Equation                              | 54              |
|              | -                                                 |                 |

#### viii | CONTENTS

| 4.3 Rate Modifiers                                                         | 55        |
|----------------------------------------------------------------------------|-----------|
| 4.4 First-Order, Linear Differential Equations                             | 59        |
| 4.5 Optimality Theory                                                      | 60        |
| 4.0 Optimality filtery                                                     | 00        |
| 5 Soil Temperature                                                         | 64        |
| Chapter Overview                                                           | 64        |
| 5.1 Introduction                                                           | 64        |
| 5.2 Transient, One-Dimensional Heat Conduction                             | 65        |
| 5.3 Numerical Implementation                                               | 66        |
| 5.4 Soil Thermal Properties                                                | 70        |
| 5.5 Diurnal and Annual Cycles                                              | 73        |
| 5.6 Phase Change                                                           | 75        |
| 5.7 Supplemental Programs                                                  | 78        |
| 5.8 Modeling Projects                                                      | 79        |
| 6 Turbulent Fluxes and Scalar Profiles in the Surface Layer                | 80        |
| Chapter Overview                                                           | 80        |
| 6.1 Introduction                                                           | 80        |
| 6.2 Turbulent Fluxes                                                       | 81        |
| 6.3 Gradient–Diffusion Theory                                              | 83        |
| 6.4 Logarithmic Profiles                                                   | 84        |
| 6.5 Monin–Obukhov Similarity Theory                                        | 85        |
| 6.6 Aerodynamic Conductances                                               | 89        |
| 6.7 Roughness Length                                                       | 91        |
| <ul><li>6.8 Roughness Sublayer</li><li>6.9 Supplemental Programs</li></ul> | 93<br>100 |
| 6.10 Modeling Projects                                                     | 100       |
| 0.10 Modeling Hojeets                                                      | 100       |
| 7 Surface Energy Fluxes                                                    | 101       |
| Chapter Overview                                                           | 101       |
| 7.1 Introduction                                                           | 101       |
| 7.2 Energy Balance                                                         | 101       |
| 7.3 Surface Temperature                                                    | 105       |
| 7.4 A Bucket Model Hydrologic Cycle                                        | 11(       |
| 7.5 Soil Evaporation                                                       | 111       |
| 7.6 Penman–Monteith Equation                                               | 112       |
| 7.7 Chapter Appendix: Snowmelt                                             | 113       |
| 7.8 Supplemental Programs                                                  | 114       |
| 7.9 Modeling Projects                                                      | 114       |
| 8 Soil Moisture                                                            | 115       |
| Chapter Overview                                                           | 115       |
| 8.1 Introduction                                                           | 115       |
| 8.2 Measures of Soil Moisture                                              | 115       |
| 8.3 Matric Potential and Hydraulic Conductivity                            | 118       |
| 8.4 Richards Equation                                                      | 121       |
| 8.5 Finite Difference Approximation                                        | 123       |

Cambridge University Press 978-1-107-04378-7 — Climate Change and Terrestrial Ecosystem Modeling Gordon Bonan Frontmatter <u>More Information</u>

| 8.6 Iterative Numerical                                                                                                                                                                                                                                                                                                                                       | Solutions                                                                               | 12                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 8.7 Infiltration                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 13                                                                               |
| 8.8 Source and Sink Ter                                                                                                                                                                                                                                                                                                                                       | ms                                                                                      | 13                                                                               |
| 8.9 Soil Heterogeneity                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 13                                                                               |
| 8.10 Supplemental Progra                                                                                                                                                                                                                                                                                                                                      | ams                                                                                     | 13                                                                               |
| 8.11 Modeling Projects                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 13                                                                               |
| 9 Hydrologic Scaling a                                                                                                                                                                                                                                                                                                                                        | and Spatial Heterogeneity                                                               | 13                                                                               |
| Chapter Overview                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 13                                                                               |
| 9.1 Introduction                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 1                                                                                |
| 9.2 Infiltration                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 1                                                                                |
| 9.3 Runoff                                                                                                                                                                                                                                                                                                                                                    |                                                                                         | 1                                                                                |
| 9.4 Evapotranspiration                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 1                                                                                |
| 9.5 Snow Cover                                                                                                                                                                                                                                                                                                                                                |                                                                                         | 1                                                                                |
| 9.6 Subgrid Tiling                                                                                                                                                                                                                                                                                                                                            |                                                                                         | 14                                                                               |
| 9.7 Supplemental Progra                                                                                                                                                                                                                                                                                                                                       | ams                                                                                     | 1                                                                                |
| 9.8 Modeling Projects                                                                                                                                                                                                                                                                                                                                         |                                                                                         | 1                                                                                |
| 10 Leaf Temperature                                                                                                                                                                                                                                                                                                                                           | and Energy Fluxes                                                                       | 13                                                                               |
| Chapter Overview                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 1                                                                                |
| 10.1 Introduction                                                                                                                                                                                                                                                                                                                                             |                                                                                         | 1                                                                                |
| 10.2 Leaf Energy Balance                                                                                                                                                                                                                                                                                                                                      |                                                                                         | 1                                                                                |
| 10.3 Leaf Temperature                                                                                                                                                                                                                                                                                                                                         |                                                                                         | 1                                                                                |
| 10.4 Leaf Boundary Layer                                                                                                                                                                                                                                                                                                                                      |                                                                                         | 1                                                                                |
| 10.5 Characteristic Leaf I                                                                                                                                                                                                                                                                                                                                    |                                                                                         | 1                                                                                |
| 10.6 Energy Budget Exam                                                                                                                                                                                                                                                                                                                                       | -                                                                                       | 1                                                                                |
| 10.7 Supplemental Progra                                                                                                                                                                                                                                                                                                                                      | ams                                                                                     | 1                                                                                |
| 10.8 Modeling Projects                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 1                                                                                |
| II Leaf Photosynthes                                                                                                                                                                                                                                                                                                                                          | is                                                                                      | l                                                                                |
| Chapter Overview                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 1                                                                                |
| 11.1 C <sub>3</sub> Photosynthesis                                                                                                                                                                                                                                                                                                                            |                                                                                         | 1                                                                                |
|                                                                                                                                                                                                                                                                                                                                                               | and Temperature Dependencies                                                            | 1                                                                                |
|                                                                                                                                                                                                                                                                                                                                                               | ponse to Environmental Factors                                                          |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                                                  |
| 11.4 Use of $V_{cmax}$ in Mo                                                                                                                                                                                                                                                                                                                                  | dels                                                                                    | 1                                                                                |
| 11.4 Use of V <sub>cmax</sub> in Mo<br>11.5 The Kull and Kruijt                                                                                                                                                                                                                                                                                               | dels<br>t (1998) Model                                                                  | 1<br>1                                                                           |
| 11.4 Use of $V_{cmax}$ in Mod<br>11.5 The Kull and Kruijt<br>11.6 Temperature Acclin                                                                                                                                                                                                                                                                          | dels<br>t (1998) Model                                                                  | 1<br>1<br>1                                                                      |
| 11.4 Use of $V_{cmax}$ in Mod<br>11.5 The Kull and Kruijt<br>11.6 Temperature Acclin<br>11.7 C <sub>4</sub> Photosynthesis                                                                                                                                                                                                                                    | dels<br>t (1998) Model<br>mation                                                        | 1<br>1<br>1<br>1                                                                 |
| 11.4 Use of $V_{cmax}$ in Mod<br>11.5 The Kull and Kruijt<br>11.6 Temperature Acclin<br>11.7 C <sub>4</sub> Photosynthesis<br>11.8 Diffusive Limitation                                                                                                                                                                                                       | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply                        | 1)<br>12<br>12<br>12                                                             |
| 11.4 Use of $V_{cmax}$ in Mod<br>11.5 The Kull and Kruijt<br>11.6 Temperature Acclin<br>11.7 C <sub>4</sub> Photosynthesis<br>11.8 Diffusive Limitation<br>11.9 Supplemental Prog                                                                                                                                                                             | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply                        | 17<br>17<br>18<br>18<br>18<br>18<br>18                                           |
| 11.4 Use of $V_{cmax}$ in Mod<br>11.5 The Kull and Kruijt<br>11.6 Temperature Acclin<br>11.7 C <sub>4</sub> Photosynthesis<br>11.8 Diffusive Limitation                                                                                                                                                                                                       | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply                        | 1'<br>18<br>18<br>18<br>18<br>18                                                 |
| 11.4 Use of $V_{cmax}$ in Mod<br>11.5 The Kull and Kruijt<br>11.6 Temperature Acclin<br>11.7 C <sub>4</sub> Photosynthesis<br>11.8 Diffusive Limitation<br>11.9 Supplemental Prog                                                                                                                                                                             | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply<br>rams                | 1'<br>1;<br>1;<br>1;<br>1;<br>1;                                                 |
| 11.4 Use of $V_{cmax}$ in Mod11.5 The Kull and Kruijt11.6 Temperature Acclin11.7 C4 Photosynthesis11.8 Diffusive Limitation11.9 Supplemental Prog11.10 Modeling Projects                                                                                                                                                                                      | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply<br>rams                | 1'<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |
| 11.4 Use of $V_{cmax}$ in Mod11.5 The Kull and Kruijt11.6 Temperature Acclin11.7 C4 Photosynthesis11.8 Diffusive Limitation11.9 Supplemental Prog11.10 Modeling ProjectsI 2 Stomatal ConductChapter Overview12.1 Introduction                                                                                                                                 | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply<br>rams<br><b>ance</b> | 1'<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                         |
| <ul> <li>11.4 Use of V<sub>cmax</sub> in Mod</li> <li>11.5 The Kull and Kruijt</li> <li>11.6 Temperature Acclinit</li> <li>11.7 C<sub>4</sub> Photosynthesis</li> <li>11.8 Diffusive Limitation</li> <li>11.9 Supplemental Prog</li> <li>11.10 Modeling Projects</li> </ul> I 2 Stomatal Conduct Chapter Overview 12.1 Introduction 12.2 Empirical Multiplice | dels<br>t (1998) Model<br>mation<br>ns on CO <sub>2</sub> Supply<br>rams<br><b>ance</b> | 17<br>18<br>18<br>18                                                             |

CONTENTS | ix

#### x | CONTENTS

| <ul> <li>12.4 Solution Techniques</li> <li>12.5 Stomatal Response to Environmental Factors</li> <li>12.6 Optimality Theory</li> <li>12.7 Soil Moisture Stress</li> <li>12.8 Chapter Appendix – Cubic Equation for A<sub>n</sub></li> <li>12.9 Supplemental Programs</li> <li>12.10 Modeling Projects</li> </ul> | 195<br>199<br>202<br>210<br>211<br>212<br>212 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>13</b> Plant Hydraulics                                                                                                                                                                                                                                                                                      | 213                                           |
| Chapter Overview                                                                                                                                                                                                                                                                                                | 213                                           |
| 13.1 Introduction                                                                                                                                                                                                                                                                                               | 213                                           |
| 13.2 Plant Water Uptake and Leaf Water Potential                                                                                                                                                                                                                                                                | 214                                           |
| 13.3 Plant Hydraulics and Stomatal Conductance                                                                                                                                                                                                                                                                  | 218                                           |
| 13.4 The Soil–Plant–Atmosphere (SPA) Model                                                                                                                                                                                                                                                                      | 219                                           |
| 13.5 Soil-to-Root Conductance                                                                                                                                                                                                                                                                                   | 221                                           |
| 13.6 Stem Conductivity                                                                                                                                                                                                                                                                                          | 224                                           |
| 13.7 Multi-Node Models                                                                                                                                                                                                                                                                                          | 225                                           |
| 13.8 Supplemental Programs                                                                                                                                                                                                                                                                                      | 226                                           |
| 13.9 Modeling Projects                                                                                                                                                                                                                                                                                          | 227                                           |

| 14   | Radiative Transfer                        | 228 |
|------|-------------------------------------------|-----|
| Chaj | pter Overview                             | 228 |
| 14.  | 1 Introduction                            | 228 |
| 14.  | 2 Leaf Optical Properties                 | 229 |
| 14.  | 3 Light Transmission without Scattering   | 230 |
| 14.  | 4 Direct Beam Extinction Coefficient      | 235 |
| 14.  | 5 Diffuse Transmittance                   | 239 |
| 14.  | 6 The Norman (1979) Model                 | 241 |
| 14.  | 7 The Goudriaan and van Laar (1994) Model | 246 |
| 14.  | 8 The Two-Stream Approximation            | 250 |
| 14.  | 9 Surface Albedo                          | 255 |
| 14.1 | 0 Longwave Radiation                      | 255 |
| 14.1 | 1 Supplemental Programs                   | 259 |
| 14.1 | 2 Modeling Projects                       | 259 |
|      |                                           |     |

| 15 Plant Canopies       | 260 |
|-------------------------|-----|
| Chapter Overview        | 260 |
| 15.1 Introduction       | 260 |
| 15.2 Big-Leaf Models    | 261 |
| 15.3 Dual-Source Models | 266 |
| 15.4 Multilayer Models  | 268 |
| 15.5 Canopy Hydrology   | 275 |
| 15.6 Optimality Theory  | 278 |
| 15.7 Modeling Projects  | 279 |

| 16 Scalar Canopy Profiles                                                                                           | 280                                            |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Chapter Overview                                                                                                    | 280                                            |
| 16.1 Introduction                                                                                                   | 280                                            |
| 16.2 Wind Profile                                                                                                   | 282                                            |
| 16.3 Scalar Continuity Equation                                                                                     | 286                                            |
| 16.4 Aerodynamic Conductance                                                                                        | 289                                            |
| 16.5 Scalar Concentration Profiles                                                                                  | 290                                            |
| 16.6 An Implicit Flux–Profile Solution                                                                              | 292                                            |
| 16.7 Localized Near-Field Theory                                                                                    | 295                                            |
| 16.8 Chapter Appendix – Terms in Table 16.1                                                                         | 299                                            |
| 16.9 Supplemental Programs                                                                                          | 299                                            |
| 16.10 Modeling Projects                                                                                             | 300                                            |
| 17 Biogeochemical Models                                                                                            | 301                                            |
| Chapter Overview                                                                                                    | 301                                            |
| 17.1 Introduction                                                                                                   | 301                                            |
| 17.2 Model Structure                                                                                                | 302                                            |
| 17.3 Generalized Matrix Form                                                                                        | 307                                            |
| 17.4 Allocation and Turnover                                                                                        | 309                                            |
| 17.5 Leaf Phenology                                                                                                 | 313                                            |
| 17.6 Nitrogen Cycle                                                                                                 | 315                                            |
| 17.7 Disturbance                                                                                                    | 317                                            |
| 17.8 Supplemental Programs                                                                                          | 320                                            |
| 17.9 Modeling Projects                                                                                              | 320                                            |
| 18 Soil Biogeochemistry                                                                                             | 322                                            |
| Chapter Overview                                                                                                    | 322                                            |
| 18.1 Introduction                                                                                                   | 322                                            |
| 18.2 Exponential Decay                                                                                              | 324                                            |
| 18.3 Rate Constants                                                                                                 | 325                                            |
| 18.4 Litter Cohort Models                                                                                           | 328                                            |
| 18.5 Discrete Pool Models                                                                                           | 332                                            |
| 18.6 Model Frontiers                                                                                                | 339                                            |
| 18.7 Supplemental Programs                                                                                          | 343                                            |
| 18.8 Modeling Projects                                                                                              | 343                                            |
|                                                                                                                     |                                                |
| 19 Vegetation Demography                                                                                            | 344                                            |
| 8 817                                                                                                               |                                                |
| Chapter Overview                                                                                                    | 344                                            |
| Chapter Overview<br>19.1 Introduction                                                                               | 344<br>344                                     |
| Chapter Overview<br>19.1 Introduction<br>19.2 Forest Gap Models                                                     | 344<br>344<br>345                              |
| Chapter Overview<br>19.1 Introduction<br>19.2 Forest Gap Models<br>19.3 Area-Based Dynamic Global Vegetation Models | 344<br>344<br>345<br>352                       |
| Chapter Overview<br>19.1 Introduction<br>19.2 Forest Gap Models                                                     | <b>34</b> 4<br>344<br>345<br>352<br>357<br>364 |

xi

CONTENTS

## 

xii

| 20 Canopy Chemistry                                         | 365 |
|-------------------------------------------------------------|-----|
| Chapter Overview                                            | 365 |
| 20.1 Dry Deposition                                         | 365 |
| 20.2 BVOC Emissions                                         | 367 |
| 20.3 Dust Emissions                                         | 368 |
| 20.4 Wildfire Emissions                                     | 369 |
| 20.5 Reactive Nitrogen                                      | 369 |
| 20.6 Methane                                                | 371 |
| 20.7 Canopy–Chemistry Models                                | 372 |
| 20.8 Stable Isotopes                                        | 373 |
| Appendices                                                  | 381 |
| Table A.I. Basic and Derived Scientific Units               | 381 |
| Table A.2. Metric Prefixes                                  | 381 |
| Table A.3. Diffusivity at Standard Pressure and Temperature | 381 |
| Table A.4. Physical Constants                               | 382 |
| A. Numerical Methods                                        | 383 |
| References                                                  | 391 |
| Index                                                       | 429 |

Cambridge University Press 978-1-107-04378-7 — Climate Change and Terrestrial Ecosystem Modeling Gordon Bonan Frontmatter <u>More Information</u>

## Preface

Writing a modeling textbook is daunting. There are many equations to introduce and explain, and writing a book that also shows how to solve the equations in a computer model is even more difficult. Why would one undertake such a task? There are several excellent topical textbooks, mostly in the area of environmental biophysics. David Gates's Biophysical Ecology is the classic text, but the equations, units, etc. are dated. Principles of Environmental Physics (John Monteith and Mike Unsworth), An Introduction to Environmental Biophysics (Gaylon Campbell and John Norman), Evaporation into the Atmosphere (Wilfried Brutsaert), and Plants and Microclimate (Hamlyn Jones) are still definitive introductions to plants and environmental physics. Daniel Hillel's Environmental Soil Physics is an essential text for soil physics. While these books provide excellent treatment of radiative transfer, turbulent fluxes, leaf biophysics, or soil physics, they do not integrate these concepts into a complete model of biosphere-atmosphere coupling. Nor do they, or other available textbooks, extend the subject matter to include ecosystems and biogeochemical cycles. This present book covers the fundamentals of environmental biophysics, integrates those principles into a complete model, and additionally broadens the scope to cover ecosystems and biogeochemical cycles. More importantly, the book explains the numerical methods needed to implement and solve the equations in a computer model. There is an enormous leap between seeing a mathematical equation in a research paper and actually using that equation in a model. In this respect, Soil Physics with Basic (Gaylon Campbell), Soil Water Dynamics (Arthur Warrick), Numerical Methods in the Hydrological Sciences (George Hornberger and Patricia Wiberg), and A Theory of Forest Dynamics (Hank Shugart) are indispensable reference books in that they also provide computer programs.

Many colleagues have contributed to this book in various ways. The roughness sublayer parameterization in Chapter 6 is an outgrowth of collaborations with Ned Patton and Ian Harman. The surface energy balance bucket model in Chapter 7 was developed in collaboration with Marysa Laguë as part of her simple land model. Martyn Clark introduced me to the Picard iteration used to solve the Richards equation in Chapter 8 and also the probability distributed model of rainfall-runoff in Chapter 9, which is a generalization of the VIC model. Sönke Zaehle provided details of the implementation of the Kull and Kruijt (1998) photosynthesis in his O-CN terrestrial biosphere model. Collaboration with Danica Lombardozzi is seen in her work on photosynthesis and stomatal conductance, as is collaboration with Peter Franks on stomatal conductance. Mat Williams introduced me to his SPA model during a sabbatical visit to NCAR; the optimal stomatal conductance is described in Chapter 12, the plant hydraulics in Chapter 13, and the Norman radiative transfer in Chapter 14. Rosie Fisher also provided many insights to plant hydraulics. Ryan Knox shared details of ED2, its turbulence parameterization, and multilayer two-stream radiation. Ying-Ping Wang shared his CASA-CNP code, and Melannie Hartmann provided thorough documentation of the model; this model is the basis for Chapter 17. In his many visits to NCAR and his collaborations with the Community Land Model, Yiqi Luo shared details of the traceability analysis of biogeochemical models in Chapter 17. Quinn Thomas's and Will Wieder's insights to carbonnitrogen biogeochemistry are also seen in Chapter 17. Collaborations with Melannie Hartmann and Will Wieder are evident in the DAYCENT soil organic matter model and microbial model, both described in Chapter 18. Rosie Fisher, Ryan Knox, Charlie Koven, and Jackie Shuman provided essential background on ecosystem demography models in Chapter 19.

Review questions and modeling projects are provided with each chapter. The review questions are intended to help students and readers assess whether they understand the concepts that have been introduced. These questions are structured around several essential modeling requirements: understanding units and how to convert among the different units favored in various scientific communities, deriving equations, and knowing what the equations mean and how to use them. Modeling projects are included in each chapter. The projects

#### xiv | PREFACE

aid with understanding how the equations are used, bringing various concepts together into a mathematical model, and using models to answer research questions. The projects utilize and build upon sample code provided with each chapter. It is hoped that the sample code will inspire students and instructors to devise their own projects, tailored to their specific interests. MATLAB® is used as the computational framework to illustrate code.<sup>1</sup> The sample code does not take advantage of the matrix capabilities of MATLAB or its full mathematical sophistication. Rather, the code is written to explicitly show in a step-by-step manner how the calculations are performed. In particular, many example codes explicitly loop over a number of calculations, such as for soil layers, rather than using matrix algebra. The same code could be written utilizing matrix capabilities, but then the calculations would be less obvious to non-technical specialists. MATLAB purists and scientific coding experts will likely find the code offensive, but I prefer to err on the side of understandability rather than elegance.

Finally, I am indebted to Matt Lloyd at Cambridge University Press, who has supported this endeavor over the many years it took to complete, and also Zoë Pruce for her patience with this project.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

<sup>1</sup> MATLAB is a registered trademark of The MathWorks, Inc., Natick, Massachusetts, United States.

Cambridge University Press 978-1-107-04378-7 — Climate Change and Terrestrial Ecosystem Modeling Gordon Bonan Frontmatter <u>More Information</u>

# Mathematical Symbols

The following is a list of major symbols. Duplication of symbols is unavoidable, and the reader should always check the specific usage of a symbol within a particular chapter.

| a particular         | enupter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | г                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| a(z)                 | leaf area density at height $z (m^2 m^{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E                 |
| A                    | area (m <sup>2</sup> ); subscript: $A_C$ crown; $A_L$ leaf; $A_S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $f_{sun}$         |
|                      | sapwood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                 |
| Α                    | gross photosynthesis rate ( $\mu$ mol CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $F_j$             |
|                      | subscript: A <sub>c</sub> Rubisco-limited assimilation;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g                 |
|                      | $A_i$ RuBP regeneration-limited assimilation;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                      | $A_p$ product-limited assimilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $g_a$             |
| ٨                    | net photosynthesis rate ( $\mu$ mol CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| $A_n$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $g_b$             |
| $c_a, c_c, c_i, c_s$ | $CO_2$ concentration in air, chloroplast,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|                      | intercellular space, and leaf surface,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                      | respectively (μmol mol <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $g_b^*$           |
| Ci                   | carbon mass per area of biogeochemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0               |
|                      | pool $i$ (kg C m <sup>-2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $g_c$             |
| $c_j$                | mole fraction of constituent $j$ (mol mol <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $g_h$             |
| Cd                   | leaf aerodynamic drag coefficient (–)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g <sub>j</sub>    |
| c <sub>dry</sub>     | specific heat of dry biomass (J $kg^{-1} K^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $s_j$<br>$g_\ell$ |
| $c_{ice}, c_{wat}$   | specific heat of ice and water, respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81                |
|                      | $(J kg^{-1} K^{-1});$ Table A.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| $c_L$                | leaf heat capacity (J $m^{-2} K^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | σ                 |
| $c_p$                | specific heat of moist air at constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $g_m$             |
|                      | pressure (J mol <sup>-1</sup> K <sup>-1</sup> ); subscript: $c_{pd}$ dry air;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a                 |
|                      | $c_{pw}$ water vapor; Table A.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g <sub>r</sub>    |
| Cv                   | volumetric heat capacity (J m <sup><math>-3</math></sup> K <sup><math>-1</math></sup> );                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g <sub>s</sub>    |
|                      | <i>subscript</i> : <i>c</i> <sub>vf</sub> frozen soil; <i>c</i> <sub>vu</sub> unfrozen soil;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|                      | $c_{v,ice}$ ice; $c_{v,sol}$ soil solids; $c_{v,wat}$ water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $g_w$             |
| $C(\psi)$            | specific moisture capacity (m <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $g_0$             |
| $C_h$ , $C_m$        | drag coefficient (–); <i>subscript</i> : C <sub>h</sub> heat; C <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|                      | momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $g_1$             |
| $C_p$                | plant hydraulic capacitance (mol H <sub>2</sub> O m <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                 |
| 1                    | $Pa^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G                 |
| d                    | displacement height (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $G(\mathbf{Z})$   |
| D                    | stem diameter (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                 |
| D                    | vapor pressure deficit (Pa); subscript: $D_{\ell}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gr                |
|                      | leaf-to-air, $e_{sat}(T_{\ell}) - e_a$ ; $D_s$ leaf surface,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h                 |
|                      | $e_{\rm sat}(T_{\ell}) - e_{\rm s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| $D_{f}$              | drag force from vegetation (mol $m^{-2} s^{-2}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h <sub>s</sub>    |
| $D_{ij}$             | element in the Lagrangian dispersion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $h_{s1}$          |
| - IJ                 | matrix (s $m^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| $D_{j}$              | molecular diffusivity of constituent <i>j</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                 |
| - 1                  | $(m^2 s^{-1})$ ; subscript: $D_c CO_2$ ; $D_h$ heat; $D_w H_2O$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                      | Table A.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $H_f$             |
| $D(\theta)$          | hydraulic diffusivity ( $m^2 s^{-1}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| 2(0)                 | in a state and and a state of the state of t |                   |

| е                | vapor pressure (Pa); <i>subscript</i> : $e_a$ air; $e_{sat}(T_{\ell})$         |
|------------------|--------------------------------------------------------------------------------|
|                  | stomatal pore; $e_s$ leaf surface                                              |
| $e_{sat}(T)$     | saturation vapor pressure at temperature                                       |
|                  | T (Pa); Table 3.3                                                              |
| Ε                | evaporation (mol $H_2O m^{-2} s^{-1}$ )                                        |
| f <sub>sun</sub> | fractional area on a horizontal plane that                                     |
| - 5000           | is sunlit (–)                                                                  |
| $F_j$            | flux of constituent $j \pmod{m^{-2} s^{-1}}$                                   |
| g                | gravitational acceleration (m $s^{-2}$ );                                      |
|                  | Table A.4                                                                      |
| $g_a$            | aerodynamic conductance (mol $m^{-2} s^{-1}$ );                                |
|                  | subscript: g <sub>ac</sub> scalars; g <sub>am</sub> momentum                   |
| $g_b$            | leaf boundary layer conductance (mol m <sup>-2</sup>                           |
|                  | $s^{-1}$ ); subscript: $g_{bc} CO_2$ ; $g_{bh}$ heat; $g_{bj}$                 |
|                  | constituent <i>j</i> ; g <sub>bw</sub> H <sub>2</sub> O                        |
| $g_b^*$          | canopy excess conductance between <i>z</i> <sub>0m</sub>                       |
|                  | and $z_{0c} \pmod{m^{-2} s^{-1}}$                                              |
| $g_c$            | canopy conductance (mol $m^{-2} s^{-1}$ )                                      |
| $g_h$            | conductance for heat (mol $m^{-2} s^{-1}$ )                                    |
| g <sub>i</sub>   | conductance of constituent $j \pmod{m^{-2} s^{-1}}$                            |
| $g_{\ell}$       | total leaf conductance of stomata and                                          |
|                  | boundary layer (mol m <sup>-2</sup> s <sup>-1</sup> ); subscript: $g_{\ell c}$ |
|                  | $CO_2; g_{\ell_W} H_2O$                                                        |
| $g_m$            | leaf mesophyll conductance (mol $CO_2 m^{-2}$                                  |
|                  | s <sup>-1</sup> )                                                              |
| g <sub>r</sub>   | radiative conductance (mol $m^{-2} s^{-1}$ )                                   |
| $g_s$            | leaf stomatal conductance (mol $m^{-2} s^{-1}$ );                              |
|                  | subscript: $g_{sc} CO_2$ ; $g_{sw} H_2O$                                       |
| $g_w$            | conductance for water vapor (mol $m^{-2} s^{-1}$ )                             |
| $g_0$            | minimum stomatal conductance (mol H <sub>2</sub> O                             |
|                  | $m^{-2} s^{-1}$ )                                                              |
| $g_1$            | slope parameter for stomatal conductance                                       |
|                  | models                                                                         |
| G                | soil heat flux (W $m^{-2}$ )                                                   |
| $G(\mathbf{Z})$  | projection of leaf area in the direction of                                    |
|                  | the solar beam (–)                                                             |
| Gr               | Grashof number (–)                                                             |
| h                | height in canopy (m); subscript: $h_c$ top of                                  |
|                  | canopy                                                                         |
| h <sub>s</sub>   | leaf surface humidity (–), $e_s/e_{sat}(T_\ell)$                               |
| $h_{s1}$         | relative humidity of pore space in surface                                     |
|                  | soil layer (–)                                                                 |
| Н                | sensible heat flux (W m <sup>-2</sup> ); subscript: $H_v$                      |
|                  | virtual                                                                        |
| $H_f$            | energy flux from soil freezing or thawing                                      |
|                  | $(W m^{-2})$                                                                   |
|                  |                                                                                |

xvi | MATHEMATICAL SYMBOLS

| $\Delta H_a$                      | activation energy (J mol <sup>-1</sup> )                                                                       | K <sub>e</sub>                    | Kersten number (–)                                                                 |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------|
| $\Delta H_d$<br>$i_c$             | deactivation energy (J mol <sup><math>-1</math></sup> )<br>infiltration rate (m s <sup><math>-1</math></sup> ) | $K_L$                             | leaf-specific plant hydraulic conductance<br>(mol $H_2O m^{-2} s^{-1} Pa^{-1}$ )   |
| ι <sub>c</sub><br>I <sub>c</sub>  | cumulative infiltration (m)                                                                                    | $K_m$                             | Michaelis–Menten constant ( $\mu$ mol mol <sup>-1</sup> )                          |
| $I_c^{\downarrow}$                | solar radiation in the downward direction                                                                      | $K_m$<br>$K_n$                    | canopy nitrogen decay coefficient (–)                                              |
| 1                                 | (µmol photon m <sup>-2</sup> s <sup>-1</sup> ); subscript: $I_b^{\downarrow}$ ,                                | $K_{0}, K_{025}$                  | Michaelis–Menten constant for $O_2$ and its                                        |
|                                   | scattered direct beam flux; $I_d^{\downarrow}$ scattered                                                       | 10, 1025                          | value at 25°C (mmol mol <sup><math>-1</math></sup> )                               |
|                                   | diffuse flux                                                                                                   | $K_p$                             | leaf-specific stem hydraulic conductance                                           |
| $I_{sky}^{\downarrow}$            | solar radiation incident on the top of the                                                                     | P                                 | $(\text{mol } H_2\text{O} \text{ m}^{-2} \text{ s}^{-1} \text{ Pa}^{-1})$          |
| ѕку                               | canopy ( $\mu$ mol photon m <sup>-2</sup> s <sup>-1</sup> ); <i>subscript</i> :                                | l                                 | characteristic leaf dimension (m)                                                  |
|                                   | $I_{sky,b}^{\downarrow}$ direct beam; $I_{sky,d}^{\downarrow}$ diffuse                                         | 1                                 | mixing length (m); subscript: $l_c$ scalar; $l_m$                                  |
| $I^{\uparrow}$                    | solar radiation in the upward direction                                                                        |                                   | momentum                                                                           |
|                                   | (µmol photon m <sup>-2</sup> s <sup>-1</sup> ); subscript: $I_b^{\dagger}$                                     | $L^{\downarrow}$                  | downward longwave radiation (W $m^{-2}$ );                                         |
|                                   | scattered direct beam flux; $I_d^{\uparrow}$ scattered                                                         | _ ↑                               | subscript: $L_{sky}^{\downarrow}$ atmospheric                                      |
|                                   | diffuse flux                                                                                                   | $L^{\uparrow}$                    | upward longwave radiation (W m <sup><math>-2</math></sup> );                       |
| $\overrightarrow{I}_{c}$          | solar radiation absorbed by the canopy, per                                                                    | $\overrightarrow{L}$              | subscript: $L_g^{\uparrow}$ ground                                                 |
|                                   | ground area (µmol photon $m^{-2} s^{-1}$ );                                                                    | L                                 | absorbed longwave radiation, per ground $\vec{x}$                                  |
|                                   | subscript: $\vec{I}_{cb}$ direct beam; $\vec{I}_{cd}$ diffuse;                                                 |                                   | area (W m <sup>-2</sup> ); subscript: $\vec{L}_c$ canopy; $\vec{L}_{cSun}$         |
|                                   | $\vec{I}_{cSun}$ sunlit canopy; $\vec{I}_{cSha}$ shaded canopy                                                 |                                   | sunlit canopy; $\vec{L}_{cSha}$ shaded canopy; $\vec{L}_{g}$                       |
| $\overrightarrow{I}_{g}$          | solar radiation absorbed by the ground                                                                         | <b>→</b>                          | ground                                                                             |
| - 8                               | (µmol photon m <sup>-2</sup> s <sup>-1</sup> ); subscript: $\vec{I}_{gb}$ direct                               | Τ <sub>ℓ</sub>                    | longwave radiation absorbed by foliage,                                            |
|                                   | beam; $\vec{I}_{gd}$ diffuse                                                                                   | _                                 | per leaf area (W $m^{-2}$ )                                                        |
| Τℓ                                | solar radiation absorbed by foliage, per leaf                                                                  | L                                 | leaf area index (m <sup>2</sup> m <sup>-2</sup> ); subscript: $L_{sha}$            |
| - 2                               | area ( $\mu$ mol photon m <sup>-2</sup> s <sup>-1</sup> ); subscript:                                          |                                   | shaded leaf area; $L_{sun}$ sunlit leaf area                                       |
|                                   | $\vec{I}_{\ell b}$ direct beam; $\vec{I}_{\ell bb}$ unscattered direct                                         | $\Delta L$                        | leaf area index of a canopy layer $(m^2 m^{-2});$                                  |
|                                   | beam; $\vec{I}_{lbs}$ scattered direct beam; $\vec{I}_{ld}$                                                    |                                   | subscript: $\Delta L_{sha}$ shaded leaf area; $\Delta L_{sun}$ sunlit              |
|                                   | diffuse                                                                                                        | т                                 | leaf area                                                                          |
| $\overrightarrow{I}_{\ell sha}$ , | solar radiation absorbed by shaded and                                                                         | L <sub>c</sub>                    | canopy length scale (m)                                                            |
|                                   | sunlit leaves, per leaf area (µmol photon                                                                      | L <sub>f</sub><br>L <sub>MO</sub> | latent heat of fusion (J kg <sup>-1</sup> ); Table A.4<br>Obukhov length scale (m) |
| I lsun                            | $m^{-2} s^{-1}$ )                                                                                              | L <sub>MO</sub><br>L <sub>r</sub> | root length density (m $m^{-3}$ )                                                  |
| I <sub>PSII</sub>                 | light utilized in electron transport by                                                                        |                                   | leaf mass per area (kg C m <sup>-2</sup> , or kg dry                               |
| 1011                              | photosystem PS II ( $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> )                                                | $m_a$                             | mass $m^{-2}$ )                                                                    |
| I                                 | electron transport rate ( $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> )                                          | m <sub>i</sub>                    | biomass per area of biogeochemical pool <i>i</i>                                   |
| J <sub>max</sub> ,                | maximum electron transport rate and its                                                                        | щ                                 | $(\text{kg m}^{-2})$                                                               |
| J <sub>max 25</sub>               | value at 25°C ( $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> )                                                    | m <sub>i</sub>                    | mass of constituent <i>j</i> (kg); subscript: <i>m<sub>d</sub></i> dry             |
| k                                 | von Karman constant (–); Table A.4                                                                             |                                   | air; $m_v$ water vapor                                                             |
| $k_i$                             | loss rate, or turnover rate, of                                                                                | $M_j$                             | molecular mass of constituent <i>j</i> (kg mol <sup>-1</sup> );                    |
|                                   | biogeochemical pool <i>i</i> (per unit time,                                                                   | J                                 | subscript: $M_a$ dry air; $M_w$ water; Table A.4                                   |
|                                   | e.g., $d^{-1}$ )                                                                                               | $M_r$                             | root biomass (kg m <sup><math>-2</math></sup> )                                    |
| $k_{p}, k_{p25}$                  | initial slope of CO <sub>2</sub> response for C <sub>4</sub>                                                   | $M_i$                             | plant biomass per individual (kg); subscript:                                      |
|                                   | photosynthesis and its value at $25^{\circ}$ C (mol                                                            |                                   | $M_L$ leaf; $M_H$ heartwood; $M_S$ sapwood; $M_R$                                  |
|                                   | $m^{-2} s^{-1}$ )                                                                                              |                                   | fine root                                                                          |
| Κ                                 | eddy diffusivity (m <sup>2</sup> s <sup>-1</sup> ); subscript: $K_c$                                           | n <sub>a</sub>                    | leaf nitrogen per unit leaf area (kg N m <sup>-2</sup> )                           |
|                                   | scalar; $K_m$ momentum                                                                                         | n <sub>i</sub>                    | nitrogen per area of biogeochemical pool <i>i</i>                                  |
| $K(\theta)$                       | hydraulic conductivity (m $s^{-1}$ ); subscript:                                                               |                                   | $(\text{kg N m}^{-2})$                                                             |
|                                   | K <sub>sat</sub> saturated conductivity                                                                        | n <sub>j</sub>                    | number of moles of constituent <i>j</i>                                            |
| $K_b, K_d$                        | extinction coefficient for direct beam and                                                                     | $n_m$                             | leaf nitrogen per unit leaf mass (kg N $kg^{-1}$                                   |
|                                   | diffuse radiation, respectively (–)                                                                            |                                   | C, or kg N kg <sup>-1</sup> dry mass)                                              |
| $K_c, K_{c25}$                    | Michaelis–Menten constant for CO <sub>2</sub> and its                                                          | Nu                                | Nusselt number (–)                                                                 |
|                                   | value at 25°C ( $\mu$ mol mol $^{-1}$ )                                                                        | 0i                                | intercellular O <sub>2</sub> concentration (mmol mol <sup>-1</sup> )               |
|                                   |                                                                                                                |                                   |                                                                                    |

## MATHEMATICAL SYMBOLS | xvii

| Р                | atmospheric pressure (Pa); <i>subscript</i> :                                                                   | Т                     | temperature (K); <i>subscript</i> : <i>T<sub>a</sub></i> air; <i>T<sub>e</sub></i> |
|------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|
| -                | $P_d$ dry air                                                                                                   | -                     | equilibrium; $T_f$ freezing point of water                                         |
| Р                | precipitation (kg $H_2O \text{ m}^{-2} \text{ s}^{-1} = \text{mm } H_2O \text{ s}^{-1}$ );                      |                       | (Table A.4); $T_g$ ground; $T_\ell$ leaf; $T_s$ surface;                           |
|                  | subscript: $P_R$ rain; $P_S$ snow                                                                               |                       | $T_v$ virtual; $T_A$ acclimation growth                                            |
| $P_j$            | partial pressure of constituent <i>j</i> (Pa);                                                                  |                       | temperature                                                                        |
| J                | subscript: $P_d$ dry air                                                                                        | $T_L$                 | Lagrangian time scale (s)                                                          |
| Pr               | Prandtl number (–)                                                                                              | $T_{p}, T_{p25}$      | triose phosphate utilization rate and its                                          |
| q                | mole fraction ( $e/P$ ; mol mol <sup>-1</sup> ); subscript: $q_a$                                               | P, P20                | value at 25°C ( $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> )                        |
| Ŧ                | air; $q_{ref}$ at some reference height; $q_s$                                                                  | u                     | wind speed, or also specifically the velocity                                      |
|                  | surface; $q_*$ characteristic scale                                                                             |                       | component in the x-directional (m $s^{-1}$ );                                      |
| $q_{sat}(T)$     | saturation water vapor mole fraction at                                                                         |                       | subscript: u <sub>ref</sub> at some reference height                               |
| -540 ( )         | temperature T (mol mol <sup>-1</sup> ), $e_{sat}(T)/P$                                                          | <i>u</i> *            | friction velocity (m $s^{-1}$ )                                                    |
| Q                | water flux (m s <sup><math>-1</math></sup> , or mol m <sup><math>-2</math></sup> s <sup><math>-1</math></sup> ) | U                     | carbon input from plant production (kg C                                           |
| $Q_a$            | radiative forcing (W $m^{-2}$ )                                                                                 |                       | $m^{-2} d^{-1}$ , or kg C $m^{-2} y^{-1}$ )                                        |
| Q <sub>10</sub>  | Q <sub>10</sub> temperature parameter (–)                                                                       | ν                     | velocity component in the y-direction $(m s^{-1})$                                 |
| $r_c$            | leaf Nusselt number (heat) or Stanton                                                                           | ν                     | general symbol for a rate; subscript: v <sub>base</sub>                            |
|                  | number (scalar) (–)                                                                                             |                       | base rate; $v_{max}$ maximum rate; $v_{25}$ rate at                                |
| $r_j$            | resistance of constituent $j$ (s m <sup>2</sup> mol <sup>-1</sup> )                                             |                       | 25°C                                                                               |
| $r_l$            | specific root length (m $kg^{-1}$ )                                                                             | $v_d$                 | dry deposition velocity (m $s^{-1}$ )                                              |
| r <sub>r</sub>   | fine root radius (m)                                                                                            | V                     | volume (m <sup>3</sup> )                                                           |
| R                | runoff (kg $H_2O m^{-2} s^{-1} = mm H_2O s^{-1}$ )                                                              | $V_{c\max}$ ,         | maximum Rubisco carboxylation rate and                                             |
| R                | respiration rate (kg C m <sup>-2</sup> s <sup>-1</sup> ); subscript: $R_A$                                      | $V_{c \max 25}$       | its value at 25°C ( $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> )                    |
|                  | autotrophic; $R_g$ growth; $R_m$ maintenance;                                                                   | w                     | vertical velocity (m $s^{-1}$ )                                                    |
|                  | R <sub>H</sub> heterotrophic                                                                                    | w                     | mole fraction of water vapor (mol mol <sup>-1</sup> ),                             |
| $R_A$            | isotope ratio of a sample A (–); subscript: R <sub>a</sub>                                                      |                       | $e/P$ ; subscript: $w_{\ell}$ leaf-to-air, $[e_{sat}(T_{\ell}) - e_a]/P$ ;         |
|                  | air; $R_E$ evaporation flux; $R_l$ liquid water; $R_p$                                                          |                       | $w_s$ leaf surface, $[e_{sat}(T_\ell) - e_s]/P$                                    |
|                  | photosynthate; $R_v$ water vapor                                                                                | Wc                    | Rubisco-limited carboxylation rate (µmol                                           |
| $R_{d}, R_{d25}$ | leaf mitochondrial respiration in light, or                                                                     |                       | $m^{-2} s^{-1}$ )                                                                  |
|                  | day respiration, and its value at $25^\circ$ C (µmol                                                            | $w_i$                 | light harvesting-limited carboxylation rate                                        |
|                  | $CO_2 m^{-2} s^{-1}$ )                                                                                          |                       | $(\mu mol \ m^{-2} \ s^{-1})$                                                      |
| $R_n$            | net radiation (W $m^{-2}$ )                                                                                     | $w_j$                 | RuBP regeneration-limited carboxylation                                            |
| Re               | Reynolds number (–)                                                                                             |                       | rate ( $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> )                                 |
| Ri <sub>B</sub>  | bulk Richardson number (–)                                                                                      | $w_p$                 | product-limited carboxylation rate (µmol                                           |
| R                | gas constant (J K <sup>-1</sup> mol <sup>-1</sup> ); Table A.4                                                  |                       | $m^{-2} s^{-1}$ )                                                                  |
| S                | temperature derivative of $q_{sat}$ at                                                                          | W                     | soil water (kg $H_2O m^{-2} = mm H_2O$ );                                          |
|                  | temperature T (mol mol <sup>-1</sup> $K^{-1}$ ),                                                                |                       | subscript: W <sub>ice</sub> ice; W <sub>liq</sub> liquid; W <sub>snow</sub> snow   |
|                  | $dq_{sat}/dT$                                                                                                   | Ζ                     | vertical distance (m)                                                              |
| S                | storage heat flux (W m <sup><math>-2</math></sup> ); subscript: $S_h$                                           | <i>z</i> <sub>0</sub> | roughness length (m); <i>subscript</i> : <i>z</i> <sub>0c</sub> scalars;           |
|                  | sensible heat; $S_q$ latent heat; $S_v$ biomass                                                                 |                       | z <sub>0m</sub> momentum                                                           |
| $S^{\downarrow}$ | downward solar radiation (W m $^{-2}$ );                                                                        | $\alpha_{A-B}$        | isotopic fractionation factor for samples A                                        |
|                  | subscript: $S^{\downarrow}_{\Lambda}$ at specified wavelength                                                   |                       | and B (–); subscript: $\alpha_k$ kinetic fractionation;                            |
| $S^{\uparrow}$   | upward solar radiation (W $m^{-2}$ ); subscript:                                                                |                       | $a_{kb}$ kinetic fractionation for leaf boundary                                   |
|                  | $S^{\dagger}_{\Lambda}$ at specified wavelength                                                                 |                       | layer; $\alpha_{ks}$ kinetic fractionation for stomata;                            |
| S <sub>c</sub>   | scalar source or sink flux (mol $m^{-3} s^{-1}$ )                                                               |                       | $\alpha_{l-\nu}$ liquid–vapor transition; $\alpha_p$                               |
| $S_{c/o}$        | relative specificity of Rubisco (–)                                                                             |                       | photosynthate                                                                      |
| Se               | relative soil wetness (–), $\theta/\theta_{sat}$ or                                                             | $\alpha_{\ell}$       | leaf absorptance (–)                                                               |
|                  | $(	heta - 	heta_{ m res})/(	heta_{ m sat} - 	heta_{ m res})$                                                    | $\alpha_{\Lambda}$    | absorptance at a specified wavelength (–)                                          |
| Sc               | Schmidt number (–)                                                                                              | А                     | azimuth angle; subscript: $A_{\ell}$ leaf                                          |
| Sh               | Sherwood number (–)                                                                                             | β                     | ratio of friction velocity to wind speed at                                        |
| $\Delta S$       | entropy term (J $K^{-1}$ mol <sup>-1</sup> )                                                                    |                       | the canopy height (–); subscript: $\beta_N$ neutral                                |
| t                | time (s, seconds; h, hours; y, years)                                                                           |                       | value of $\beta$                                                                   |
|                  |                                                                                                                 |                       |                                                                                    |

xviii | MATHEMATICAL SYMBOLS

| β, β <sub>0</sub>                 | two-stream upscatter parameters for                                            | $\xi(z)$                     | cumulative leaf drag area (–)                                                               |
|-----------------------------------|--------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------|
| , , , ,                           | diffuse and direct beam radiation,                                             | $\rho, \rho_d, \rho_v$       | density of moist air ( $\rho = \rho_d + \rho_v$ ), its dry air                              |
|                                   | respectively (–)                                                               |                              | component, and water vapor, respectively                                                    |
| $\beta_w$                         | soil wetness factor (–)                                                        |                              | $(\text{kg m}^{-3})$                                                                        |
| B                                 | solar elevation angle                                                          | $ ho_a$                      | density of dry air at pressure P and                                                        |
| γ                                 | psychrometric constant (Pa K <sup>-1</sup> )                                   | ,                            | temperature T (kg m <sup>-3</sup> )                                                         |
| γ <sub>ℓ</sub>                    | incidence angle of the solar beam on a                                         | $ ho_b$                      | soil bulk density (kg $m^{-3}$ )                                                            |
| 12                                | leaf                                                                           | $\rho_{ice}, \rho_{wat}$     | density of ice and water (kg $m^{-3}$ );                                                    |
| Г                                 | $CO_2$ compensation point (µmol mol <sup>-1</sup> )                            | r ice r wai                  | Table A.4                                                                                   |
| Γ <sub>*</sub> , Γ <sub>*25</sub> | $CO_2$ compensation point in the absence of                                    | $ ho_{j}$                    | mass concentration of constituent $j$ (kg m <sup>-3</sup> )                                 |
| - * * - *23                       | non-photorespiratory respiration, and its                                      | $\rho_m$                     | molar density (mol $m^{-3}$ )                                                               |
|                                   | value at 25°C ( $\mu$ mol mol <sup>-1</sup> )                                  | $\rho_r$                     | root tissue density (kg m <sup><math>-3</math></sup> )                                      |
| $\delta_A$                        | isotope ratio of sample A relative to a                                        | $\rho_{\rm s}$               | soil particle density (kg $m^{-3}$ )                                                        |
| 0 <sub>A</sub>                    | standard (–)                                                                   |                              | density of snow (kg m <sup><math>-3</math></sup> )                                          |
| $\Delta_{A-B}$                    | isotopic fractionation between samples A                                       | $\rho_{snow}$                | density of wood (kg m <sup><math>-3</math></sup> )                                          |
| $\Delta A-B$                      | and B (–)                                                                      | $\rho_w$                     | reflectance (–); subscript: $\rho_g$ ground; $\rho_\ell$ leaf;                              |
| Е                                 | emissivity (–); subscript: $\varepsilon_g$ ground; $\varepsilon_\ell$ leaf;    | ρ                            | $\rho_{\Lambda}$ at a specified wavelength                                                  |
| c                                 | $\varepsilon_{\Lambda}$ at a specified wavelength                              | 0                            | canopy albedo (–); subscript: $\rho_{cb}$ direct                                            |
| C                                 | isotopic enrichment factor for samples A                                       | $ ho_c$                      | beam; $\rho_{cd}$ diffuse                                                                   |
| $\varepsilon_{A-B}$               | and B (–)                                                                      | 0                            |                                                                                             |
| 0                                 | emission factor for chemical compound j                                        | $ ho_g$                      | ground albedo (–); subscript: $\rho_{gb}$ direct                                            |
| ε <sub>j</sub><br>Ε               | quantum yield (mol $CO_2 \text{ mol}^{-1}$ photon, or                          | _                            | beam; $ ho_{gd}$ diffuse<br>Stefan–Boltzmann constant (W m <sup>-2</sup> K <sup>-4</sup> ); |
| E                                 |                                                                                | σ                            |                                                                                             |
| ۶                                 | mol $CO_2 J^{-1}$                                                              |                              | Table A.4                                                                                   |
| ζ                                 | Monin–Obukhov stability parameter (–)                                          | $\sigma_w$                   | standard deviation of vertical wind                                                         |
| Z                                 | solar zenith angle                                                             |                              | velocity (m s <sup><math>-1</math></sup> )                                                  |
| $\theta$                          | potential temperature (K); subscript: $\theta_{ref}$ air                       | τ                            | transmittance (–); subscript: $\tau_b$ direct beam;                                         |
|                                   | at some reference height; $\theta_s$ surface; $\theta_v$                       |                              | $\tau_d$ diffuse radiation; $\tau_\ell$ leaf; $\tau_\Lambda$ at a specified                 |
|                                   | virtual; $\theta_*$ characteristic temperature                                 |                              | wavelength                                                                                  |
| 0                                 | scale                                                                          | τ                            | momentum flux (mol m <sup>-1</sup> s <sup>-2</sup> ); subscript: $\tau_x$                   |
| $\theta$                          | volumetric soil water content ( $m^3 m^{-3}$ );                                |                              | zonal; $\tau_y$ meridional                                                                  |
|                                   | subscript: $\theta_{ice}$ ice; $\theta_{liq}$ liquid; $\theta_{res}$ residual  | $\tau_L$                     | leaf temperature time constant (s)                                                          |
| _                                 | water; $\theta_{sat}$ saturation (porosity)                                    | T <sub>b,i</sub>             | transmittance of direct beam radiation                                                      |
| Θ                                 | curvature factor for co-limitation (–);                                        |                              | through the cumulative leaf area above                                                      |
|                                   | subscript: $\Theta_A$ photosynthesis; $\Theta_J$ electron                      |                              | canopy layer i (–)                                                                          |
|                                   | transport                                                                      | $\phi$                       | ratio of Rubisco oxygenation to                                                             |
| $\Theta_\ell$                     | leaf inclination angle                                                         |                              | carboxylation rates (–)                                                                     |
| ı                                 | marginal carbon gain of water loss (µmol                                       | $\phi_1, \phi_2$             | terms in the Ross–Goudriaan $G(B)$                                                          |
|                                   | $CO_2 \text{ mol}^{-1} \text{ H}_2\text{O}$                                    |                              | function                                                                                    |
| κ                                 | thermal conductivity (W $m^{-1} K^{-1}$ );                                     | $\phi_c$ , $\phi_m$          | Monin–Obukhov similarity theory flux–                                                       |
|                                   | subscript: $\kappa_{air}$ air (Table A.4); $\kappa_{dry}$ dry soil; $\kappa_f$ |                              | gradient relationships for scalars and                                                      |
|                                   | frozen soil; $\kappa_{ice}$ ice (Table A.4); $\kappa_0$ other soil             | ^ ^                          | momentum, respectively (–)                                                                  |
|                                   | minerals; $\kappa_q$ quartz; $\kappa_{sat}$ saturated soil; $\kappa_{snow}$    | $\hat{\phi}_c, \hat{\phi}_m$ | roughness sublayer functions for $\phi_c$ and                                               |
|                                   | snow; $\kappa_{sol}$ soil solids; $\kappa_u$ unfrozen soil; $\kappa_{wat}$     |                              | $\phi_m$ , respectively (–)                                                                 |
|                                   | water (Table A.4)                                                              | $\Phi_c, \Phi_m$             | roughness sublayer-modified flux–                                                           |
| λ                                 | latent heat of vaporization (J $mol^{-1}$ );                                   |                              | gradient relationships for scalars and                                                      |
|                                   | Table 3.6                                                                      |                              | momentum, respectively (–)                                                                  |
| Λ                                 | wavelength (m)                                                                 | $\Phi_{PSII}$                | quantum yield of photosystem II                                                             |
| μ                                 | cosine solar zenith angle                                                      |                              | $(\text{mol mol}^{-1})$                                                                     |
| $\bar{\mu}$                       | average inverse of the optical depth of                                        | χ                            | mass mixing ratio (kg kg <sup>-1</sup> ); <i>subscript</i> :                                |
|                                   | diffuse radiation per unit leaf area                                           |                              | $\chi_v$ water vapor                                                                        |
| υ                                 | molecular diffusivity for momentum, or                                         | χe                           | departure of leaf angle distribution from                                                   |
|                                   | kinematic viscosity (m $^2$ s $^{-1}$ ); Table A.3                             |                              | spherical (–)                                                                               |
|                                   |                                                                                |                              |                                                                                             |

## MATHEMATICAL SYMBOLS

xix

| Ψ                | soil water potential (m or Pa); subscript:<br>$\psi_w$ at the wetting front; $\psi_{sat}$ at saturation | $\hat{\psi}_c, \hat{\psi}_m$ | integrated form of the roughness sublayer functions for scalars and momentum, |
|------------------|---------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------|
| $\psi_{\ell}$    | leaf water potential (Pa); subscript: $\psi_{\ell \min}$                                                |                              | respectively (–)                                                              |
|                  | minimum leaf water potential                                                                            | ω                            | scattering coefficient (–); subscript: $\omega_{\ell}$ leaf;                  |
| $\psi_c, \psi_m$ | integrated form of Monin–Obukhov                                                                        |                              | $\omega_{\Lambda}$ at a specified wavelength                                  |
|                  | functions for scalars and momentum,                                                                     | Ω                            | foliage clumping factor for light                                             |
|                  | respectively (–)                                                                                        |                              | transmission (–)                                                              |