

TRANSFORMING U.S. ENERGY INNOVATION

One of the greatest challenges facing human civilization is the provision of secure, affordable energy without causing catastrophic environmental damage. As the world's largest economy, and as a world leader in energy technologies, the United States is a particularly important case. In the light of increased competition from other countries (particularly China), growing concerns about the local and global environmental impacts of the energy system, an ever-present interest in energy security, and the realization that technological innovation takes place in a complex ecosystem involving a wide range of domestic and international actors, this volume provides a comprehensive and analytical assessment of the role that the U.S. government could play in energy technology innovation. It will be invaluable for policy makers in energy innovation and for researchers studying energy innovation, future energy technologies, climate-change mitigation, and innovation management. It will also act as a supplementary textbook for courses on energy and innovation.

LAURA DIAZ ANADON is Assistant Professor of Public Policy at the John F. Kennedy School of Government, Harvard University, and Associate Director of the Science Technology and Public Policy Program at the Belfer Center for Science and International Affairs. Her research focuses on energy- and environment-oriented technological progress and on the role of government policy. She also studies the coupling between energy and water infrastructure systems and their implications for decision making. Her articles have been published in a variety of journals, including *Environmental Science & Technology*, *Energy Economics*, *Research Policy*, and *Issues in Science and Technology*. Before Harvard she published in chemical engineering and nuclear magnetic resonance journals, worked on research at DuPont and Bayer Pharmaceuticals and at Johnson Matthey Catalysts, and worked as a financial consultant for banks on credit risk models for financing technology projects. She was a Speaker on the 2013 U.S. National Academy of Engineering Frontiers of Engineering Symposium, and on the advisory board of the Accelerating Energy Innovation Project at the International Energy Agency and has been a consultant for various international organizations and advised government officials around the world on policy for energy innovation.

MATTHEW BUNN is Professor of Practice at the John F. Kennedy School of Government, Harvard University. His research interests include policies for energy innovation, nuclear theft and terrorism, nuclear proliferation and measures to control it, and the future of nuclear energy and its fuel cycle. Before Harvard, Bunn served as an adviser to the White House Office of Science and Technology Policy, as a study director at the National Academy of Sciences, and as editor of *Arms Control Today*. He is the author or coauthor of more than twenty books and major technical reports and more than a hundred articles in publications ranging from *Science* to the *Washington Post*. He is an elected Fellow of the American Association for the Advancement of Science, a recipient of the Joseph A. Burton Forum Award from the American Physical Society, and the recipient of the Hans A. Bethe Award from the Federation of American Scientists for science in service to a more secure world. He serves on the Nuclear Energy Advisory Committee of the U.S. Department of Energy.

VENKATESH (VENKY) NARAYANAMURTI is the Benjamin Peirce Professor of Technology and Public Policy and Professor of Physics at Harvard University. He has previously served as director of the Solid State Electronics Research Laboratory at Bell Labs; Vice President for Research and Exploratory Technology at Sandia National Laboratories; Dean of Engineering at the University of California, Santa Barbara; and founding dean of the School of Engineering and Applied Sciences at Harvard University. He has been elected to memberships in the National Academy of Engineering, the American Academy of Arts and Sciences, and the Royal Swedish Academy of Engineering Sciences. He has served on numerous advisory boards for the federal government, research universities, national laboratories, and industry. These have included chair of the Inertial Confinement Fusion Advisory Committee of the U.S. Department of Energy; chair of the Committee of Visitors of the Division of Materials Research, National Science Foundation; member of the President's Council for the University of California Managed National Laboratories; member of the Governing Board of Brookhaven National Laboratory; and the Brains Trust of ARPA-E of the U.S. Department of Energy.

TRANSFORMING U.S. ENERGY INNOVATION

Edited by

LAURA DIAZ ANADON

John F. Kennedy School of Government, Harvard University

MATTHEW BUNN

John F. Kennedy School of Government, Harvard University

VENKATESH NARAYANAMURTI

John F. Kennedy School of Government, School of Engineering and Applied Sciences, and Department of Physics, Harvard University

CAMBRIDGEUNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107043718

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Anadon, Laura Diaz, 1981–

Transforming U.S. energy innovation / Laura Diaz Anadon, John F. Kennedy School of Government, Harvard University, Matthew Bunn, John F. Kennedy School of Government, Harvard University, Venkatesh Narayanamurti, John F. Kennedy School of Government, School of Engineering and Applied Sciences and Department of Physics,

Harvard University

pages cm

Includes bibliographical references.

ISBN 978-1-107-04371-8 (hardback)

Energy development – United States.
 Renewable energy sources – United States.
 Energy industries – United States.
 Energy policy – United States.
 Energy policy – United States.

HD9502.U52A47 2014

333.790973 - dc23 2014001502

ISBN 978-1-107-04371-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Ι.	The Need to Transform U.S. Energy Innovation	page 1
	1.1. The Need for an Energy Technology Revolution	1
	1.2. Interlinked Challenges	5
	1.3. Expanded RD&D Is Essential – But Will Not be Enough	9
	1.4. The Need for a Portfolio of Improved Energy Technologies	11
	1.5. Why Private Markets Are Essential But Insufficient	12
	1.6. Why Energy Innovation Is So Challenging	16
	1.7. The Energy Innovation System	19
	1.8. CASCADES: Criteria for an Effective Energy Innovation Policy	21
	1.9. Plan of the Book	26
	References	30
2.	Expanding and Better Targeting U.S. Investment in Energy Innovation:	
	An Analytical Approach	36
	2.1. Investments in Energy RD&D at the U.S. Department of Energy:	
	Status Quo, History, and Decision Making	37
	2.2. RD&D Investments by the Department of Energy Cannot Be	
	Evaluated in Isolation	43
	2.3. Review of Methods to Evaluate Budgets for Energy Technology	
	Innovation	45
	2.4. Method for Providing Insights about the Returns to and Allocations	
	of Federal Energy RD&D Investments	47
	2.5. Energy Technology Expert Elicitations for RD&D Portfolio	
	Analysis Support: Details, Process, and Limitations	51
	2.6. What Do Experts Think about the Future of Energy Technologies	
	and the Role of Government RD&D?	59
	2.7. From Technology Costs to Societal Outcomes: Accounting for	
	Technology Uncertainty	62
	2.8. Optimizing the Allocation of Energy RD&D Investments under	
	Different Scenarios	69

vi	Contents	
	2.9. Broader Recommendations for the Energy RD&D Decision-Making Process References	72 75
3.	Reforming U.S. Energy Innovation Institutions: Maximizing the Return on Investment 3.1. Introduction and Motivations 3.2. National Renewable Energy Laboratory 3.3. Semiconductor Research Corporation 3.4. Energy Biosciences Institute 3.5. Applying Lessons from SRC and EBI 3.6. Recommendations 3.7. A Strategic Approach to DOE Energy Innovation Institutions 3.8. Conclusions References	81 81 85 96 103 109 111 115 121
4.	Encouraging Private Sector Energy Technology Innovation and Public–Private Cooperation 4.1. Introduction 4.2. Background 4.3. Private Sector Activities in Energy Innovation 4.4. DOE and Partnership Activities in Energy Innovation 4.5. Project Management for Public–Private Partnerships 4.6. Strategic Planning in Both Public and Private Sectors, and in Partnerships 4.7. Learning and Adaptation 4.8. Recommendations References	125 125 130 135 142 151 154 159 162 164
5.	 Maximizing the Benefit from International Cooperation in Energy Innovation 5.1. A World of Competition and Cooperation 5.2. The Changing Global Landscape of Energy Use and Innovation 5.3. Shifting Patterns of International Energy Innovation Cooperation 5.4. International Energy Innovation Cooperation: What the U.S. Government Does So Far 5.5. International Energy Innovation Cooperation: The Challenge of Choice 5.6. A Strengthened Approach for the U.S. Government 5.7. Conclusions and Recommendations References 	169 169 172 176 181 191 200 207 209
6.	Transforming U.S. Energy Innovation: How Do We Get There? 6.1. A Major Expansion in Energy Technology Innovation Investments, with More Stability and Better Targeting	216 216
	······································	

Contents	vii
6.2. Matching Energy Technology Push to Market Pull	219
6.3. Reforming Energy Innovation Institutions	220
6.4. A Strategic, Partnership-Based Approach to the Private Sector	223
6.5. Strengthening International Cooperation on Energy Technology	
Innovation	224
6.6. Cross-Cutting Themes	225
6.7. The Path Ahead	228
References	229
Index	