

Quantum Theory from First Principles

An Informational Approach

Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science, and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

Giacomo Mauro D'Ariano is a Professor at Pavia University, where he teaches Quantum Mechanics and Foundations of Quantum Theory, and leads the group QUit. He is a Fellow of the American Physical Society and of the Optical Society of America, a member of the Academy Istituto Lombardo of Scienze e Lettere, of the Center for Photonic Communication and Computing at Northwestern IL, and of the Foundational Questions Institute (FQXi).

Giulio Chiribella is Associate Professor and a CIFAR-Azrieli Global Scholar at the Department of Computer Science of The University of Hong Kong. He is a Visiting Fellow of Perimeter Institute for Theoretical Physics, a member of the Standing Committee of the International Colloquia on Group Theoretical Methods in Physics, and a member of the Foundational Questions Institute (FQXi). In 2010, he was awarded the Hermann Weyl Prize for applications of group theory in quantum information science.

Paolo Perinotti is Assistant Professor at Pavia University where he teaches Quantum Information Theory. His research activity is focused on foundations of quantum information, quantum mechanics, and quantum field theory. He is a member of the Foundational Questions Institute (FQXi), and of the International Quantum Structures Association. In 2016 he was awarded the Birkhoff—von Neumann prize for research in quantum foundations.

Quantum Theory from First Principles

An Informational Approach

GIACOMO MAURO D'ARIANO

Università degli Studi di Pavia, Italy

GIULIO CHIRIBELLA

The University of Hong Kong

PAOLO PERINOTTI

Università degli Studi di Pavia, Italy

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107043428
10.1017/9781107338340

© Giacomo Mauro D'Ariano, Giulio Chiribella, and Paolo Perinotti 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by Clays, St Ives plc

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Names: D'Ariano, G. M. (Giacomo M.), author. | Chiribella, Giulio, author. | Perinotti, Paolo, author. Title: Quantum theory from first principles: an informational approach / Giacomo Mauro D'Ariano (Università degli Studi di Pavia, Italy), Giulio Chiribella (The University of Hong Kong),

Paolo Perinotti (Università degli Studi di Pavia, Italy).

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2016040126 | ISBN 9781107043428 (hardback; alk. paper) | ISBN 1107043425 (hardback; alk. paper)

Subjects: LCSH: Quantum theory.

Classification: LCC QC174.12 .C475 2017 | DDC 530.12–dc23 LC record available at https://lccn.loc.gov/2016040126

ISBN 978-1-107-04342-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To our wives and children:

Rosanna and Gilda, Amy and Francesco, Silvia and Marco.

Contents

Preface			page xiii
Acknowledgments			XV
1	Intro	duction	1
•	1.1	The Quest for Principles: von Neumann	2
	1.2	Quantum Information Resurrects the Quest	3
	1.3	Quantum Theory as an OPT	4
	1.4	The Principles	5
		Part I The Status Quo	9
2	0uan	tum Theory from Hilbert Spaces	11
_	2.1	Primitive Notions	12
	2.2	Hilbert-space Postulates for Quantum Theory	14
	2.3	Density Matrices and POVMs	16
	2.4	Causality, Convex Structure, Discriminability	20
	2.5	Quantum States	25
	2.6	Entangled Quantum States and Effects	30
	2.7	Compression	33
	2.8	Quantum Transformations	35
	2.9	Classical Theory as a Restriction of Quantum	49
	2.10	Purification	50
	2.11	Quantum No Cloning	59
	2.12	The von Neumann Postulate: Do We Need It?	61
	2.13	Quantum Teleportation	63
	2.14	Inverting Transformations	66
	2.15	Summary	73
	Note	S	73
	Appe	endix 2.1 Polar Decomposition	78
	Appo	endix 2.2 The Golden Rule for Quantum Extensions	79
	Prob	lems	80
	Solu	tions to Selected Problems and Exercises	85

vii

More Information

viii Contents

		Part II The Informational Approach	109
3	The Framework		111
	3.1	The Operational Language	111
	3.2	Operational Probabilistic Theory	115
	3.3	States and Effects	116
	3.4	Transformations	118
	3.5	Coarse-graining and Refinement	119
	3.6	Operational Distance Between States	120
	3.7	Operational Distances for Transformations and Effects	122
	3.8	Summary	124
	Note	es	124
	Prob	blems	126
	Solu	ations to Selected Problems and Exercises	126
4	The New Principles		130
	4.1	Atomicity of Composition	130
	4.2	Perfect Discriminability	132
	4.3	Ideal Compression	133
	4.4	A Preview of the Three Main Principles	135
	4.5	Summary	137
	Note	es	138
5	Causal Theories		139
	5.1	Causality: From Cinderella to Principle	139
	5.2	No Signaling from the Future	141
	5.3	Conditioning	142
	5.4	A Unique Wastebasket	143
	5.5	No Signaling at a Distance	150
	5.6	Causality and Space-Time	151
	5.7	Theories without Causality	151
	5.8	Summary	154
	Note	es	155
	Solı	ations to Selected Problems and Exercises	156
6	Theories with Local Discriminability		157
	6.1	Entanglement and Holism	157
	6.2	The Principle	159
	6.3	Reconciling Holism with Reductionism	160
	6.4	Consequences of Local Discriminability	163
	6.5	Different Degrees of Holism	163
	6.6	Summary	165

Contents ix

_			
	Notes	165	
	Problems	166	
	Solutions to Selected Problems and Exercises	167	
7	The Purification Principle	168	
	7.1 A Distinctive and Fundamental Trait	168	
	7.2 The Purification Principle	171	
	7.3 Entanglement	172	
	7.4 Reversible Transformations and Twirling	173	
	7.5 Steering	175	
	7.6 Process Tomography	176	
	7.7 No Information Without Disturbance	177	
	7.8 Teleportation	178	
	7.9 A Reversible Picture of an Irreversible World	179	
	7.10 Displacing the Von Neumann's Cut	181	
	7.11 The State-transformation Isomorphism	182	
	7.12 Everything Not Forbidden is Allowed	184	
	7.13 Purification in a Nutshell	186	
	7.14 Summary	188	
	Notes	188	
	Appendix 7.1 Carathéodory's Theorem	189	
	Solutions to Selected Problems and Exercises	190	
	Part III Quantum Information Without Hilbert Spaces	191	
8	Encoding Information	193	
	8.1 Processing Data = Processing Entanglement	193	
	8.2 Ideal Encodings	195	
	8.3 Ideal Compression	198	
	8.4 The Minimal Purification	199	
	8.5 Sending Information Through a Noisy Channel	200	
	8.6 The Condition for Error Correction	201	
	8.7 Summary	204	
	Solutions to Selected Problems and Exercises	204	
9	Three No-go Theorems	206	
	9.1 No Cloning	207	
	9.2 No Programming	209	
	9.3 No Bit Commitment	211	
	9.4 Summary	215	
	Notes	215	
	Solutions to Selected Problems and Exercises	217	

x Contents

10	Perfectly Discriminable States	218
	10.1 Perfect Discriminability of States	218
	10.2 No Disturbance Without Information	219
	10.3 Perfect Discriminability Implies No Disturbance	222
	10.4 Orthogonality	225
	10.5 Maximal Sets of Perfectly Discriminable States	226
	10.6 Summary	227
	Solutions to Selected Problems and Exercises	228
11	Identifying Pure States	229
	11.1 The State Identification Task	229
	11.2 Only One Pure State for Each Atomic Effect	230
	11.3 Every Pure State can be Identified	231
	11.4 For a Pure State, Only One Atomic Effect	232
	11.5 The Dagger	233
	11.6 Transposing States	235
	11.7 Transposing Effects	237
	11.8 Playing with Transposition	239
	11.9 Summary	241
12	Diagonalization	242
	12.1 Conjugate Systems and Conjugate States	242
	12.2 A Most Fundamental Result	244
	12.3 The Informational Dimension	246
	12.4 The Informational Dimension of a Face	247
	12.5 Diagonalizing States	248
	12.6 Diagonalizing Effects	251
	12.7 Operational Versions of the Spectral Theorem	252
	12.8 Operational Version of the Schmidt Decomposition	253
	12.9 Summary	255
	Solutions to Selected Problems and Exercises	255
	Part IV Quantum Theory from the Principles	257
13	Conclusive Teleportation	259
	13.1 The Task	259
	13.2 The Causality Bound	261
	13.3 Achieving the Causality Bound	263
	13.4 The Local Discriminability Bound	264
	13.5 Achieving the Local Discriminability Bound	266
	13.6 The Origin of the Hilbert Space	267
	13.7 Isotropic States and Effects	268
	13.8 Summary	272
	Appendix 13.1 Unitary and Orthogonal Representations	2.72

 $\label{lem:cambridge University Press} $978-1-107-04342-8 — Quantum Theory from First Principles Giacomo Mauro D'Ariano , Giulio Chiribella , Paolo Perinotti Frontmatter$

More Information

Contents		
14 The Qubit	274	
14.1 Two-dimensional Systems	274	
14.2 Summary	278	
Solutions to Selected Problems and Exercises	278	
15 Projections	280	
15.1 Orthogonal Complements	280	
15.2 Orthogonal Faces	282	
15.3 Projections	285	
15.4 Projection of a Pure State on Two Orthogonal Faces	292	
15.5 Summary	296	
Solutions to Selected Problems and Exercises	296	
16 The Superposition Principle	297	
16.1 The Superposition Principle	297	
16.2 Completeness for Purification	298	
16.3 Equivalence of Systems with Equal Dimension	299	
16.4 Reversible Operations of Perfectly Discriminable Pure States	299	
16.5 Summary	300	
17 Derivation of Quantum Theory	301	
17.1 The Basis	301	
17.2 Matrix Representation of States and Effects	304	
17.3 Representation of Two-qubit Systems	310	
17.4 Positive Matrices	320	
17.5 Quantum Theory in Finite Dimensions	324	
17.6 Summary	327	
Solutions to Selected Problems and Exercises	327	
References	329	
Index	338	

Preface

The book is the result of 20 years of teaching and research by the three authors in the fields of quantum foundations and quantum information, which culminated in two long joint papers [Phys. Rev. A 81 062348 (2010) and 84 012311 (2011)] that derive quantum theory from six simple information-theoretical principles. We have now the opportunity of presenting quantum theory in a radically new way, based on a conceptual understanding from the new principles. By "quantum theory" we mean the general theory of physical systems that lies at the core of "quantum mechanics," the latter broadly viewed as the quantum generalization of classical Hamiltonian mechanics. The book will not cover applications to "mechanics," but rather focus on applications to quantum information. For this reason, and with the aim of keeping the center of attention more on conceptual issues, rather than on the mathematical technicalities, we consider finite numbers of finite-dimensional systems, and restrict to probabilities of finite set of events, with some extensions to the infinite/continuous case discussed in the notes at the end of chapters.

The book includes 220 exercises and problems. The exercises are given within the body of each chapter, and selected solutions can be found at the end of that chapter. The exercises represent an integral part of the book and we warmly recommend the reader to solve them (or to check out the solutions), because the results proven therein are often used in our arguments. The problems presented at the end of each chapter build up additional knowledge and problem-solving skills, not strictly needed for the understanding of the arguments, but it is still recommended to solve them (or study the solutions). References, historical comments, and citations are provided in the notes at the end of chapters.

The book can be used for teaching at all levels, ranging from undergraduate, to master, up to PhD, and for pursuing personal research interests. The book is divided into four parts, organized as follows:

Part I *The Status Quo* (Chapter 2) introduces the mathematical structure of quantum theory, deriving it from three simple Hilbert-space postulates (systems, states, and the no-restriction hypothesis), and proving, in the form of theorems, what will later become our six principles for the derivation of quantum theory. The full mathematical structure of quantum theory is derived, including all relevant results in quantum open systems and quantum information. The derivation uses original powerful proving techniques based on tensor operators. In this part, the reader will have the chance to become acquainted with the relevant notions in operational probabilistic theories (OPT) and in convex analysis, and will start using the six principles for deriving results. This entire part can be used for an undergraduate semester course of quantum theory and quantum information, for physicists, mathematicians, and computer scientists.

xiii

xiv Preface

- **Part II** *The Informational Approach* (Chapters 3–7) presents the framework of operational probabilistic theories and introduces the six principles. Three separate chapters are devoted to the main principles of causality, local discriminability, and purification. Parts I and II together make a complete semester course for a masters-level course.
- **Part III** *Quantum Information Without Hilbert Spaces* (Chapters 8–12) uses all the six principles to derive key results of quantum information theory and general features of quantum theory, including no-go theorems such as the no-cloning and no-bit-commitment theorems. Some parts of these chapters can be incorporated in a masters-level course.
- **Part IV** *Quantum Theory from the Principles* (Chapters 13–17) derives quantum theory from the six principles.

Chapters on causality, local discriminability, and purification are of interest also for philosophers and, more generally, for readers who are seeking for a deeper understanding of these concepts in the light of quantum information.

For possible errors and corrections found after the print of the current edition of the book, the reader is addressed to the webpage: www.qubit.it/errata/homeerrata.html

Acknowledgments

In putting this book together, we have benefitted from inspiring conversations and from the encouragement of many colleagues and friends over many years. In particular, we would like to express our gratitude to Scott Aaronson, Samson Abramsky, Antonio Acín, Gennaro Auletta, Howard Barnum, Jonathan Barrett, Gilles Brassard, Časlav Brukner, Paul Busch, Jeremy Butterfield, Vladimir Bužek, Adàn Cabello, Gianni Cassinelli, Ariel Caticha, Bob Coecke, Roger Colbeck, Maria Luisa Dalla Chiara, Olivier Darrigol, Giancarlo Ghirardi, Nicolas Gisin, Gerald Goldin, Philip Goyal, Alexei Grinbaum, Teiko Heinosaari, Louis Kauffman, Michael Keyl, Gen Kimura, Pekka Lahti, Raymond Lal, Matthew Leifer, Lev Levitin, Seth Lloyd, Norman Margolus, Izumi Ojima, Matthew Pusey, Renato Renner, Alberto Rimini, Valerio Scarani, Dirk Schlingemann, Anthony Short, John Smolin, Robert Spekkens, Reinhard Werner, and Mario Ziman.

GMD wishes to express a very special thanks to Alexander Holevo, Masanao Ozawa, and Horace Yuen for their generous mentoring of the Pavia school in quantum theory and quantum information from the very beginning of the QUit group, and especially to Attilio Rigamonti for his constant enthusiastic support and encouragement from the very beginning of this unconventional and high-risk research line. He is also very grateful to Andrei Khrennikov for hosting the whole evolution of this research in the Växjö conference, and to Gregg Jaeger and Arkady Plotnitsky for very stimulating and intense discussions that lasted from the beginning to the end of the entire project. GMD also owes much to David Finkelstein, for day-long inspiring and enthusiastic private discussions. David unfortunately died just a few days before this book was finished.

Finally, we are all indebted to Chris Fuchs, Lucien Hardy, Robert Spekkens, Bob Coecke, and Alex Wilce for stimulating, through their own work, our thinking on many of the topics presented in this book, as well as for numerous insightful discussions.

A special undeliverable thanks goes to the fond memory of Viacheslav Belavkin, from whom we all learnt a wealth of original concepts.

The joint writing of the book has also been made possible by the financial support of the Foundational Questions Institute (FQXi) (minigrant *Informational Principles for Quantum Theory* and large grant FQXi-RFP3-1325 *The Fundamental Principles of Information Dynamics*). GMD and PP acknowledge financial support from the Templeton Foundation under the project ID#43796 *A Quantum Digital Universe*. GC acknowledges financial support from the 1000 Youth Fellowship Program of China and from the NSFC through grants 11675136, 11450110096 and 11350110207, as well as the hospitality of the Simons Center for the Theory of Computation and of the Perimeter Institute for Theoretical Physics, where part of his contribution was completed. Research at Perimeter is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI.

X۷