BEST-WORST SCALING

Best-Worst Scaling (BWS) is an extension of the method of paired comparison to multiple choices that asks participants to choose both the most and the least attractive options or features from a set of choices. It is an increasingly popular way for academics and practitioners in social science, business, and other disciplines to study and model choice. This book provides an authoritative and systematic treatment of best-worst scaling, introducing readers to the theory and methods for three broad classes of applications. It uses a variety of case studies to illustrate simple but reliable ways to design, implement, apply, and analyze choice data in specific contexts, and showcases the wide range of potential applications across many different disciplines. Best-worst scaling avoids many rating scale problems and will appeal to those wanting to measure subjective quantities with known measurement properties that can be easily interpreted and applied.

JORDAN J. LOUVIERE is Research Professor, School of Marketing, UniSA Business School, University of South Australia. He is particularly known for pioneering work in the design and application of discrete choice experiments (also called "choice-based conjoint") and he also pioneered best-worst scaling (also known as "Max-Diff Scaling"). He is co-author of *Stated Choice Methods: Analysis and Application* (Cambridge University Press, 2000).

TERRY N. FLYNN PhD is the Director of TF Choices Ltd (UK) and Adjunct Fellow at the University of Western Sydney (Australia). He is globally renowned in the use of discrete choice experiments and best-worst scaling in health and allied fields. He is also a world expert in the scoring of quality of life and end-of-life instruments, particularly using BWS, and is a founding member of the International Academy of Health Preference Research.

A. A. J. MARLEY is Adjunct Professor in the Department of Psychology, University of Victoria and Research Professor at The Institute for Choice, University of South Australia. He is particularly known for his work in probabilistic models of choice, perception, and voting. He is a co-author of *Behavioral Social Choice: Probabilistic Models, Statistical Inference, and Applications* (Cambridge University Press, 2006).

BEST-WORST SCALING

Theory, Methods and Applications

JORDAN J. LOUVIERE, TERRY N. FLYNN AND A. A. J. MARLEY (With Invited Chapters on Applications)

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107043152

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Louviere, Jordan J. Best-worst scaling : theory, methods and applications / Jordan J. Louviere, Terry N. Flynn, and A.A.J. Marley. pages cm Includes bibliographical references and index. ISBN 978-1-107-04315-2 (hardback) 1. Scaling (Social sciences) 2. Scaling (Social sciences) – Mathematical models.

Louviere, Jordan, J. I. Flynn, Terry N. II. Marley, A. A. J. III. Title. H61.27.L68 2015 300 72-dc23

2014044866

ISBN 978-1-107-04315-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List	t of figures p	<i>age</i> vii
List	t of tables	х
List	t of contributors to application chapters	XV
	face	xvii
Ack	cnowledgments	xix
The	eory and Methods	1
1	Introduction and overview of the book	3
2	The BWS object case	14
3	The BWS profile case	56
4	The BWS multi-profile case	89
5	Basic models	114
6	Looking forward	134
Ap	plications: Case 1	147
7	BWS object case application: attitudes towards end-of-life care	
	TERRY N. FLYNN, ELISABETH HUYNH AND CHARLES CORKE	149
8	How consumers choose wine: using best-worst scaling across countries	
	LARRY LOCKSHIN AND ELI COHEN	159
9	Best-worst scaling: an alternative to ratings data	
	GEOFFREY N. SOUTAR, JILLIAN C. SWEENEY AND JANET R. MCCOLL-KENNED	у 177
Ap	plications: Case 2	189
10	When the ayes don't have it: supplementing an accept/reject DCE with a Case best-worst scaling task	2
	RICHARD T. CARSON AND JORDAN J. LOUVIERE	191

v

vi	Contents	
11	BWS profile case application: preferences for treatment in dentistry EMMA MCINTOSH AND TERRY N. FLYNN	225
12	BWS profile case application: preferences for quality of life in Australia terry n. Flynn and elisabeth huynh	240
Ap	plications: Case 3	263
13	The stability of aggregate-level preferences in longitudinal discrete choice experiments	265
	TOWHIDUL ISLAM AND JORDAN J. LOUVIERE	205
14	Case 3 best-worst analysis using delivered pizza and toothpaste examples BART D. FRISCHKNECHT AND JORDAN J. LOUVIERE	278
15	Using alternative-specific DCE designs and best and worst choices to model choices	
	JORDAN J. LOUVIERE	297
Sul	ferences bject index thor index	316 332 337

Figures

1.1	Example choice set containing four airlines	page 7
1.2	Hypothetical choice set for a Case 2 study	9
1.3	Example Case 3 choice set for airlines	10
2.1	Most versus 1/(least) saving	24
2.2	Most versus 1/(least) spending	25
2.3	Ln(SQRT) versus (M–L) saving	25
2.4	Ln(SQRT) versus (M–L) spending	25
2.5	MNL(most) vs (M-L)	28
2.6	MNL(least) vs (M-L)	28
2.7	Histograms of individual error variances and BWS scores	29
2.7a	Histogram of individual error variance estimated from BWS scores	29
2.7b	Histogram of individual BWS scores for Company Tax cut	30
2.7c	Histogram of individual BWS scores for tax reform	30
2.7d	Histogram of individual BWS scores for fairer taxes	30
2.7e	Histogram of individual BWS scores for reducing fraud	31
2.7f	Histogram of individual BWS scores for deferring defense spending	31
2.7g	Histogram of individual BWS scores for deferring foreign aid spending	31
2.7h	Histogram of individual BWS scores for capping eligibility for entitlement	32
2.7i	Histogram of individual BWS scores for road user charges for heavy	
	vehicles	32
2.7j	Histogram of individual BWS scores for increasing visitor Departure Tax	32
2.8	Screenshot of online survey task	42
2.9a	PCA scores versus BWS scores	46
2.9b	PCA scores versus Ln(BCH)	46
2.9c	PCA scores versus Ln(HR)	47
2.9d	PCA scores versus Ln(Lou)	47
2.10	Comparisons of estimation results	49
2.10a	True vs H&R pairs	49
2.10b	True vs BCH ranks	49
2.10c	True vs Lou all sets	50
3.1	True values versus average ranks and Louviere weights	77
3.2	Log true values versus B-W and log (Louviere weights)	78

vii

viii	List of figures	
3.3	Log true values versus WLS and LPM estimates	80
4.1	OLS versus WLS estimates	100
4.2	Comparison of true attribute level means with various estimates	102
4.3	True utilities versus simple and stacked best-minus-worst counts	103
4.4	Estimated true utilities versus bests	105
4.5	Utility estimates versus most-minus-least counts	108
4.6	Emission reduction utilities versus emission reduction levels	110
4.7	Utility estimates versus most-minus-least counts	112
4.8	Distribution and shape of individual utility curves (pizzas) (a) Price functions for	
	20 people (b) Toppings functions for 20 people	113
5.1	Illustrative example of the decision processes of the linear ballistic accumulator	
	(LBA)	128
7.1	Example BWS task for one of 13 choice sets for a BIBD to value 13 attitudinal	
	statements	152
7.2	DCE results showing proportion of respondents accepting life-saving	
	treatment	153
7.3	Average attitudinal scores (n = 1166)	154
8.1	An example of a best-worst choice set as presented to respondents	166
8.2	Log likelihoods for different cluster models	171
8.3	Bayesian information criterion for different cluster models	172
9.1	Positioning map obtained from the ratings data	185
9.2	Positioning map obtained from the best-worst data	186
10.1a	Graphical display of attribute main and two-way interaction: emissions trading schemes	193
10.1b	Attribute two-way interactions: emissions trading schemes	194
10.10	Example Case 2 BWS task for emissions trading scheme options	198
10.2	Relationships between calculated BWS measures for aggregate sample	200
10.5	Histograms for BWS scores for each attribute level	200
	Residuals squared for worst	208
	Residuals squared for best	208
11.1	Example of a BWS question from the molar study	229
11.2	Most versus least choices: dental study	230
11.3	BWS utility value results: severe pain and swelling (0 days, 1 day, 3 days)	231
11.4	BWS utility value results: episodes of mild pain (never, weekly, monthly)	231
11.5	BWS utility value results: chance of bleeding (%)	232
11.6	BWS utility value results: chance of nerve damage (%)	232
11.7	BWS utility value results: chance of crowding (%)	232
11.8	BWS utility value results: number of episodes of gum inflammation	232
11.9	BWS cost results	233
11.10	BWS common utility scale	233
11.11	Comparison of BWS weights and binary probit utility "weights"	237
12.1	Sum of squares empirical scale parameter distributions by attribute	248
12.2	Total sum of squares empirical scale parameter distribution	249
13.1	Scatter plots of choice proportions for 16 profiles (detergent, toothpaste and	_
	pizza)	270

	List of figures	ix
13.2	Scatter plots of relative product attribute importance (pooled products)	272
13.3a	Predictions using wave 1 estimates	273
13.3b	Predictions using wave 2 estimates	273
13.3c	Predictions using wave 3 estimates	274
13.3d	Predictions using wave 4 estimates	274
14.1	Screenshot of a choice task for the pizza data	282
14.2	Best counts plotted against 1/worst counts by attribute level for pizza example	286
14.3	Best counts plotted against 1/worst counts by attribute level for toothpaste	
	example	289
14.4	Best and worst choice attribute counts for a two-cluster solution based on pizza	
	profile BW differences	290
14.5	Best and worst choice attribute counts for a three-cluster solution based on	
	toothpaste attribute BW differences	291
14.6	Mean parameter estimates for best choice and worst choice models for homo-	
	geneous multinomial logit model and mixed logit model	295
15.1	DCE task instructions and example task (choice set)	299
15.2	Sample aggregate fare graph	301
15.3	Histograms of individual WLS model estimates	308
15.4a	Segment BW differences in airline and fare choice proportions relative to	
	sample BW differences	312
15.4b	8	313
15.4c	B B B B B B B B B B B B B B B B B B B	
	differences	313

Tables

2.1	Nine public policy issues (objects)	page 15
2.2	A BIBD for nine objects	17
2.3	Illustrative list of potential BIBDs	18
2.4	Example survey BWS task based on Table 2.2	19
2.5	Hypothetical person's best and worst choices	20
2.6	Summary choices of public policy issues	21
2.7	Ways to save/spend money in the federal budget	23
2.8	BIBD for nine objects	23
2.9	Most and least choice counts for nine ways to save and spend money	24
2.10	Two-step cluster analysis results for ways to save and spend money	26
2.11	Summary statistics for the BWS scores for ways to save money	28
2.12a	Unconditional logit regression results for ways to save money	33
2.12b	Unconditional logit regression results for ways to spend money	33
2.13	Short-term improvements in Sydney transport under consideration	35
2.14	Selection of raw data for conditional logit model of "best" choices	36
2.15	Selection of raw data for conditional logit model of best and worst	37
2.16	Selection of raw data for rank ordered logit model	38
2.17	Estimates from all methods	38
2.18	Raw data for weighted least squares "marginal" model for the nine ways	
	to save money in Table 2.9	39
2.19	BIBD for five carbon emission reduction strategies	41
2.20	Number of extra questions required for a full ranking	42
2.21	Summary counts and calculations for carbon reduction strategies	43
2.22	BW measures for carbon emission reduction strategies	43
2.23	Implied choice sets from a $2^{J=3}$ expansion of three objects	44
2.24	BWS scores and expected choice counts by expansion method	45
2.25	Example of seven objects in 21 sets of size 5	48
2.26	Estimation results for the three expansion cases	49
2.27	Choice counts from deterministic decision-making	51
3.1	Profile case best-worst task for a dermatology study	57
3.2	Profile case best-worst task for a quality of life study	58
3.3	Example airline ticket profile problem	59

x

	List of tables	xi
3.4	Candidate BIBD for 16 attribute levels ("pseudo-objects")	59
3.5	Comparison sets 3 and 15	60
3.6	Example airline ticket profile design with omitted levels	63
3.7	OMEP sampled from the 4^5 factorial	63
3.8	Balanced design from OMEP	64
3.9	Unbalanced design from OMEP	64
3.10	Some example balanced fractional designs	66
3.11	Recoding an 8-level column	67
3.12	Degrees of freedom of selected designs	68
3.13	Profile completion rates	68
3.14	Example OMEP for BWS profile case	70
3.15	Profiles created by OMEP	70
3.16	Best and worst choice counts	71
3.17	Coding of stacked best and worst counts for levels	74
3.18	Data layout for analyzing BWS data in example	76
3.19	Best and worst choice counts	77
3.20	Adding extra best (or worst) choice questions	78
3.21	Data layout for analyzing BWS data	79
3.22	LPM and WLS models fit to BWS choices	80
3.23	Scale value parameters and attribute weights	83
3.24	Utilities of attribute levels and appointments	83
3.25	Full factorial and two OMEPS with best and worst	85
3.26	Choice counts for OMEPs and factorial	86
3.27	Carbon trading example with repeated BWS choices and vote	87
3.28	Counts totals for BWS carbon example	87
3.29	Linear probability model for vote response	87
4.1	Attributes/levels for delivered pizza example	92
4.2	16 treatment OMEP from the $4^4 \times 2^2$ factorial	92
4.3	Translating design codes to profiles	93
4.4	BIBD for 20 choice Sets, four options per set	93
4.5	Translating profiles into choice sets with a BIBD	94
4.6	One way to format choice sets and BWS questions	95
4.7	Choice sets, choice options and best and worst choices	96
4.8	Implied ranking of choice options in Table 4.7	97
4.9	Design matrix for 20 BIBD choice sets	97
4.10	OLS and WLS regression results for attribute-level effects	100
4.11	Means and regression estimates calculated from Table 4.9	101
4.12	True profile utilities versus simple best-worst estimates	102
4.13	Burgess and Street design for pizza specifications	104
4.14	Emissions trading attributes and levels	106
4.15	Emissions trading results	106
4.16	Delivered pizza products attributes and levels	107
4.17	Descriptive stats for ETS options	108
4.18	Principal components factor analysis of ETS estimates	109
4.19	Factor scores extracted from principal components analysis	109

xii	List of tables	
4.20	Summary results for delivered pizza example	110
4.21	Eigenvalue extraction from principal components factor analysis	111
4.22	Factor scores from principal components factor analysis	111
7.1	Percentage of respondents accepting mechanical breathing to save one's life by	
	agreement with each of two opposite attitudes	156
7.2	Percentage of respondents having discussed/not discussed end-of-life views	
	according to how many times they said "Yes" to life-saving treatment	157
8.1	Possible factors influencing wine choice	163
8.2	Balanced incomplete block design for 13 attributes	165
8.3	Sample characteristics for each country in percentages	168
8.4	Average BW rating of wine choice factors in each country (ranked by	
	Australia)	169
8.5	Probability of each wine attribute been chosen best by country (ranked by	
	Australia)	170
8.6	Latent class cluster parameter values for 11 countries	173
8.7	Cluster membership by country (percent)	174
8.8	Cluster demographics	174
9.1	Sample profile	181
9.2	Descriptive statistics, based on rating scales and best-worst scales	182
9.3	Correlations between importance of positioning approaches	183
10.1	Attributes and levels in the voting task	192
10.2	Attribute main effect means from the voting task	196
10.3	All possible emissions trading schemes sorted by proportion voting "Yes"	196
10.4	Observed numbers of "Yes" votes in the sample	197
10.5	Aggregate sample mean best-worst choices by attribute level	199
10.6	Calculation of best and worst measures from Table 5 results	199
10.7	Calculations derived from the most and least Case 2 BWS choices	202
10.7a	Best-minus-worst difference scores	202
10.7b	Square root of best choices (counts) divided by worst choices (counts)	202
10.7c	Natural log of the square root quantities in Table 4b	202
10.8a	Singular value decomposition results for measures (principal components	202
10.01	analysis)	203
10.8b	Principal components analysis results for all three measures	203 210
10.9	Cross-tab plans that start in 2010 Start in 2010	210 210
10.9a		210 210
10.9b	Start in 2010	210
10.10	Cross-tab giving the revenues to the poor and senior citizens	211
	Giving revenues to poor and seniors Giving revenues to poor and seniors	211
10.100	Cross-tab using the revenues to reduce the GST	211
	Using revenues to reduce the GST	212
	Using revenues to reduce the GST	212
10.110	Cross-tab investing 20 percent of the revenues in R&D	212
	Investing 20 percent of revenues in R&D	213
	Investing 20 percent of revenues in R&D	213
10.120	involting 20 percent of revenues in recep	215

	List of tables	xiii
10.12c	Investing 20 percent of revenues in R&D	213
	Investing 20 percent of revenues in R&D	214
10.13	Crosstab exempting energy-intensive industries	215
	Exempting energy-intensive industries	215
	Exempting energy-intensive industries	215
	Listing and description of covariates used in analyses	216
10.A2		
	seniors + GST)	219
10.A3	MNL model parameter estimation results for two levels (poor and	
	seniors + GST)	220
11.1	Attributes and levels for third molar DCE	229
11.2	Random effects probit results	235
11.3	Comparison of BWS utility weights and probit utility	
	weights	236
12.1	OMEP design	245
12.2	Choice proportions for best-worst pairs for ICECAP-O and marginal	
	best (respectively, worst)	247
12.3	Bayes information criteria for different seeds	251
12.4	Four- versus five cluster membership	251
12.5	Five- versus six cluster membership	252
12.6	Own capability against ESP by attribute	253
12.7	ICECAP-O sociodemographic variables	254
12.8	ICECAP-O ESP by age and relationship status	254
12.9	BIC and McFadden R^2 valuation results	255
12.10	ICECAP-O preference classes	257
12.11	ICECAP-O preference classes	259
12.12	Australian subgroups defined by age and relationship status	260
13.1	Proportions of choices (most preferred) by BIBD profiles	270
13.2	Friedman test results	271
13.3	Product attribute relative importance (%) and ranking over time	271
13.4		271 272
13.4 13.A1	Friedman test results Toothpaste attributes and their levels	272
13.A1 13.A2	Pizza attributes and their levels	273
13.A2 13.A3	Detergent attributes and their levels	273
13.A3 14.1	Attributes and levels for delivered pizza example	270
14.2	Attributes and levels for toothpaste example	279
14.3	Sixteen profiles for delivered pizza example	280
14.4	BIBD for 20 choice sets, four options per set	280
14.5	Pizza profiles ordered according to BW differences	284
14.6	Attribute levels ranked according to normalized best counts, worst counts	-0.
	and BW differences for the pizza example	285
14.7	Toothpaste profiles ordered according to BW differences	287
14.8	Attribute levels ranked according to normalized best counts, worst counts	
	and BW differences for the toothpaste example	288

xiv	List of tables	
14.9	Parameter estimates, standard errors and t-statistics for the homogeneous multinomial logit based on best choices, worst choices or best then worst	
	choices	292
14.10	Parameter estimates, standard errors and t-statistics for the mixed logit	
	based on best choices, worst choices or best then worst choices	294
14.11	Root likelihood values for homogeneous multinomial logit and mixed	
	logit choice models estimated from best choice, worst choice or best	
	and worst choice data, each predicting either best choices or	
	worst choices	296
15.1	Choice proportions (means) from the DCE	300
15.2a	Design matrix with choice proportions	302
15.2b	Design matrix sorted by choice proportions	303
15.3	Choice counts by airline and fare levels	306
15.4	Individual-level WLS model estimates and associated statistics	307
15.5	WLS estimation results for cluster differences	310

Contributors to application chapters

- Richard T. Carson: Professor, Department of Economics, University of California, San Diego
- Eli Cohen: Associate Professor, Department of Management, Gilford Glazer Faculty of Management, Ben Gurion University of the Negev, Israel, and Ehrenberg Bass Institute for Marketing Science, University of South Australia
- Charles Corke: Intensive Care Specialist, Barwon Health, Australia
- Terry N. Flynn: Director of TF Choices Ltd (UK) and Adjunct Fellow, University of Western Sydney
- Bart D. Frischknecht: VP Research and Customer Success, Vennli, South Bend, Indiana

Elisabeth Huynh: Postdoctoral Fellow, Institute for Choice, University of South Australia

- Towhidul Islam: University Research Chair, Professor and Graduate Coordinator of the Department of Marketing and Consumer Studies, College of Business and Economics, University of Guelph, Canada
- Larry Lockshin: Professor, Ehrenberg Bass Institute for Marketing Science, University of South Australia
- Jordan J. Louviere: Professor, School of Marketing, University of South Australia
- Janet R. McColl-Kennedy: Professor of Marketing, UQ Business School, University of Queensland
- Emma McIntosh: Reader in Health Economics of Public Health, Institute of Health and Wellbeing, University of Glasgow
- Geoffrey N. Soutar: Winthrop Professor of Marketing and Head of Discipline, University of Western Australia Business School
- Jillian C. Sweeney: Winthrop Professor of Marketing, University of Western Australia Business School

Preface

Jordan J. Louviere first proposed best-worst scaling (BWS) in the late 1980s as a way to capitalize on humans' tendency to be more reliable and accurate at identifying extreme options. Louviere first called the method maximum difference scaling, to describe what he hypothesized as the underlying process, namely choosing the pair of stimuli in a set of stimuli that exhibited the largest subjective difference on the underlying continuum of interest. Since that time BWS has been adopted by academics and practitioners in many fields globally. However, marketing researchers continue to refer to it as maximum difference scaling (or "maxdiff"), while academics have overwhelmingly now begun to call it best-worst scaling. Louviere and colleagues changed the name to reflect the fact that years of academic research had made it clear that no one actually used a maximum difference choice process, so a much better general term for the method was BWS.

So, BWS now is almost 25 years old. The current authors began receiving numerous requests for assistance and explanations about how to do BWS around 2005; such requests have continued unabated since then. It became clear from the requests, comments and interactions in BWS and more conventional choice modelling short courses that there was a need for a book that brought BWS theory and methods together in such a way that as many people as possible could learn the basic theory and ways to design, implement and analyze BWS experiments in as simple a pedagogical manner as possible. Therefore, this book began with many discussions between Louviere, Flynn and Marley about the need for such a book, leading to them spending time together in the Seattle, Washington, area in 2009 to begin the writing process. That led to discussions about the need for application chapters, which in turn led to invitations to various researchers, principally academics, who were early adopters of BWS, to contribute such chapters.

So, our key reason for writing the book was to introduce as many people as possible to choice-based measurement methods (of which BWS is one type) with the hope of eventually eliminating the many atheoretical and ad hoc measurement methods that are applied in the social and business disciplines. BWS provides a theoretical framework to measure latent, subjective quantities that can produce measurement values with known properties. The theory can be tested and falsified; hence, if the theory is a good first approximation to

xvii

xviii

Preface

the underlying choice process(es) being studied, one can have confidence in the measurement properties of the derived values. Unfortunately, one cannot falsify ad hoc measurement methods such as category rating scales. Indeed, it is surprising how uncritical their use is by so many academics and practitioners, especially in light of the fact that, despite some past attempts, it is unlikely that there will ever be a theory from first principles that represents the process by which humans produce category ratings values in response to various stimuli and/or experimental manipulations of interest. More importantly, BWS can replace category rating scales in most commercial and academic applications, and our hope is that we will eventually see many ad hoc measurement methods replaced by BWS.

We hope that those who read this book will be inspired that it is possible to develop and apply theory-based measurement methods in the social and business sciences. We think that the book is important because it finally puts forth a theoretically sound measurement method that can be used in virtually all academic and commercial research applications in which category rating scales currently are used. Better yet, BWS measurement tasks are simple, reliable and accurate, and at the worst require a few more evaluations than category rating scales in almost all cases. As we also note in the book, BWS has been compared with and tested against category rating scales, and virtually every comparison of which we are aware has strongly favored BWS, with the exception that it typically takes humans longer to do BWS tasks. While there are some who see the extra time BWS takes to be a problem, we see this, instead, as a serious opportunity, because it suggests that in many instances the humans involved in the tasks are taking them seriously. Therefore, it is not at all obvious that the fact that BWS tasks take longer for humans to do is a bad thing.

We also hope that the book will inspire some to see the many research opportunities that remain, and take on the task of filling in the research gaps that we note in Chapter 6. It is also our hope that many with backgrounds in psychometrics will see clear opportunities to use BWS tasks where they currently use rating scales and matching tasks. Likewise, and without further comment, we would like to suggest that it may well be in the interest of psychometricians and scale developers to consider whether one can use BWS to replace the current process of selecting items using various factor-analytic and related methods. We also note in passing that "structural choice models" provide statistical theory that integrates structural equation modeling with choice modeling and choice tasks (Rungie, Coote and Louviere, 2011; 2012). BWS is a natural fit to these types of models. So, theory and methods currently are in place to take advantage of the BWS choice-based measurement approach.

Acknowledgments

Writing a book such as this one necessarily involves many people besides the authors.

We would like to acknowledge the considerable contributions made by Edward Wei, who was the head of the online survey programming team in the Institute for Choice (also known as I4C) until recently. During his tenure with the Institute for Choice team, Edward developed many innovative new ways to greatly enhance online surveys and consequently the ability to be at the forefront of online survey work for discrete choice experiments and BWS globally.

We also would like to acknowledge similar contributions made by Karen Cong, who assisted Edward Wei, and now is the team leader in the Institute for Choice for online survey development and implementation. Like Edward, Karen developed a number of new and innovative ways of creating online surveys. Karen also worked tirelessly to prepare, organize and correct figures and tables for a number of the chapters, and to compile the full list of references.

We received extensive encouragement and assistance from Cambridge University Press. Chris Harrison (publishing development director, social sciences) visited us in Sydney and encouraged us to send the outline and sample chapters to the Press; Claire Wood (editor, economics and management) provided major assistance and support in getting the document into production; and Mike Richardson (copy-editor) and David Mackenzie (production editor, academic books) expertly guided us through the final stages of production.

Likewise, our thanks go to the authors of the contributed chapters. They have waited patiently for this book to come out, and it has been a long journey.

Over the past 10 years we have received outstanding support for our research on BWS from various universities and granting agencies. These are: the University of South Australia (Institute for Choice); the University of Technology, Sydney (Centre for the Study of Choice); the University of Victoria, Canada; the Australian Research Council (ARC); the National Health and Medical Research Council (NHMRC) of Australia; the Natural Sciences and Engineering Research Council (NSERC) of Canada; the Social Sciences and Humanities Research Council (SSHRC) of Canada; the Medical Research

xix

xx

Acknowledgments

Council (MRC) of the United Kingdom; and many other grants and contracts from funding bodies and private and public sector organizations.

We must thank our families, who put up with us during this long process.

Thanks also go to Bart Frischknecht and Fedor Ishakov, who commented on early versions of many of the chapters. Thanks, too, to the anonymous reviewers of the first sample chapters. We did our best to take account of their comments and suggestions; of course, any remaining limitations are our responsibility.

There are many others who gave support and encouragement along the way, as listed below; if we have omitted anyone, it is entirely unintentional:

Adam Finn, for his early support and encouragement;

editors and reviewers in marketing, health economics, environmental and resource economics, personality and social psychology and other fields, for accepting the original papers;

commercial marketing and survey research firms, for jumping on the best-worst bandwagon as early adopters (special thanks to Sawtooth Software!);

many colleagues and co-authors (you all know who you are!).

Ultimately, the responsibility for the book and its contents rests with us. We welcome feedback and suggestions for improving potential future editions. The primary goal of this first edition is to communicate in the simplest way we know how, so as to allow the widest possible audience to be able to understand and apply the theory and methods. We hope we have achieved this goal, but we also know that we will hear from you if we have not.