Symbol index for Volume 1

1 (the unit of a unital algebra), 2
1 (the unit of the unital extension), 3
∥·∥π (projective tensor norm), 31
∥·∥H (natural C∞-norm on Mα(ℂ)), 166
[· ·] (aeq) (for i, j = 1, 2), 538
[a, b]c = (ab)c − a(bc), 151
⊗π (natural product on the range of the projection π), 154
⊗α = A Xλ, (ℓ1-sum of the family {Xλ}), 109
⊗α = A Xλ, (ℓ∞-sum of the family {Xλ}), 271
[a] (for i, j = 1, 2), 538
α ∗ (the [J]-inverse of α), 5, 188, 453, 473
αi (plenary powers of α), 566
αk (the quasi-J-inverse of α), 431, 585
Ann(Ann) (annihilator of A), 4
Aut(A) (automorphisms of A), 384
Aut(A, B) (isomorphisms from A onto B), 384
Aut∗ (A) = {F ∈ Aut(A) : F ∗ = F, sp(F) ≤ R1}, 384
Aut∗ (A, B) (+-isomorphisms from A onto B), 387
A(α) (subalgebra of A generated by α), 262
A(S) (subalgebra of A generated by S), 9
A(S) (closed subalgebra of A generated by S), 9
A1 = A or A2 depending on whether or not A is
unitaL, 407
A1 (unit extension of A), 33
A2 (complexification of A), 32
A3 (real algebra underlying A), 97
A3(e) k = 1, 2, 0 (Peirce subspaces of A relative
to the idempotent e), 178
AΩ = {x ∈ A : [J−]sp(A, x) ≤ Ω}, 65, 486
A[∞] (ultrapower of A), 272
A(0) (opposite algebra of A), 13
A(0) (u-isotope of A), 519
A+ (positive part of A), 47, 613
Aant (antisymmetrized algebra of A), 560
AK = {x ∈ A : V(A, 1, x) ⊆ K}, 649
Asym (symmetrized algebra of A), 122
(Ai)ϕ (ultraproduct of the family {Ai}), 271
EF (E) (flexible quadratic algebra of the
pre-H-algebra E), 204
K (K) (associative algebra of the compact set
K ⊆ [1, ∞]), 537
K(U, θ, Ω) (1 ≤ p < ∞), 257
K(V, x, (∞)) (quadratic algebra of (V, x, (∞)), 182
A (for A = C, H, or O), 278
A (for A = C, H, or O), 278
A (for A = H, or O), 220
A n ∈ N ∪ {0} (Cayley–Dickson algebras), 199
Rad(A) (radical of A), 580

BL(X, Y) (bounded linear operators from X to Y), 3
BL(X) = BL(X, X), 3
B(I, X) (bounded functions from I to X), 117, 307
B(x, y) (Bergmann operator of (x, y)), 509
BC = {xy : (x, y) ∈ B × C}, 2
β(α, K) = inf{1 − ||u + x|| : x ∈ KBX, τ (u,x) ≤ −1}, 299
(R)(A) (Raer radical of A), 601
(R)(K) (Jordan algebra of the compact set
K ⊆ [1, ∞]), 553
BX (closed unit ball of X), 2
co(S) (convex hull of S), 28
co(S) (absolutely convex hull of S), 99
co(S) (closed convex hull of S), 99
co(S) (closed absolutely convex hull of S), 99
co (null sequences in ℓ∞), 3
Symbol index for Volume 1

C_A (extended centroid of A), 195
C_B(E,A) (bounded continuous functions from E to A), 3
C^*_C (E) = C^*_b (E,C), 150
C_p([1,2],Z) = \{ α \in C([1,2],Z) : α(1) \in \mathbb{R}\}, 560
C_p(K,\varepsilon_3) = \{ α \in C(K,\varepsilon_3) : α(1) \in C_p(\varepsilon_3) \}, 555
C_p(K,M_2(\mathbb{C})) = \{ α(1) \in C_p(\varepsilon_3) \}, 545
C^*_C(E) = C^*_b (E) where E is compact, 3
C^*_b(E) (C-valued continuous functions on E vanishing at infinity), 3
C^*_c(E) = \{ x \in C^*_b (E) : x(t) = α(t) \forall t \in \mathbb{T} \times E \}, 498
C(C) (complex octonions), 205
C(\mathbb{R}) (Cayley-Dickson doubling of M_2(\mathbb{R})), 218
C(E,A) (continuous functions from E to A), 3
C_0(X,E) (X-valued continuous functions on E vanishing at infinity), 330
\mathcal{C}(A) (Cayley-Dickson doubling of A), 176
\mathcal{C}(X,E) (free complete normed non-associative \mathbb{K}-algebra on X), 261
\mathcal{C}_3 (three-dimensional spin factor), 553
\mathcal{C} (McCoy algebra), 216
deg(A) (degree of A), 212
dens(E) (density character of E), 257
dom(\cdot) (domain of a partially defined operator), 194, 640
Der^*(A), 384
Dis(X,a) (dissipative elements of X relative to a), 291
D(X,a) (states of X relative to a), 94
D_\alpha (X,a) = D(X,a) \cap \mathcal{Y}, 99
D_\alpha^(\infty) (X,a) = \{ x \in D(X,a) : \| x \| \rightarrow 0 \}, 285
D(K) (Banach space of K), 645
d'(f) : X \rightarrow X (formal differential of f at a), 652
\delta(x,u) : \mathbb{R} \rightarrow \mathbb{R} (modulus of midpoint local convexity of X at a), 111
\Delta_A (characters on A), 21
\Delta = \Delta_A, 21

\exp(a) (exponential of a), 10, 342
\exp(-1) (a) = \sum_{n=0}^{\infty} a^n / n! \mathbb{R}, 609
\text{ext}(S) (extreme points of S), 107
\text{Ea}(X) (extremal algebra of K), 647
\text{Ea}^1(K) (derivable elements of \text{Ea}(K)), 651
\text{Ea}^n(K) n \in \mathbb{N} (n-times derivable elements of \text{Ea}(K)), 669
\text{Ea}^{\infty}(K) = \cap_{n \in \mathbb{N}} \text{Ea}^n(K), 669
\eta : [1, \infty) \rightarrow M_2(\mathbb{C}), 537
\eta_K = \eta(K), 537
\eta_1 : [1, \infty) \rightarrow M_2(\mathbb{C}), 537
\eta^K_1 = (\eta_1)(K), 537
f'(a), 46, 57–59, 479, 484, 648
\tilde{f} : A \rightarrow A, 66, 486
f''(x) = f''(x',x') for (x',x') \in X \times X', 146
f(\bar{u}) (for f \in \mathcal{C}^2(K) and i = 1,2), 513
f'(x) for e \in \mathcal{E}(K), 651
F' : X' \rightarrow X' (transpose of the operator F : X \rightarrow Y), 29
F \otimes G (operator tensor product of F and G), 30
F^* : K \rightarrow H (adjoint of the operator F : H \rightarrow K), 38
F^{**}(E) (E-valued functions on E), 2
F_t(x_1, \ldots, x_n) (0 \leq t \leq n), 370
\mathcal{F}(X,Y) (finite-rank operators from X to Y), 73
\mathcal{F}(X) = \mathcal{F}(X,X), 75
\mathcal{F}(x) (free non-associative \mathbb{K}-algebra on X), 258
\mathcal{F}_p(X) (1 \leq p < \infty), 258
\mathcal{F} = \mathcal{F}(x) (\mathcal{C}^*(X,M_2(\mathbb{C})), 538
G : A \rightarrow \mathcal{C}^*(\Lambda) (Gelfand representation for complete normed unital associative and commutative complex algebras), 22
G : J \rightarrow \mathcal{C}^*(\Lambda) (Gelfand representation for complex Banach Jordan *-triples), 500
G (a contour in C), 58
\Gamma_A (centroid of A), 4
\Gamma_G (left centralizers on A), 254
\mathcal{G}(X) (surjective linear isometries on X), 332
\mathcal{G} = \mathcal{G}(K) (K-valued holomorphic functions on \Omega), 59
\mathcal{H} (algebra of Hamilton quaternions), 176
id(\mathbb{R}) = \{ e \in A : e^* = e, \mathbb{R} \}, 437
\text{Ind}_D(\mathbb{R}) (index of \mathbb{R} with respect to \Gamma), 58
Inv(A) (invertible elements of A), 5
I_\mathbb{K} (identity mapping on X), 2
I(A) = \{ x \in A : xA + Ax \subseteq I \}, 602
\mathcal{I}(\mathbb{C}) (imaginary part of \mathbb{C}), 132
J-Inv(A) (J-invertible elements of A), 453, 475
J-Rad(A) (Jacobson radical of A), 569
J-(\mathbb{J}^{n}) (J-spectrum of a relative to A), 456, 476
J^{n}(\mathbb{J}) (n-homotope of algebra J), 465
J_0 (e) = 1 + 1/0 (Peirce subspaces of J relative to the tripotent e), 505
ker(\alpha) = \{ a \in A : a_\alpha = 0 \}, 437
k(F) = \max \{ k : 0 < k_{\| x \|} \leq \| F(x) \| \forall x \in X \}, 250
K(X,u) = \cap_{\phi \in D(X,u)} \ker(\phi), 351
718

Symbol index for Volume 1

\(v(X,u,x)\) (numerical radius of \(x\) relative to \((X,u)\)), 98

\(v(x) = v(X,u,x)\), 98

\(V(X,u,x)\) (numerical range of \(x\) relative to \((X,u)\)), 94

\(V(x) = V(X,u,x)\), 94

w-Rad \(A\) (weak radical of \(A\)), 578

\(W(f)\) (spatial numerical range of \(f : Y \to X\)), 116, 308

\(W(T)\) (spatial numerical range of \(T : X \to Y\)), 107

\(\mathcal{W}(A) := \{a \in A : L_{a^*} R_{a} \in R\mathcal{D}(\mathcal{F}(A))\}\), 578

\(\mathcal{W}(X,Y)\) (weakly compact operators from \(X\) to \(Y\)), 70

\(\mathcal{W}(X) = \mathcal{W}(X,X)\), 75

\(x^{(2n+1)} = \{xx^{(2n-1)}x\}\) (triple powers of \(x\)), 468

\(X'\) (topological dual of \(X\)), 2

\(X''\) (bidual of \(X\)), 2

\((X,u)\) (numerical-range space), 94

\(X \otimes Y\) (projective tensor product of \(X\) and \(Y\)), 31

\(X \ominus_1 Y\) (\(\ell_1\)-sum of \(X\) and \(Y\)), 109

\(X_R\) (real vector space underlying \(X\)), 95

\(X_C\) (complexification of \(X\)), 31

\(X_n\) (continuous \(n\)-linear mappings from \(X^n\) to \(X\)), 370

\(X_U\) (ultrapower of \(X\)), 271

\((X_i)_U\) (ultraproduct of the family \(\{X_i\}\)), 271

\(\mathcal{F}(U,K)\) (free vector space over \(K\) generated by \(U\)), 257

\(y \otimes f : x \to f(x)y\), 73

\(Z(A)\) (centre of \(A\)), 192

\(\mathcal{P}(B)\) (centre modulo the radical of \(B\)), 597
Subject index for Volume 1

abelian Jordan *-triple, 468
A-bimodule, 636
A-bimodule relative to F^*, 643
absolute value, 176
absolute-valued algebra, 176
absolute-valued C^*-algebra, 416
absolute-valued left semi-H^*-algebra, 253
adjoint operation (bilinear), 124
adjoint operator, 39
Albert isotopic (absolute-valued algebras), 211
Albert radical, 599
algebra, 1
algebra admitting power-associativity, 493
algebra antihomomorphism, 13
algebra homomorphism, 2
algebra involution, 39
algebra isomorphism, 2
algebra norm, 2
group with hermitian multiplication, 581
algebraic algebra, 180
algebraic algebra of bounded degree, 212
algebraic element, 180
algebraic norm function, 181
algebraically J-unitary element, 513
algebraically unitary element, 102, 367
almost norming subspace, 99
almost transitive normed space, 302
α-property, 135–137
alternative algebra, 152
alternative bimodule, 643
alternative C^*-algebra, 153
alternative C^*-complexification, 524
alternative C^*-representation, 610
alternative W^*-algebra, 409
annihilator of an algebra, 4
approximate unit, 404
approximation problem, 90
approximation property, 90
Δ-radical, 580
Arens regular bilinear mapping, 126
Arens regular normed algebra, 126
Artin theorem, 153
associative algebra, 1
associative and commutative bimodule, 644
associative bimodule, 643
associator, 151
A-submodule (of a left A-module), 436
automorphism of an n-algebra, 371
Baer chain, 601
Baer radical, 599
Banach Jordan *-triple, 465
Banach–Steinhaus closure theorem, 74
Banach–Stone theorem, 151
Bergmann operator, 509
bicommutant, 24
big point, 333
Birkhoff–Witt theorem, 581
Bishop–Phelps–Bollobás theorem, 287
bounded below (operator), 27
bounded index, 265
Brown–McCoy radical, 20
Calkin algebra, 93
canonical derivation of $Ea(K)$, 651
canonical involution
of the complexification, 31
of a matrix algebra, 167
carrier space, 22
Cayley algebra, 176
Cayley numbers, 176
Cayley–Dickson algebra, 199
Cayley–Dickson doubling (of a Cayley algebra), 176
Cayley–Dickson doubling process, 176
central algebra over K, 4
central element, 192
Subject index for Volume 1

centralizer (on an algebra), 4
centralizer set for a left A-module, 439
centre, 192
centre modulo the radical, 597
centroid, 4
character, 20
closable operator, 651
closed curve, 58
closed J-full subalgebra generated by a subset, 483
closed operator, 641
closed \(\ast\)-subalgebra generated by a subset, 419
closed subalgebra generated by a subset, 9
closed subtriple generated by a subset, 466
closure of a closable operator, 651
commutant, 24
commutative algebra, 1
commutative subset, 24
commutator, 126
compact operator, 70
complete holomorphic vector field, 174
complete normed algebra, 2
complete tripotent, 517
complex extreme point, 321
complexification, 31
composition algebra, 186
cone, 49
continuous functional calculus, 46, 479
contour, 58
convex contour of \(K\) in \(\Omega\), 58
convex cone, 49
convex-transitive normed space, 333
core of a subspace (of an algebra), 429
cross-product algebra, 187
CS-closed set, 294
\(C^\ast\)-algebra, 39
\(C^\ast\)-algebra of multipliers, 126
\(C^\ast\)-complexification, 524
\(C^\ast\)-equivalent algebra, 632
\(C^\ast\)-isotope algebra, 415
\(C^\ast\)-norm, 141
\(C^\ast\)-representation, 610
\(C^\ast\)-seminorm, 141
\(C^\ast\)-unital extension, 609
curve, 58
cyclic vector, 437
degree of a non-associative word
in each indeterminate, 373
degree of an algebra, 212
densely defined operator, 641
density character, 257
denting point, 118
derivation
of an algebra, 122
of an \(\ast\)-algebra, 371
descending chain condition, 583
direct product of algebras, 33
disc algebra, 315
dissipative element, 97
distinguished element (of a numerical range space), 94
division algebra, 192
division alternative algebra, 188
division associative algebra, 15
divisor of zero (joint, left, one-sided, right, two-sided), 27
duality mapping, 284
\(e\)-homotope algebra, 465
eigenvalue, 80
eigenvector, 80
element acting weakly as a unit, 316
equivalent non-commutative \(J\)\(^*\)-representations, 618
essential ideal, 149
exponential, 10, 342
extended centroid, 195
extremal algebra of \(K\), 647
finite-rank operator, 73
(first) Arens extension, 125
(first) Arens product, 125
flexible algebra, 149
flexible quadratic algebra of a pre-\(H\)-algebra, 204
(Frèchet) derivative of a function at a point, 8
(Frèchet) differentiable function at a point, 8
free complete normed non-associative algebra, 261
free non-associative algebra, 258
free (non-associative) monad, 258
free normed non-associative algebra, 259
Frobenius–Zorn monad, 258
full subalgebra, 22, 480
fundamental formula
for Jordan algebras, 364
for Jordan \(\ast\)-triples, 508
Gâteaux derivative of the norm, 204
Gelfand homomorphism theorem
non-unital version, 428
unital version, 23
Gelfand representation
of a complete normed unital associative and commutative complex algebra, 22
of a complex Banach Jordan \(\ast\)-triple, 500
Gelfand space, 22
Gelfand theory, 22
<table>
<thead>
<tr>
<th>Subject index for Volume 1</th>
<th>721</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelfand topology, 22</td>
<td></td>
</tr>
<tr>
<td>Gelfand transform of an element, 22</td>
<td></td>
</tr>
<tr>
<td>Gelfand–Beurling formula associative, 15</td>
<td></td>
</tr>
<tr>
<td>Jordan, 458</td>
<td></td>
</tr>
<tr>
<td>Gelfand–Mazur theorem</td>
<td></td>
</tr>
<tr>
<td>complex, 15</td>
<td></td>
</tr>
<tr>
<td>real, 194</td>
<td></td>
</tr>
<tr>
<td>Gelfand–Mazur–Kaplansky theorem, 197</td>
<td></td>
</tr>
<tr>
<td>Gelfand–Naimark theorem commutative, 40</td>
<td></td>
</tr>
<tr>
<td>non-commutative, 40</td>
<td></td>
</tr>
<tr>
<td>non-unital non-associative, 415</td>
<td></td>
</tr>
<tr>
<td>unital non-associative, 343</td>
<td></td>
</tr>
<tr>
<td>generalized standard algebra, 278</td>
<td></td>
</tr>
<tr>
<td>generated as a normed algebra by a subset, 25</td>
<td></td>
</tr>
<tr>
<td>generated as a normed $*$-algebra by a subset, 538</td>
<td></td>
</tr>
<tr>
<td>generator of $E_a(K)$, 647</td>
<td></td>
</tr>
<tr>
<td>geometric functional calculus, 648</td>
<td></td>
</tr>
<tr>
<td>geometrically unitary element, 100</td>
<td></td>
</tr>
<tr>
<td>H-algebra, 208</td>
<td></td>
</tr>
<tr>
<td>hereditarily indecomposable Banach space, 247</td>
<td></td>
</tr>
<tr>
<td>hermitian Banach Jordan $*$-triple, 465</td>
<td></td>
</tr>
<tr>
<td>hermitian element, 97</td>
<td></td>
</tr>
<tr>
<td>hermitian Jordan-admissible complex $*$-algebra, 613</td>
<td></td>
</tr>
<tr>
<td>Hilbert tensor product, 417</td>
<td></td>
</tr>
<tr>
<td>hole, 29</td>
<td></td>
</tr>
<tr>
<td>holomorphic functional calculus, 64, 485</td>
<td></td>
</tr>
<tr>
<td>holomorphic vector field, 174</td>
<td></td>
</tr>
<tr>
<td>H^*-algebra, 222</td>
<td></td>
</tr>
<tr>
<td>Hurwitz theorem, 217</td>
<td></td>
</tr>
<tr>
<td>ideal (left, right, two-sided), 16</td>
<td></td>
</tr>
<tr>
<td>ideal generated by a subset, 583</td>
<td></td>
</tr>
<tr>
<td>idempotent, 3</td>
<td></td>
</tr>
<tr>
<td>identity, 406</td>
<td></td>
</tr>
<tr>
<td>index of a point with respect to a contour, 58</td>
<td></td>
</tr>
<tr>
<td>index of nilpotency, 265</td>
<td></td>
</tr>
<tr>
<td>inner ideal, 594</td>
<td></td>
</tr>
<tr>
<td>intrinsic numerical range, 308</td>
<td></td>
</tr>
<tr>
<td>inverse element, 5, 187</td>
<td></td>
</tr>
<tr>
<td>involutive on a set, 39</td>
<td></td>
</tr>
<tr>
<td>irreducible left A-module, 437</td>
<td></td>
</tr>
<tr>
<td>irreducible representation, 437</td>
<td></td>
</tr>
<tr>
<td>isomorphic left A-modules, 439</td>
<td></td>
</tr>
<tr>
<td>isotropic element, 179</td>
<td></td>
</tr>
<tr>
<td>i-special Jordan algebra, 425</td>
<td></td>
</tr>
<tr>
<td>Jacobson density theorem, 445</td>
<td></td>
</tr>
<tr>
<td>Jacobson radical</td>
<td></td>
</tr>
<tr>
<td>of an associative algebra, 429</td>
<td></td>
</tr>
<tr>
<td>of a Jordan-admissible algebra, 569</td>
<td></td>
</tr>
<tr>
<td>JB-algebra, 319</td>
<td></td>
</tr>
<tr>
<td>JB-algebra of multipliers, 325</td>
<td></td>
</tr>
<tr>
<td>JB^*-admissible algebra, 406</td>
<td></td>
</tr>
<tr>
<td>JB^*-algebra, 345</td>
<td></td>
</tr>
<tr>
<td>JB^*-complexification, 524</td>
<td></td>
</tr>
<tr>
<td>JB^*-representation, 610</td>
<td></td>
</tr>
<tr>
<td>JB^*-triple, 130</td>
<td></td>
</tr>
<tr>
<td>JB^*-triple complexification, 524</td>
<td></td>
</tr>
<tr>
<td>JBW-algebra, 323</td>
<td></td>
</tr>
<tr>
<td>JBW^*-triple, 528</td>
<td></td>
</tr>
<tr>
<td>JC-algebra, 320</td>
<td></td>
</tr>
<tr>
<td>JC^*-algebra, 345</td>
<td></td>
</tr>
<tr>
<td>J-division Jordan algebra, 457</td>
<td></td>
</tr>
<tr>
<td>J-division Jordan-admissible algebra, 475</td>
<td></td>
</tr>
<tr>
<td>J-divisor of zero, 460, 478, 496</td>
<td></td>
</tr>
<tr>
<td>J-full subalgebra, 476</td>
<td></td>
</tr>
<tr>
<td>J-full subalgebra generated by a subset, 483</td>
<td></td>
</tr>
<tr>
<td>J-inverse element, 451, 473</td>
<td></td>
</tr>
<tr>
<td>J-invertible element, 451, 473</td>
<td></td>
</tr>
<tr>
<td>Johnson uniqueness-of-norm theorem, 565</td>
<td></td>
</tr>
<tr>
<td>Johnson–Aupetit–Ransford theorem, 570</td>
<td></td>
</tr>
<tr>
<td>Jordan A-bimodule, 637</td>
<td></td>
</tr>
<tr>
<td>Jordan-admissible algebra, 163</td>
<td></td>
</tr>
<tr>
<td>Jordan algebra, 162</td>
<td></td>
</tr>
<tr>
<td>Jordan derivation, 122</td>
<td></td>
</tr>
<tr>
<td>Jordan homomorphism, 122</td>
<td></td>
</tr>
<tr>
<td>Jordan identity, 162</td>
<td></td>
</tr>
<tr>
<td>Jordan $*$-triple, 463</td>
<td></td>
</tr>
<tr>
<td>Jordan triple identity, 463</td>
<td></td>
</tr>
<tr>
<td>J-primitive ideal, 594</td>
<td></td>
</tr>
<tr>
<td>J-primitive Jordan algebra, 594</td>
<td></td>
</tr>
<tr>
<td>J-semisimple Jordan-admissible algebra, 569</td>
<td></td>
</tr>
<tr>
<td>J-spectrum, 456</td>
<td></td>
</tr>
<tr>
<td>J-unitary element, 512</td>
<td></td>
</tr>
<tr>
<td>K-extreme point, 321</td>
<td></td>
</tr>
<tr>
<td>Kadison isometry theorem, 131</td>
<td></td>
</tr>
<tr>
<td>Kadison–Paterson–Sinclair theorem, 127</td>
<td></td>
</tr>
<tr>
<td>Kernel of a numerical-range space, 351</td>
<td></td>
</tr>
<tr>
<td>Kleinecke–Shirokov theorem, 442</td>
<td></td>
</tr>
<tr>
<td>Kurosh’s problem, 276</td>
<td></td>
</tr>
<tr>
<td>left A-module, 436</td>
<td></td>
</tr>
<tr>
<td>left A-module corresponding to a representation, 436</td>
<td></td>
</tr>
<tr>
<td>left centralizer, 254</td>
<td></td>
</tr>
<tr>
<td>left-division algebra, 192</td>
<td></td>
</tr>
<tr>
<td>left multiplication operator, 13</td>
<td></td>
</tr>
<tr>
<td>left powers, 665</td>
<td></td>
</tr>
<tr>
<td>left semi-H^*-algebra, 237</td>
<td></td>
</tr>
<tr>
<td>left standard representation, 436</td>
<td></td>
</tr>
<tr>
<td>left unit, 219</td>
<td></td>
</tr>
<tr>
<td>Lie algebra, 581</td>
<td></td>
</tr>
<tr>
<td>locally C^*-equivalent algebra, 632</td>
<td></td>
</tr>
<tr>
<td>locally finite algebra, 276</td>
<td></td>
</tr>
</tbody>
</table>
Subject index for Volume 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>locally nilpotent algebra, 277</td>
<td></td>
</tr>
<tr>
<td>logarithm (of an element of an algebra), 68</td>
<td></td>
</tr>
<tr>
<td>(L)-summand, 314</td>
<td></td>
</tr>
<tr>
<td>Macdonald’s theorem, 389</td>
<td></td>
</tr>
<tr>
<td>matricial (L_\infty)-property, 170</td>
<td></td>
</tr>
<tr>
<td>matricial (L_2)-property, 170</td>
<td></td>
</tr>
<tr>
<td>maximal ideal (left, right, two-sided), 17</td>
<td></td>
</tr>
<tr>
<td>maximal modular ideal (left, right, two-sided), 427</td>
<td></td>
</tr>
<tr>
<td>maximal modular inner ideal, 594</td>
<td></td>
</tr>
<tr>
<td>(M)-ideal, 315</td>
<td></td>
</tr>
<tr>
<td>minimal ideal (left, right, two-sided), 179</td>
<td></td>
</tr>
<tr>
<td>minimality of norm, 576</td>
<td></td>
</tr>
<tr>
<td>minimality of norm topology, 572</td>
<td></td>
</tr>
<tr>
<td>minimum norm, 596</td>
<td></td>
</tr>
<tr>
<td>minimum norm topology, 596</td>
<td></td>
</tr>
<tr>
<td>minimum polynomial, 180</td>
<td></td>
</tr>
<tr>
<td>modular ideal (left, right, two-sided), 426</td>
<td></td>
</tr>
<tr>
<td>modular unit (left, right), 426</td>
<td></td>
</tr>
<tr>
<td>module homomorphism, 439</td>
<td></td>
</tr>
<tr>
<td>module multiplication, 436</td>
<td></td>
</tr>
<tr>
<td>modulus of midpoint local convexity, 111</td>
<td></td>
</tr>
<tr>
<td>monad, 258</td>
<td></td>
</tr>
<tr>
<td>multilinear identity, 406</td>
<td></td>
</tr>
<tr>
<td>multiplication, 1</td>
<td></td>
</tr>
<tr>
<td>multiplication ideal, 443</td>
<td></td>
</tr>
<tr>
<td>multiplicatively nil ideal, 601</td>
<td></td>
</tr>
<tr>
<td>Nagata–Higman theorem, 267</td>
<td></td>
</tr>
<tr>
<td>(n)-algebra, 371</td>
<td></td>
</tr>
<tr>
<td>natural involution of a (V)-algebra, 134</td>
<td></td>
</tr>
<tr>
<td>(n)-contractive operator, 169</td>
<td></td>
</tr>
<tr>
<td>nearly absolute-valued algebra, 198</td>
<td></td>
</tr>
<tr>
<td>nice algebra, 122</td>
<td></td>
</tr>
<tr>
<td>nil algebra, 265</td>
<td></td>
</tr>
<tr>
<td>nil algebra of bounded index, 265</td>
<td></td>
</tr>
<tr>
<td>nilpotent subset, 265</td>
<td></td>
</tr>
<tr>
<td>(n)-linear non-associative word, 373</td>
<td></td>
</tr>
<tr>
<td>non-associative (C^*)-algebra, 170</td>
<td></td>
</tr>
<tr>
<td>non-associative polynomial, 262</td>
<td></td>
</tr>
<tr>
<td>non-associative word, 258</td>
<td></td>
</tr>
<tr>
<td>non-commutative (JB^*)-algebra, 345</td>
<td></td>
</tr>
<tr>
<td>non-commutative (JB^*)-complexification, 524</td>
<td></td>
</tr>
<tr>
<td>non-commutative (JB^*)-representation, 610</td>
<td></td>
</tr>
<tr>
<td>that factors through another, 618</td>
<td></td>
</tr>
<tr>
<td>non-commutative (JB^*)-unital extension, 609</td>
<td></td>
</tr>
<tr>
<td>non-commutative (JBW^*)-algebra, 531</td>
<td></td>
</tr>
<tr>
<td>non-commutative Jordan (A)-bimodule, 637</td>
<td></td>
</tr>
<tr>
<td>non-commutative Jordan algebra, 163</td>
<td></td>
</tr>
<tr>
<td>non-thin set at a point, 612</td>
<td></td>
</tr>
<tr>
<td>norm-unital normed algebra, 34</td>
<td></td>
</tr>
<tr>
<td>normal element, 42, 365</td>
<td></td>
</tr>
<tr>
<td>normal subset, 418</td>
<td></td>
</tr>
<tr>
<td>normed (A)-bimodule, 638</td>
<td></td>
</tr>
<tr>
<td>normed algebra, 2</td>
<td></td>
</tr>
</tbody>
</table>

(normed) algebra completion, 35
normed complexification, 31
normed \(n\)-algebra, 371
normed \(Q\)-algebra associative, 440
Jordan-admissible, 572
normed unital extension, 609
norming subspace, 99
nowhere dense subset, 302
numerical index, 98
numerical radius, 98
numerical range, 94
numerical-range order, 143
numerical-range space, 94
octonions, 176
complex, 205
one-parameter semigroup, 10
one-sided division algebra, 192
one-sided semi-\(H^*\)-algebra, 252
operator algebra, 173
operator space, 175
operator system, 175
operator that factors through a space, 87
opposite algebra, 13
order defined by a proper convex cone, 49
orthogonal idempotents, 54
orthogonal subtriples, 514

partial isometry, 552
partially defined centralizer, 194
partially defined derivation, 642
partially defined linear operator, 640
Peirce decomposition of a Jordan \(s\)-triple, 505 of a power-associative algebra, 179 plenary powers, 566
polynomial function, 263
polynomial functional calculus, 54
positive element of a \(C^*\)-algebra, 47 of a \(JB\)-algebra, 328 of a non-commutative \(JB^*\)-algebra, 383 positive hermitian Banach Jordan \(s\)-triple, 465 positive linear functional, 141 power-associative \(A\)-bimodule, 651 power-associative algebra, 164 power-commutative algebra, 165 pre-duality mapping, 285 pre-\(H\)-algebra, 204 prime algebra, 194 prime ideal, 430 product, 1
Subject index for Volume 1

product of an n-algebra, 371
projective tensor norm, 31
projective tensor product, 31
proper cone, 49
proper ideal, 16
pseudo-octonions, 220
quadratic algebra, 180
quadratic commutative algebra of a real pre-Hilbert space, 232
quadratic form admitting composition, 183
quadratic operator, 506
quasi-division algebra, 192
quasi-full multiplication algebra, 578
quasi-full subalgebra, 440
quasi-full subalgebra generated by a subset, 578
quasi-inverse, 431
quasi-invertible element, 431
quasi-invertible subset, 431
quasi-J-full subalgebra, 594
quasi-J-involutory element, 568
quasi-J-invertible element, 568
quaternion, 176
quotient algebra, 18
quotient involution, 145
radical, 429
radical algebra, 429
rational functional calculus, 57
real alternative C*-algebra, 521
real C*-algebra, 521
real JB*-algebra, 521
real JB*-triple, 522
real non-commutative JB*-algebra, 521
real numerical index, 353
regular A-bimodule, 639
regular left A-module, 436
representation (of an associative algebra), 436
representation corresponding to a left A-module, 436
Rickart’s dense-range-homomorphism theorem
non-associative to Jordan-admissible, 458
non-associative to non-unital associative, 427
non-associative to unital associative, 20
Riesz–Schauder theory, 86
right-division algebra, 192
right multiplication operator, 13
right semi-H*-algebra, 252
Russo–Dye theorem, 140
Russo–Dye–Palmer theorem, 141
scalar-plus-compact property, 248
scalar-plus-strictly-singular property, 248
Schoenberg theorem, 216
Schur lemma, 445
second Arens extension, 126
second Arens product, 126
second commutant, 24
sedenions, 199
self-adjoint element, 42
semi-H*-algebra, 254
semi-L-summand, 314
semi-M-ideal, 315
semiprime algebra, 128
semiprime ideal, 430
semisimple algebra, 429
separating points (family of mappings), 22
separating space (of an operator), 18
Shirshov–Cohn theorem, 337
shrinkage of inverses, 491
simple algebra, 18
Singer–Wermers theorem, 391, 443
smooth normed space at a norm-one element, 203
smooth-normed algebra, 204
solvable algebra, 269
spatial numerical index, 105
spatial numerical range, 107, 116, 308
special Jordan algebra, 337
spectral mapping theorem
for the continuous functional calculus, 47, 479
for the holomorphic functional calculus, 64, 484
spectral radius, 6, 381
spectrum of an element, 12
split null A-extension, 639
split null X-extension, 636
standard involution
of a Cayley algebra, 176
of a free non-associative algebra, 258
standard left A-module, 436
standard normed unital extension, 609
+a-algebra, 39
+a-mapping, 39
+a-subalgebra, 39
state of X relative to a, 94
Stone–Weierstrass theorem
unital version, 41
unit-free version, 53
strict inner ideal, 594
strictly singular operator, 248
strong radical, 20, 427
strong subdifferentialiability of the norm, 299
strongly associative subalgebra of a Jordan algebra, 356
strongly exposed point, 118
strongly exposed subset, 299
strongly extreme point, 111
strongly semisimple algebra, 20, 427
subalgebra, 2
subalgebra generated by a subset, 9
Subject index for Volume 1

subharmonic function, 611
submean inequality, 611
subtriple, 465
subtriple generated by a subset, 466
super-trigonometric algebra, 201
symmetry (of a unital JB-algebra), 321
τ-point, 299
dimensional real spin factor, 560
three-dimensional spin factor, 553
topological divisor of zero (joint, left, one-sided, right, two-sided), 27
topological group, 6
topological J-divisor of zero, 460, 478, 496
topologically nilpotent algebra, 604
topologically simple algebra, 82
totally disconnected, 399
trace function, 181
transitive normed space, 217
transpose mapping of a continuous mapping, 45
transpose of an involution, 146
transpose of an operator, 29
trigonometric algebra, 200
triple homomorphism, 471
triple powers, 468
triple product, 127, 130, 324, 463
triple spectrum, 504
tripotent, 505
\(\omega\)-isotope JB*-algebra, 519
ultra-weak radical, 580
ultrapower, 271
ultraproduct, 271
uniform Fréchet differentiability of the norm, 304
uniformly non-square normed space, 230
uniformly smooth normed space, 304
unit, 2
unitary A-bimodule, 637
unitary algebra, 2
unitary extension, 33
unitary *-representation, 233
unitary element, 43, 368, 471
unitary normed algebra, 119
upper semicontinuity (of a set-valued function), 284
Urbanik–Wright theorem

commutative, 216
non-commutative, 216

V-algebra, 134
variety of algebras, 424
vertex, 99
Vidav algebra, 134
Vidav–Palmer theorem

associative, 142
alternative, 153
non-associative, 348
\(\mathcal{F}\)-normal element, 424
\(\mathcal{F}\)-normal subset, 424
von Neumann inequality, 174
von Neumann lemma, 7, 457
Vowden theorem, 421
weak radical, 578
weakly compact operator, 70
Weil algebra, 588
\(\mathcal{W}\)-superbig point, 334
\(\mathcal{W}\)-unitary element, 295
\(\mathcal{W}\)-vertex, 295

x-modular strict inner ideal, 594
X-valued partially defined derivation, 640
zero-annihilator ideal (z-ideal), 602
zero-annihilator radical (z-radical), 602
Zorn’s vector matrices, 177
Symbol index for Volume 2

||S|| = sup{∥s∥ : s ∈ S}, 603
∥f∥E := supx∈E∥f(x)∥, 54
ANBP (approximate norm-1 boundedness property), 614
A(k, n) = {α = (α1,...,αk) ∈ \mathbb{N}^k : |α| = n}, 20
A0(k, n) = {α = (α1,...,αk) ∈ (\mathbb{N}∪\{0\})^k : |α| = n}, 20
A(α) (a-homotope of A), 589
Ann(I) (annihilator of the ideal I), 562
Ann(X) (annihilator of the Jordan ψ-triple X), 225
ad\alpha(x) = [α, x], 176
A\alpha(e) k = 1, 2, 0 (Peirce subspaces of A relative to the idempotent e), 375
A\alpha^+ (cone of w*-continuous positive linear functionals on A), 286
A\lambda1 (λ-mutation of A), 325
Aut(Ω) (biholomorphic mappings from Ω onto Ω), 61
aut(Ω) (complete holomorphic vector fields on Ω), 138
Aut^1(Ω) = Aut(Ω) \cap \mathcal{P}(X, X), 187
Aut\lambda(Ω) (connected component of IΩ in (Aut(Ω), TΩ)), 183
Aut\alpha(Ω) = aut(Ω) \cap \mathcal{P}(X, X), 179
aut\alpha(Ω) = aut(Ω) \cap (\mathcal{P}(X, X) \oplus \mathcal{P}_2(X, X), 179
BL\alpha(X, Y) (bounded n-linear operators from X×...×X to Y), 20
BL\alpha^s(X, Y) (bounded symmetric n-linear operators from X×...×X to Y), 20
β(A), 614
C\alpha(E, A) (bounded continuous functions from E to A), 54
C(\mathbb{F}) (split octonion algebra over \mathbb{F}), 360
C(E, A) (continuous functions from E to A), 53
c(X, A) (core of X in A), 413
\mathcal{C}D(A) (Casley–Dickson doubling of A), 359
Df(x0) (derivative of f at x0), 22
Df(x0; x) (derivative of f at x0 in the direction x), 42
\Delta_X (open unit ball of X), 46
exp : aut(Ω) → Aut(Ω) (exponential mapping), 143
Ent(A) (set of all equivalent algebra norms on A), 603, 609
F\ast(α) := (F(α\ast))\ast (definition of the operator F\ast : A → B for an operator F : A → B with A and B semi-H*-algebras), 488
F\ast : B → A (adjoint of the operator F : A → B for A and B semi-H*-algebras), 488
\gamma : \mathcal{H}(U, Ω_X) → \mathcal{H}(g(U), Ω_Y) (g : Ω_X → Ω_Y biholomorphic mapping), 112
\gamma^0 : \mathcal{H}(U, Ω_X) → \mathcal{H}(g(U), Ω_Y) (g : Ω_X → Ω_Y biholomorphic mapping), 112
H(\Omega, α) (hermitian elements of X relative to α), 1
H_{\alpha}(X, Γ), 361
\mathcal{H}(Ω, Y) (holomorphic mappings from Ω to Y), 54
\mathcal{H}_b(Ω, Y) (bounded holomorphic mappings from Ω to Y), 54
\mathcal{H}_b(Ω, Y) (bounded holomorphic mappings from Ω to Y which are bounded on B), 55
\mathcal{H}_b(Ω, Y) (bounded holomorphic mappings from Ω to Y which are bounded on every B ⊆ Ω), 56
\mathcal{H}(\mathbb{H}) (Hilbert–Schmidt operators on H), 481

© in this web service Cambridge University Press www.cambridge.org
Symbol index for Volume 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I(A) = { F \in \mathcal{M}(A) : F(A) \subseteq I }$</td>
<td>, 574</td>
</tr>
<tr>
<td>T^n</td>
<td>$= \text{Ann}(\text{Ann}(I))$, 572</td>
</tr>
<tr>
<td>$k(F) = \max{ k \geq 0 : k|x| \leq |F(x)| \forall x \in X }$</td>
<td>586</td>
</tr>
<tr>
<td>$K \subseteq \Omega$ (K lies strictly inside Ω)</td>
<td>55</td>
</tr>
<tr>
<td>$\Lambda : \mathcal{M}(U,Y) \to \mathcal{M}(U,Y)$ (differential operator on $\mathcal{M}(U,Y)$ associated to Λ), 106</td>
<td></td>
</tr>
<tr>
<td>Λ^n (nth power of Λ as a differential operator), 116</td>
<td></td>
</tr>
<tr>
<td>$\text{lin}(S)$ (closed linear hull of S), 563</td>
<td></td>
</tr>
<tr>
<td>$m(X,X_\delta)$ (Mackey topology of a dual Banach space X), 290</td>
<td></td>
</tr>
<tr>
<td>$\text{MC}(S)$ (multiplicatively closed subset generated by S), 606</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{M}(A)$ (algebra of multipliers of A), 315</td>
<td></td>
</tr>
<tr>
<td>$\text{Mult}(X)$, 319</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{H}(A)$ (multiplication algebra), 367</td>
<td></td>
</tr>
<tr>
<td>$\Omega(A)$, 406</td>
<td></td>
</tr>
<tr>
<td>\mathcal{N} (norm-1 boundedness property), 614</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{N}_{\text{ann}} = { a \in A : \mathcal{N}(a) = 0 }$, 572</td>
<td></td>
</tr>
<tr>
<td>\mathcal{N}_{EP} (norm extension problem), 470</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{N}(A)$ (nucleus of A), 413</td>
<td></td>
</tr>
<tr>
<td>\mathcal{N}^f</td>
<td>$= (\mathcal{N}_{\text{ann}})^{\text{ann}}$, 572</td>
</tr>
<tr>
<td>\mathcal{N}_{NSE} (norm square equality), 639</td>
<td></td>
</tr>
<tr>
<td>\mathcal{N}_{NSI} (norm square inequality), 638</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{N}_{\delta,b}(F,G) = F(b)G(b)$, 368</td>
<td></td>
</tr>
<tr>
<td>P_{A,f,x_0} (derivative of f at x_0 with respect to the tree A), 31</td>
<td></td>
</tr>
<tr>
<td>$P_k(\alpha)$</td>
<td>$k = 1, \frac{1}{2}, 0$ (Peirce projections relative to α), 375</td>
</tr>
<tr>
<td>$\Pi(X) = { (x,f) : x \in X, f \in D(X,x) }$, 193</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P}(X,Y)$ (polynomials from X to Y), 24</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P}^n(X,Y)$ (homogeneous polynomials of degree n from X to Y), 22</td>
<td></td>
</tr>
<tr>
<td>$Q(A)$ (symmetric Martindale algebra of quotients), 403</td>
<td></td>
</tr>
<tr>
<td>$r(S)$ (spectral radius of S), 609</td>
<td></td>
</tr>
<tr>
<td>$r_b(f,x_0)$ (radius of boundedness of f at x_0), 46</td>
<td></td>
</tr>
<tr>
<td>$S(A,r) = { a \in A : r(a) = -a }$, 445</td>
<td></td>
</tr>
<tr>
<td>$S_{\text{ann}} = { F \in \mathcal{M}(A) : F(S) = 0 }$, 572</td>
<td></td>
</tr>
<tr>
<td>$s^n(X,X_\delta)$ (strong* topology), 302</td>
<td></td>
</tr>
<tr>
<td>σ_2, 606</td>
<td></td>
</tr>
<tr>
<td>$T^n = (S^n)_{\text{ann}}$, 572</td>
<td></td>
</tr>
<tr>
<td>SOT (strong operator topology), 492</td>
<td></td>
</tr>
<tr>
<td>$\tau_{\epsilon}(A)$ (trace class elements of A), 526</td>
<td></td>
</tr>
<tr>
<td>$T_{f,\partial f}(\theta)$ (nth degree Taylor polynomial of f at x_0), 24</td>
<td></td>
</tr>
<tr>
<td>$t^+(x)$ (positive lifetime of x), 94</td>
<td></td>
</tr>
<tr>
<td>$t^-(x)$ (negative lifetime of x), 94</td>
<td></td>
</tr>
<tr>
<td>$T_p(M)$ (tangent space of M at p), 160</td>
<td></td>
</tr>
<tr>
<td>$T(M) := \bigcup_{p \in M} T_p(M)$ (tangent bundle of M), 162</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P}^{\mathcal{E}}(H)$ (trace-class operators on H), 524</td>
<td></td>
</tr>
<tr>
<td>$\text{Trees}(m,n)$ (trees of degree m and height n), 30</td>
<td></td>
</tr>
<tr>
<td>$W_{F,\delta}(T) = FT(\alpha)$, 489</td>
<td></td>
</tr>
<tr>
<td>WOT (weak operator topology), 533</td>
<td></td>
</tr>
<tr>
<td>$X_0 = \text{aut}(\Omega)(0)$, 179</td>
<td></td>
</tr>
<tr>
<td>X_4 (predual of the dual Banach space X), 4</td>
<td></td>
</tr>
<tr>
<td>X_5 (symmetric part of a complex Banach space X), 187</td>
<td></td>
</tr>
</tbody>
</table>
Subject index for Volume 2

absolutely primitive idempotent in a Jordan algebra, 594
Albert ring, 364
algebraic norm function, 359
alternative C*-algebra of multipliers, 321
alternative W*-algebra, 4
alternative W*-factor, 348
analytic Banach manifold, 159
analytic mapping, 36, 160
analytic structure, 159
analytic subset, 184
analytic vector field, 163
annihilator of a Jordan +-triple, 225
annihilator of an ideal, 562
approximate norm-1 boundedness property, 614
approximate unit, 533
asymptotic development, 26
atlas, 159
Banach Lie algebra of a Banach Lie group, 168
Banach Lie group, 165
binarion algebra over F, 359
capacity of a unital Jordan algebra, 591
Carathéodory semi-distance, 80
Cartan factor, 438
Cauchy inequalities, 45, 46
Cauchy integral formula, 45, 49
Cayley algebra, 359
Cayley–Dickson doubling (of a Cayley algebra), 359
Cayley–Dickson doubling process, 359
Cayley–Dickson ring, 360
central localization, 360
central order in an algebra, 360
centrally closed algebra over K, 368
chart, 159
circular subgroup, 175
circular vector field, 176
compact open topology, 53
compatible tripotents, 227
complete vector field, 97
completely primitive idempotent of a Jordan algebra, 591
cross norm, 642
direct summand of an algebra, 3
domain homogeneous, 81
domain symmetric, 210
dual Banach space, 4
ε-closure of a subspace, 572
ε′-closure of a subspace, 572
equivalent JBW*-representations, 235
definition non-commutative JBW*-representations, 13
descriptor triple ideal, 450
descriptorally defined double centralizer, 402
even-swapping ±-involution, 442
exponential of a vector field, 98
factor representation of a JBB*-triple, 439
factor representation of a non-commutative JBB*-algebra, 350
finite capacity of a unital Jordan algebra, 591
finitely quasi-nilpotent subset, 631
flow, 97
(Fréchet) differentiable function at a point, 22
(Fréchet) derivative of a function at a point, 22
Subject index for Volume 2

G-analytic mapping, 43
generalized annihilator normed algebra, 562
generalized complemented normed algebra, 577
generalized real Cartan factor, 460
generalized real spin triple factor, 460
Hilbert–Schmidt operator, 481
homogeneous polynomial, 21
homotope of a Jordan algebra, 589
H*-algebra, 480
H*-ideal of a normed ∗-algebra, 518
hyper-Stonean topological space, 414
idempotent subset of a normed algebra, 614
indicator, 391
inner ideal of a Jordan algebra, 462
of a Jordan s-triple, 227
of a non-commutative Jordan algebra, 283
intrinsic triple product, 198
involutive algebra, 464
i-special Jordan triple, 445
JB*-triple of multipliers, 319
JBW*-factor, 348
JBW*-representation, 13
JBW*-algebra, 4
JBW*-ideal, 5
JBW*-summand, 3
λ-mutation of an algebra, 325
Mackey topology, 290
matricial decomposition of a C*-algebra, 441
matricially decomposed C*-algebra, 441
maximal M-ideal, 412
maximal closed ideal of a normed algebra, 614
maximal self-adjoint idempotent, 293
monotone complete JB-algebra, 9
non-commutative JB*-algebra, 14
M-projection, 3
M-summand, 3
multi-index, 20
multiplication algebra, 367
multiplicative boundedness property, 614
multiplicatively prime algebra, 489
multiplicatively semiprime algebra, 571
non-commutative JB*-algebra of multipliers, 317
non-commutative JBW*-algebra, 4
non-commutative JBW*-factor, 348
type I, 351
non-commutative JBW*-representation, 13
nondegenerate non-commutative Jordan algebra, 364
norm extension problem, 470
norm ideal (of operators), 409
norm square equality, 639
norm square inequality, 638
norm-k boundedness property, 614
normal linear functional on a JB*-algebra, 9
on a non-commutative JB*-algebra, 14
normed Jordan algebra of a continuous symmetric bilinear form, 463
nucleus of an algebra, 413
octonion algebra over F, 359
one-parameter group of automorphisms, 126
orthogonal tripotents, 227
π-closure of an ideal, 572
partial Banach Jordan s-triple structure, 181
Peirce decomposition of a non-commutative Jordan algebra, 375, 380
Poincaré distance, 79
polydisc, 48
polynomial, 24
positive linear functional on a JB*-algebra, 9
on a non-commutative JB*-algebra, 14
power series, 32
predual, 4
prime Jordan s-triple, 438
primitive M-ideal, 351
primitive idempotent of a Jordan algebra, 591
property (V∗), 248
purely alternative algebra, 413
purely non-associative algebra, 413
Subject index for Volume 2

quasi-centralizer on an algebra, 502
quasi-nil normed algebra, 625
quasi-nilpotent subset, 620
quaternion algebra over \mathbb{F}, 359
radius
of convergence of a power series, 33
of restricted convergence of a power series, 33
radius of boundedness, 46
real alternative W^*-algebra, 17
real Cartan factor, 460
real JBW^*-algebra, 17
real JBW^*-triple, 242
real JBW^*-triple factor, 460
real JC^*-triple, 445
real non-commutative JBW^*-algebra, 17
real spin triple factor, 460
real W^*-algebra, 17
reduced Jordan algebra, 594
(semi)-H^*-algebra complexification, 511
semi-H^*-algebra realization, 510
semi-H^*-algebra, 480
special Jordan triple, 445
spectral radius of a bounded subset, 609
spin triple factor, 439
split composition algebra, 360
standard involution
of a Cayley algebra, 359
s-involution on a $*$-algebra, 362
s-tight envelope, 471
Stonean topological space, 414
strict inner ideal, 462
strong operator topology, 492
strong* topology
of a dual Banach space, 311
of a JBW^*-triple, 302
of a non-commutative JBW^*-algebra, 276
support idempotent, 284
support tripotent, 300
symmetric Martindale algebra of quotients, 403
symmetric part of a complex Banach space, 187
tangent bundle, 162
tangent space, 160
τ-prime, 365
Taylor polynomial, 24
Taylor series, 35
topological algebra, 384
topologically interconnected idempotents, 385
topologically nilpotent normed algebra, 620
totally multiplicatively prime normed algebra, 491
totally prime normed algebra, 368
trace function, 359
trace-class elements of a semi-H^*-algebra, 526
trace-class operator, 524
tree, 30
tree-derivative, 31
T-topology (topology of local uniform convergence), 56
T_σ-topology (analytic topology), 159
ultra-τ-prime normed associative algebra, 468
ultraprime normed algebra, 369
vector field, 88
weak operator topology, 533
weak primitive ideal, 567
weakly analytic mapping, 44
weakly G-analytic mapping, 44
weakly unconditionally Cauchy series, 245
w^*-closed subtriple generated by, 226
W^*-algebra, 4
W^*-factor, 348
x-modular strict inner ideal, 462
Zel’manov’s prime theorem for Jordan algebras, 405
Zorn’s vector matrices, 360