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167 M. Cabrera Garcı́a and Á. Rodrı́guez Palacios Non-Associative Normed Algebras II:

Representation Theory and the Zel’manov Approach
168 A. Yu. Khrennikov, S. V. Kozyrev and W. A. Zúñiga-Galindo Ultrametric Pseudodifferential
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Preface

The core of the book revisited

In the preface to Volume 1 we proposed as the ‘leitmotiv’ of our work to remove asso-

ciativity in the abstract characterizations of unital (associative) C∗-algebras given

either by the Gelfand–Naimark theorem or by the Vidav–Palmer theorem, and to

study (possibly non-unital) closed ∗-subalgebras of the Gelfand–Naimark or Vidav–

Palmer algebras born after removing associativity.

To be more precise, for a norm-unital complete normed (possibly non-associative)

complex algebra A, we considered the following conditions:

(GN) (Gelfand–Naimark axiom). There is a conjugate-linear vector space involu-

tion ∗ on A satisfying 1∗ = 1 and ‖a∗a‖ = ‖a‖2 for every a in A.

(VP) (Vidav–Palmer axiom). A = H(A,1)+ iH(A,1).

In both conditions, 1 denotes the unit of A, whereas, in (VP), H(A,1) stands for the

closed real subspace of A consisting of those elements h ∈ A such that f (h) belongs

to R for every bounded linear functional f on A satisfying ‖f ‖ = f (1) = 1.

Contrary to what happens in the associative case [696, 725, 787, 930], in the non-

associative setting, (GN) and (VP) are not equivalent conditions. Indeed, as proved

in Lemma 2.2.5, it is easily seen that (GN) implies (VP), but, as shown by Example

2.3.65, the converse implication is not true. Therefore, after introducing ‘alternative

C∗-algebras’ and ‘non-commutative JB∗-algebras’, and realizing that the former are

particular cases of the latter, we specified how, by means of Theorems GN and VP

which follow, the behaviour of the Gelfand–Naimark and the Vidav–Palmer axioms

in the non-associative setting are clarified.

Theorem GN Norm-unital complete normed complex algebras fulfilling the Gelfand–

Naimark axiom are nothing other than unital alternative C∗-algebras.

Theorem VP Norm-unital complete normed complex algebras fulfilling the Vidav–

Palmer axiom are nothing other than unital non-commutative JB∗-algebras.

xvii
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xviii Preface

Then we announced as the main goal of our work to prove Theorems GN and VP,

together with their unit-free variants, and to ‘describe’ alternative C∗-algebras and

non-commutative JB∗-algebras by means of the so-called representation theory.

Since Theorems GN and VP and the unit-free variant of Theorem GN were already

proved in Theorems 3.2.5, 3.3.11, and 3.5.53, respectively, it remains the main

objective of our work to prove the unit-free variant of Theorem VP, and to develop the

representation theory of alternative C∗-algebras and non-commutative JB∗-algebras.

We now do this in Chapters 5 and 6 respectively. Indeed, the unit-free variant of

Theorem VP is proved in Theorem 5.9.9, whereas the representation theory of

alternative C∗-algebras and non-commutative JB∗-algebras can be summarized by

means of Corollaries 6.1.11 and 6.1.12, Theorem 6.1.112, and Corollary 6.1.115.

The content of Volume 2

As we commented in the preface of Volume 1, the dividing line between the two

volumes could be drawn between what can be done before and after involving the

holomorphic theory of JB∗-triples and the structure theory of non-commutative JB∗-

algebras. Then the content of Volume 1 was described in some detail, and a tentative

content of Volume 2 was outlined. Now we are going to specify with more precision

the content of the present second volume.

Chapter 5

The main goal of this first chapter of Volume 2 is to prove what can be seen as

a unit-free version of the non-associative Vidav–Palmer theorem, namely that non-

commutative JB∗-algebras are precisely those complete normed complex algebras

having an approximate unit bounded by one, and whose open unit ball is a homoge-

neous domain [365] (see Theorem 5.9.9). Some ingredients in the long proof of this

result were already established in Volume 1. This is the case of the Bohnenblust–

Karlin Corollary 2.1.13, the non-associative Vidav–Palmer theorem proved in Theo-

rem 3.3.11 as well as its dual version shown in Corollary 3.3.26, Proposition 3.5.23

(that every non-commutative JB∗-algebra has an approximate unit bounded by one),

Theorem 4.1.45 (that non-commutative JB∗-algebras are JB∗-triples in a natural

way), and the equivalence (ii)⇔(vii) in the Braun–Kaup–Upmeier Theorem 4.2.24.

♣ The new relevant ingredients which are proved in the chapter are the following:

(i) Edward’s fundamental Fact 5.1.42, which describes how JBW-algebras and

JBW∗-algebras are mutually determined, and implies, via [738], the unique-

ness of the predual of any non-commutative JBW∗-algebra (see Theorem

5.1.29(iv)).

(ii) The Kaup–Stachó contractive projection theorem for JB∗-triples (see Theorem

5.6.59).

(iii) Kaup’s holomorphic characterization of JB∗-triples as those complex Banach

spaces whose open unit ball is a homogeneous domain (see Theorem 5.6.68).
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Preface xix

(iv) Dineen’s celebrated result that the bidual of a JB∗-triple is a JB∗-triple (see

Proposition 5.7.10).

(v) The Barton–Horn–Timoney basic theory of JBW∗-triples establishing the sep-

arate w∗-continuity of the triple product of a given JBW∗-triple (see Theorem

5.7.20) and the uniqueness of the predual (see Theorem 5.7.38).

(vi) The Barton–Timoney theorem that the predual of any JBW∗-triple is

L-embedded (see Theorem 5.7.36).

(vii) The Chu–Iochum–Loupias result that bounded linear operators from a JB∗-

triple to its dual are weakly compact (see Corollary 5.8.33) or, equivalently,

that all continuous products on the Banach space of a JB∗-triple are Arens

regular (see Fact 5.8.39).

The original references for the results just listed are [222], [382, 597], [381], [213],

[854, 979], [854], and [172], respectively. Our proof of these results are not always

the original ones, although sometimes the latter underlie the former. This is the case

of results (ii) and (iii), which in our development depend on the foundations of the

infinite-dimensional holomorphy done in [710, 751, 814, 837, 1113, 1114, 1124]

(see Sections 5.2 to 5.6), on the design of proof suggested in [710, Section 2.5], and,

at the end, on numerical range techniques included in Subsection 5.6.3. On the other

hand, our proof of result (v) is new, and, contrary to what happens in the original

one, it avoids any Banach space result on uniqueness of preduals. Indeed, our proof

of Theorem 5.7.20 involves only result (ii) and the Barton–Timoney Theorem 5.7.18,

whereas our proof of Theorem 5.7.38 depends only on Theorem 5.7.20 (whose proof

has been just remarked on), result (i), and Horn’s Corollary 5.7.28(i)(b).

Concerning result (vii), it is noteworthy that a much finer theorem is proved in

[172]. Namely, that every bounded linear operator from a JB∗-triple to its dual factors

through a complex Hilbert space. The proof of this more general theorem (a sketch

of which can be found in §5.10.151) is very involved, and shall not be completely

discussed in our work. As a matter of fact, we re-encounter result (vii) by combining

results (iv) and (vi) with Corollary 5.8.19 (asserting that, if Y is a Banach space such

that Y ′ has property (V∗), then every bounded linear operator from Y to Y ′ is weakly

compact) and Theorem 5.8.27 (that L-embedded Banach spaces have property (V∗)).

Corollary 5.8.19 and Theorem 5.8.27 just reviewed are due to Godefroy–Iochum

[957] and Pfitzner [1044], respectively. Nevertheless, the proof of Corollary 5.8.19

in [957] relies heavily on Proposition 5.8.14, whose arguments have been lost in

the literature (see §5.8.42). Our proof of Proposition 5.8.14 is taken from Pfitzner’s

private communication [1047].

Once the main objective of the chapter is reached in Section 5.9, the chapter

concludes with a section devoted to some complements on non-commutative JB∗-

algebras and JB∗-triples.

In Subsection 5.10.1 we introduce the strong∗ topology of a non-commutative

JBW∗-algebra [19] and apply it to build up a functional calculus at each normal

element a of a non-commutative JBW∗-algebra A, which extends the continuous
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functional calculus (cf. Corollary 4.1.72) and has a sense for all real-valued bounded

lower semicontinuous functions on J-sp(A,a). Then we follow [366] to prove a

variant for non-commutative JBW∗-algebras of Kadison’s isometry theorem for

unital C∗-algebras (cf. Theorem 2.2.29), a consequence of which is that linearly

isometric non-commutative JBW∗-algebras are Jordan-∗-isomorphic. (We recall

that linearly isometric (possibly non-unital) C∗-algebras are Jordan-∗-isomorphic (a

consequence of Theorem 2.2.19), but that linearly isometric (even unital) non-

commutative JB∗-algebras need not be Jordan-∗-isomorphic (cf. Antitheorem

3.4.34).) We also prove the generalization to non-commutative JBW∗-algebras

of Akemann’s theorem [826] asserting the coincidence of the strong∗ and Mackey

topologies on bounded subsets of any W∗-algebra.

In Subsection 5.10.2 we introduce and study the strong∗ topology of a JBW∗-

triple as done by Barton and Friedman [853, 60], and follow [1061] to prove that,

when a non-commutative JBW∗-algebra is viewed as a JBW∗-triple, its new (triple)

strong∗ topology coincides with the (algebra) strong∗ topology introduced in Sub-

section 5.10.1. We also prove Zizler’s refinement [1137] of Lindenstrauss’s theorem

[1001] on norm-density of operators whose transpose attain their norm, and apply

it to prove a variant for JBW∗-triples of the so-called little Grothendieck’s theorem

[853, 964, 1040, 1052].

In Subsection 5.10.3 we provide the reader with a full non-associative discussion

of the Kadison–Paterson–Sinclair Theorem 2.2.19 on surjective linear isometries

of (possibly non-unital) C∗-algebras [366]. To this end we introduce the multiplier

non-commutative JB∗-algebra M(A) of a given non-commutative JB∗-algebra A,

and prove that M(A) coincides with the JB∗-triple of multipliers [873] of the JB∗-

triple underlying A. Then we also prove that the Kadison–Paterson–Sinclair theorem

remains true verbatim for surjective linear isometries from non-commutative JB∗-

algebras to alternative C∗-algebras, and that no further verbatim generalization is

possible.

Chapter 6

Implicitly, the representation theory of JB-algebras underlies our work since, without

providing the reader with a proof, we took from the Hanche-Olsen–Stormer book

[738] the very deep fact that the closed subalgebra of a JB-algebra generated by two

elements is a JC-algebra (cf. Proposition 3.1.3). In that way we were able to develop

the basic theory of non-commutative JB∗-algebras (including the non-associative

Vidav–Palmer Theorem 3.3.11 and Wright’s fundamental Fact 3.4.9 which describes

how JB-algebras and JB∗-algebras are mutually determined) without any further

implicit or explicit reference to representation theory. In fact, we avoided any depen-

dence on representation theory throughout all of Volume 1, and to the end of Chapter

5 of the present volume.

Now, in Chapter 6, we conclude the basic theory of non-commutative JB∗-

algebras, and follow [19, 124, 125, 222, 481, 482, 641] to develop in depth the
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representation theory of non-commutative JB∗-algebras and, in particular, that

of alternative C∗-algebras. To this end, in Subsection 6.1.1 we introduce non-

commutative JBW∗-factors and non-commutative JBW∗-factor representations of a

given non-commutative JB∗-algebra, and prove that every non-commutative JB∗-

algebra has a faithful family of type I non-commutative JBW∗-factor representations.

When these results specialize for classical C∗-algebras, type I non-commutative

JBW∗-factors are nothing other than the (associative) W∗-factors consisting of all

bounded linear operators on some complex Hilbert space [738, Proposition 7.5.2],

and, consequently, type I W∗-factor representations of a C∗-algebra A are precisely

the irreducible representations of A on complex Hilbert spaces. Subsection 6.1.2

deals with a first application of the representation theory outlined above, which

allows us to show that non-commutative JB∗-algebras are associative and commu-

tative if (and only if) they have no nonzero nilpotent element. As a consequence,

we obtain that alternative C∗-algebras are commutative if and only if they have

no nonzero nilpotent element [340]. This generalizes Kaplansky’s associative

forerunner [761, Theorem B in Appendix III]. In Subsection 6.1.3, we involve the

theory of JB-algebras [738], and invoke result (i) in ♣ to classify all (commutative)

JBW∗-factors. This classification is applied to prove that i-special JB∗-algebras

are JC∗-algebras. In Subsection 6.1.4, we combine the result just reviewed with

Zel’manovian techniques [437, 662] to prove that, if J is a prime JB∗-algebra, and

if J is neither quadratic (cf. Corollary 3.5.7) nor equal to the unique JB∗-algebra

whose self-adjoint part is H3(O) (cf. Example 3.1.56 and Theorem 3.4.8), then

either there exists a prime C∗-algebra A such that J is a closed ∗-subalgebra of

the JB∗-algebra M(A)sym containing A, or there exists a prime C∗-algebra A with

a ∗-involution τ such that J is a closed ∗-subalgebra of M(A)sym contained in

H(M(A),τ) and containing H(A,τ) [255]. In Subsection 6.1.5, we introduce totally

prime normed algebras and ultraprime normed algebras, and prove that totally prime

normed complex algebras are centrally closed, and that ultraprime normed algebras

are totally prime [149]. Then we combine the classification theorem of prime

JB∗-algebras reviewed above with the fact that prime C∗-algebras are ultraprime

[1012] to show that prime non-commutative JB∗-algebras are ultraprime, and hence

centrally closed. In Subsection 6.1.6, we combine the central closedness of prime

non-commutative JB∗-algebras with a topological reading of McCrimmon’s paper

[436] to prove that non-commutative JBW∗-factors are either commutative or simple

quadratic or of the form B(λ) for some (associative) W∗-factor B and some 0 ≤ λ ≤ 1.

This theorem is originally due to Braun [124]. As a consequence, alternative W∗-

factors are either associative or equal to the alternative C∗-algebra of complex

octonions (cf. Proposition 2.6.8).

Now that we have reviewed Section 6.1 in detail, we will explain the content of

the remaining sections of Chapter 6. Section 6.2 deals with the main applications

of the representation theory, namely the structure of alternative C∗-algebras [125,

331, 481], the definition and properties of the strong topology of a non-commutative

JBW∗-algebra [482], and the classification of prime non-commutative JB∗-algebras
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[363]. Finally, Section 6.3 deals with a rather incidental application. Indeed, we

follow [860] to prove a Le Page type theorem for non-commutative JB∗-algebras,

and discuss Le Page’s theorem [999] in a general non-associative and non-star

setting.

Chapter 7

This chapter deals with the analytic treatment of Zel’manov’s prime theorems for

Jordan structures, thus continuing the approach begun in Subsection 6.1.4.

In Subsection 7.1 we follow [448, 449] to prove as the main result that, if X is a

prime JB∗-triple which is neither an exceptional Cartan factor nor a spin triple factor,

then either there exist a prime C∗-algebra A and a self-adjoint idempotent e in the C∗-

algebra M(A) of multipliers of A such that X is a closed subtriple of M(A) contained

in eM(A)(1−e) and containing eA(1−e), or there exist a prime C∗-algebra A, a self-

adjoint idempotent e ∈ M(A), and a ∗-involution τ on A with e+ eτ = 1 such that X

is a closed subtriple of M(A) contained in H(eM(A)eτ ,τ) and containing H(eAeτ ,τ).

Among the many tools involved in the proof of the above classification theorem,

we emphasize Horn’s description of Cartan factors [330], the core of the proof of

Zel’manov’s prime theorem for Jordan triples [663, 1133, 1134], and the comple-

mentary work by D’Amour and McCrimmon on the topic [920, 921]. Proofs of these

tools are not discussed in our development. The main results in the Friedman–Russo

paper [270], whose proofs are outlined in our development, are also involved. It is

noteworthy that, through the description of prime JB∗-algebras proved in Subsection

6.1.4, Zel’manov’s work underlies again the proof of the classification theorem of

prime JB∗-triples we are dealing with.

In Section 7.2 we survey in detail other applications of Zel’manov’s prime theo-

rems on Jordan structures to the study of normed Jordan algebras and triples.

In Subsection 7.2.1 we include the general complete normed version [146] of the

Anquela–Montaner–Cortés–Skosyrskii classification theorem of J-primitive Jordan

algebras [21, 585], as well as the more precise classification theorem of J-primitive

JB∗-algebras [255, 525].

In Subsection 7.2.2 we include structure theorems for simple normed Jordan

algebras [151] (see also [539]) and non-degenerately ultraprime complete normed

Jordan complex algebras [152] (see also [428, 855]). This subsection deals also with

the limits of normed versions of Zel’manov prime theorems, a question which was

first considered in [893], and culminates in the paper of Moreno, Zel’manov, and

the authors [147] where it is proved that an associative polynomial p over K is a

Jordan polynomial if and only if, for every algebra norm ‖ · ‖ on the Jordan algebra

M∞(K)sym, the action of p on M∞(K) is ‖ · ‖-continuous (see also [447, 1082]).

Subsection 7.2.3 deals with the so-called norm extension problem, which in its

roots is crucially related to normed versions of Zel’manov’s prime theorems. The first

significative progress on this problem (reviewed of course in this subsection) is

due to Rodrı́guez, Slinko, and Zel’manov [538], who as the main result prove that,
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if A is a real or complex associative algebra with linear algebra involution ∗, if A

is a ‘∗-tight envelope of H(A,∗)’, if the Jordan algebra H(A,∗) is semiprime, and if

‖ · ‖ is a complete algebra norm on H(A,∗), then there exists an algebra norm on A

whose restriction to H(A,∗) is equivalent to ‖·‖. The appropriate versions for Jordan

triples of the results of [538], due to Moreno [1025, 1026], are also included. The

subsection concludes with a full discussion of results on the norm extension problem

in a general non-associative setting. The main reference for this topic is [1029]. Other

related results in [1027, 1059, 1064] are also reviewed.

Chapter 8

We devote this concluding chapter to developing some of our favourite parcels of the

theory of non-associative normed algebras, not previously included in our work.

The first section of the chapter deals with H∗-algebras, incidentally introduced in

Volume 1 of our work. The reasonably well-behaved co-existence of two structures,

namely that of an algebra and that of a Hilbert space, becomes the essence of semi-

H∗-algebras. Indeed, they are complete normed algebras A endowed with a (vector

space) conjugate-linear involution ∗, and whose norm derives from an inner product

in such a way that, for each a ∈ A, the adjoint of the left multiplication La is precisely

La∗ , and the adjoint of the right multiplication Ra is Ra∗ . Since Ambrose’s pioneering

paper [20], it is well-known that associative semi-H∗-algebras with zero annihilator

are H∗-algebras, i.e. their involutions are algebra involutions. But this is no longer

true in general.

We begin Subsection 8.1.1 by recalling those results on semi-H∗-algebras, which

were already proved in Volume 1 of our work. Then we introduce the classical

topologically simple associative complex H∗-algebra HS (H) of all Hilbert–

Schmidt operators on a nonzero complex Hilbert space H, and show how this

algebra allows us to construct natural examples of Jordan and Lie H∗-algebras.

After showing how the norm of a semi-H∗-algebra with zero annihilator determines

its involution, we prove that power-associative H∗-algebras are non-commutative

Jordan algebras [714].

In Subsection 8.1.2, we establish two fundamental structure theorems for a semi-

H∗-algebra A, which, in two successive steps, reduce the general case to the one that

A has zero annihilator, and the case that A has zero annihilator to the one that A is

topologically simple [199].

According to the structure theory commented in the preceding paragraph, topo-

logically simple semi-H∗-algebras merit being studied in depth. This is done in

Subsection 8.1.3. To this end we introduce totally multiplicatively prime normed

algebras, show that they are totally prime, and prove that topologically simple com-

plex semi-H∗-algebras are totally multiplicatively prime [889]. Since, as we already

commented in our review of Subsection 6.1.5, totally prime normed complex alge-

bras are centrally closed, it follows that topologically simple complex H∗-algebras

are centrally closed [148, 149].
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The central closedness of topologically simple complex H∗-algebras just reviewed

becomes the key tool of Subsection 8.1.4, where we prove that derivations of com-

plex semi-H∗-algebras with zero annihilator are continuous [624], and that dense-

range algebra homomorphisms from complete normed complex algebras to complex

H∗-algebras with zero annihilator are also continuous [526].

In Subsection 8.1.5 we show that isomorphic complex H∗-algebras with zero anni-

hilator are ∗-isomorphic, and that bijective algebra ∗-homomorphisms between topo-

logically simple complex H∗-algebras are positive multiples of isometries (hence,

essentially, a topologically simple complex H∗-algebra has a unique H∗-algebra

structure) [198]. These results follow from a structure theorem for bijective alge-

bra homomorphisms between complex H∗-algebras with zero annihilator, which

becomes the appropriate H∗-variant of the structure theorem for bijective algebra

homomorphisms between non-commutative JB∗-algebras proved in Theorem 3.4.75.

In Subsection 8.1.6, we prove the appropriate H∗-variant of the Jordan characteri-

zation of C∗-algebras established in Theorem 3.6.30 [518]. A more than satisfactory

H∗-variant of Theorem 3.6.25 is also obtained [624].

Subsection 8.1.7 is devoted to providing us with the appropriate tools to transfer

results from complex semi-H∗-algebras to real ones. The basic tool asserts that

the complexification of any real (semi-)H∗-algebra becomes a complex (semi-)H∗-

algebra in a natural way. This quite elementary fact already allows to convert many

complex results into real ones, all of them involving the assumption that the algebra

has zero annihilator. The treatment of topologically simple real (semi-)H∗-algebras

is more elaborated: there are no topologically simple real (semi-)H∗-algebras other

than topologically simple complex (semi-)H∗-algebras, regarded as real algebras,

and the real (semi-)H∗-algebras of all fixed points for an involutive conjugate-linear

algebra ∗-homomorphism on a topologically simple complex (semi-)H∗-algebra

[142]. This reduction of topologically simple real (semi-) H∗-algebras to complex

ones allows us to transfer the remaining results known in the complex setting to the

real setting. In particular, we prove that dense-range algebra homomorphisms from

H∗-algebras with zero annihilator to topologically simple H∗-algebras are surjective.

Then, after introducing H∗-ideals of an arbitrary normed ∗-algebra, we prove that

topologically simple normed ∗-algebras have at most one H∗-ideal [687].

We begin Subsection 8.1.8 by introducing the complete normed complex ∗-algebra

(T C (H),‖ · ‖τ ) of all trace-class operators on a complex Hilbert space H, as well

as the ‖ · ‖τ -continuous trace-form on it. Then we show that (T C (H),‖ · ‖τ ) can be

intrinsically determined into the H∗-algebra (HS (H),‖ · ‖) of all Hilbert–Schmidt

operators on H. This fact allows us to replace HS (H) with an arbitrary real or

complex (possibly non-associative) semi-H∗-algebra A with zero annihilator, to build

an appropriate substitute of (T C (H),‖ · ‖τ ) into A, denoted by (τc(A),‖ · ‖τ ), and

to discuss whether or not a ‖ · ‖τ -continuous trace-form on τc(A) does exist. We

prove that, for a semi-H∗-algebra A with zero annihilator, τc(A) is a ∗-invariant

ideal of A, (τc(A),‖ · ‖τ ) is both a normed algebra and a dual Banach space, and the

existence of a ‖ · ‖τ -continuous trace-form on τc(A) depends on the existence of
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an ‘operator-bounded’ approximate unit in A [424]. This, together with deep results

established in Volume 1 (namely Theorem 3.5.53 and Proposition 4.5.36(ii)), allows

us to prove that a complex H∗-algebra A with zero annihilator is alternative if and

only if (A,‖ · ‖) has an approximate unit operator-bounded by 1, and the predual of

(τc(A),‖ · ‖τ ) is a non-associative C∗-algebra.

In the concluding Subsection 8.1.9, we survey the classification theorems of

topologically simple H∗-algebras in the most familiar classes of algebras. Thus,

starting from the well-known fact that there are no topologically simple associa-

tive complex H∗-algebras other than those of the form HS (H) for a nonzero

complex Hilbert space H [20, 374], the corresponding theorems for topologically

simple alternative [1042], Jordan and non-commutative Jordan [199, 1118, 1119],

Lie [197, 460, 687], Malcev [141], or structurable [140, 144] H∗-algebras are

established.

Section 8.2 deals with generalized annihilator normed algebras, which become

non-star generalizations of H∗-algebras with zero annihilator. We prove that any

generalized annihilator complete normed real or complex algebra with zero weak

radical (cf. Definition 4.4.39) is the closure of the direct sum of its minimal

closed ideals, which are indeed topologically simple normed algebras [259].

We also show that the weak radical of any real or complex semi-H∗-algebra

coincides with its annihilator, so that the structure theorem for semi-H∗-algebras

with zero annihilator proved in Subsection 8.1.2 is rediscovered. We introduce

multiplicatively semiprime algebras (i.e. algebras such that both they and their

multiplication algebras are semiprime), and show that generalized annihilator

normed algebras are multiplicatively semiprime [876]. Even more, we characterize

generalized annihilator normed algebras among those normed algebras which

are multiplicatively semiprime. We introduce generalized complemented normed

algebras, which are particular cases of generalized annihilator normed algebras, and

prove that, if A is a generalized complemented complete normed algebra with zero

weak radical, and if {Ai}i∈I stands for the family of its minimal closed ideals, then

for each a ∈ A there exists a unique summable family {ai}i∈I in A such that ai ∈ Ai

for every i ∈ I, and a =
∑

i∈I ai [259, 846].

Section 8.3 deals with other complements into the theory of non-associative

normed algebras. In Subsection 8.3.1 we prove that algebra homomorphisms from

complete normed complex algebras to complete normed complex algebras with no

nonzero two-sided topological divisor of zero are continuous [529]. In Subsection

8.3.2 we show that complete normed J-semisimple non-commutative Jordan complex

algebras, each element of which has a finite J-spectrum, are a finite direct sum of

closed simple ideals which are either finite-dimensional or quadratic, and derive

that complete normed semisimple alternative complex algebras, each element of

which has a finite spectrum, are finite-dimensional [91]. After the usual subsection

devoted to historical notes and comments, we include a comprehensive survey on the

more significant results on normed Jordan algebras which have been not previously

developed in our work.
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xxvi Preface

The concluding Section 8.4 deals with the non-associative discussion done in

[452, 453] of the Rota–Strang paper [544] (so in particular of Proposition 4.5.2, cf.

p. 632 of Volume 1), and of the theory of topologically nilpotent normed (associa-

tive) algebras developed in [927, 928, 929, 1020] (see also [786, pp. 515–7], [1156,

Section 11], and §8.4.121). The section discusses also non-associative versions of

related results published in [569, 615, 1083] (see also [1030]), and incorporates

proofs of most auxiliary results invoked but not proved in [452, 453]. Among these

proofs, we emphasize that of Theorem 8.4.76, courtesy of Shulman and Turovskii.

In Subsection 8.4.1 we introduce the notion of (joint) spectral radius r(S) of a

bounded subset S of any normed algebra A. Then we prove one of the key results

in the whole section, namely that, if A is a normed algebra, and if S is a bounded

subset of A with r(S) < 1, then the multiplicatively closed subset of A generated by S

is bounded, and has the same spectral radius as S.

In Subsection 8.4.2, we introduce topologically nilpotent normed algebras as those

normed algebras whose closed unit balls have zero spectral radius. Among the results

obtained, we emphasize the following:

(i) A normed associative algebra A is topologically nilpotent if and only if so is the

normed Jordan algebra Asym obtained by symmetrization of its product.

(ii) Every non-topologically nilpotent normed algebra can be equivalently algebra-

renormed in such a way that the spectral radius of the corresponding closed unit

ball is arbitrarily close to 1.

(iii) Every topologically nilpotent complete normed algebra is equal to its weak

radical.

In Subsection 8.4.3, we show that, for every member A in a large class of normed

algebras (which contains all commutative C∗-algebras, all JB-algebras, and all

absolute-valued algebras), the conclusion in Proposition 4.5.2 has the following

stronger form: for each bounded and multiplicatively closed subset S of A we have

that sup{‖s‖ : s ∈ S} ≤ 1.

In Subsection 8.4.4, we involve in our development tensor products of algebras.

Thus we prove that the projective tensor product of two normed algebras is topolog-

ically nilpotent whenever some of them are topologically nilpotent, and that in fact

the converse is true whenever some of them are associative. Moreover, associativity

in the above converse cannot be removed. We also prove that a normed algebra A is

topologically nilpotent if and only if so is the normed algebra C0(E,A) for some

(equivalently, every) Hausdorff locally compact topological space E. The results

obtained about tensor products of normed algebras are then applied to show that

most notions introduced in the section can be non-trivially exemplified into a class

of algebras almost arbitrarily prefixed.

On the historical notes

As in Volume 1, each section of the present volume concludes with a subsection

devoted to historical notes and comments. Paraphrasing Dinnen [1155, p. X], in these
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Preface xxvii

notes ‘we provide information on the history of the subject and references for the

material presented. We have tried to be as careful as possible in this regard and

take responsibility for the inevitable errors. Accurate and comprehensive records of

this kind are not a luxury but essential background information in appreciating and

understanding a subject and its evolution’.

Errata: A list of errata for Volume 1 can be found in the web page of Volume 2:

www.cambridge.org/9781107043114. We hope to continue this for both Volumes.

Please send corrections to: cabrera@ugr.es and/or apalacio@ugr.es.
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