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Non-commutative JBW∗-algebras, JB∗-triples

revisited, and a unit-free Vidav–Palmer type

non-associative theorem

Non-commutative JB∗-algebras (cf. Definition 3.3.1) have become central objects in

the first volume of our work since, in the unital case, they are the solution to the

general non-associative Vidav–Palmer theorem (see Theorem 3.3.11), aned contain

alternative C∗-algebras (cf. §2.3.62) which in their turn become the solution to the

general non-associative Gelfand–Naimark theorem (see Theorem 3.5.53). As a con-

cluding main result in the present chapter, we will prove a general non-associative

characterization of non-commutative JB∗-algebras (see Theorem 5.9.9), a germ of

which could be the following.

Fact 5.0.1 A norm-unital complete normed complex algebra is a non-commutative

JB∗-algebra (for some involution) if and only if it is linearly isometric to a JB∗-triple.

The proof, which only involves results established in the first volume of our work,

goes as follows.

Proof The ‘only if’ part follows from Theorem 4.1.45. To prove the ‘if’ part, let us

recall that, given a complex normed space X and a norm-one element u ∈ X, H(X,u)

denotes the set of all hermitian elements of X relative to u (cf. Definition 2.1.12).

Now let A be a norm-unital complete normed complex algebra such that there exists

a linear isometry φ from A onto some JB∗-triple J. Then, by Corollary 2.1.13, φ(1)

is a vertex of BJ , and hence, by the implication (vii)⇒(ii) in Theorem 4.2.24, J is

the underlying Banach space of a JB∗-algebra with unit φ(1). Therefore, by Lemma

2.2.8(iii), we have

J = H(J,φ(1))+ iH(J,φ(1)),

and hence

A = H(A,1)+ iH(A,1).

Now, by the non-associative Vidav–Palmer theorem (cf. Theorem 3.3.11), A is a non-

commutative JB∗-algebra. �
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2 JBW∗-algebras, JB∗-triples revisited, and a unit-free Vidav–Palmer theorem

The actual formulation of Theorem 5.9.9 avoids ‘norm-unital’, and replaces ‘is

linearly isometric to a JB∗-triple’ with ‘has an approximate unit bounded by one

and its open unit ball is a homogeneous domain (see Definition 5.3.53)’. To reach

Theorem 5.9.9 from Fact 5.0.1, we must go a long way, with most steps having

their own interest. Thus in Section 5.1 we introduce non-commutative JBW∗-

algebras (i.e. non-commutative JB∗-algebras which are dual Banach spaces), and

prove Edwards’ results [222] relating non-commutative JBW∗-algebras with JBW-

algebras (i.e. JB-algebras which are dual Banach spaces). In Sections 5.2, 5.3, 5.4,

and 5.5 we study in detail the algebraic and analytic structure of the sets of all

biholomorphic automorphisms and of all complete holomorphic vector fields on a

bounded domain in a complex Banach space. This study culminates in Section 5.6,

where we prove Kaup’s characterization of JB∗-triples [380, 381] as those complex

Banach spaces the open unit balls of which are homogeneous domains. Sections 5.7

and 5.8 are devoted to establishing the basic theory of JBW∗-triples (i.e. JB∗-triples

which are dual Banach spaces) and of operators into the predual of a JBW∗-triple.

These sections contain relevant results originally due Dineen [213], Barton–Timoney

[854], Horn [979], and Chu–Iochum–Loupias [172]. It is noteworthy that our proofs

of the Barton–Horn–Timoney Theorems 5.7.20 and 5.7.38 (asserting the separate

w∗-continuity of the product and the uniqueness of the predual of a JBW∗-triple)

are new and avoid any Banach space result on uniqueness of preduals. On the other

hand, one of the crucial steps in our proof of the Chu–Iochum–Loupias Theorem

5.8.32 (asserting that bounded linear operators from a JB∗-triple to the predual of

a JBW∗-triple are weakly compact) consists of Proposition 5.8.14, a result whose

proof is difficult to find in the literature. We include a complete and self-contained

proof of this result, which has been communicated to us by Pfitzner [1047]. Section

5.9 contains the (conclusion of) proof of the commented refinement of Fact 5.0.1,

namely that non-commutative JB∗-algebras are precisely those complete normed

complex algebras having a bounded approximate unit and whose open unit ball is a

homogeneous domain.

The chapter concludes with Section 5.10, which contains different complements

on non-commutative JB∗-algebras and JB∗-triples. Indeed, we study in deep the

strong∗ topology of a non-commutative JBW∗-algebra and of a JBW∗-triple, as well

as linear isometries between non-commutative JB∗-algebras.

5.1 Non-commutative JBW∗-algebras

Introduction This section is devoted to establishing the basic theory of non-

commutative JBW∗-algebras. As main results we prove Edwards’ theorems [222]

asserting that a non-commutative JB∗-algebra A is a non-commutative JBW∗-algebra

if and only if its self-adjoint part H(A,∗) is a JBW-algebra, and that, if this is the

case, then the predual of A is unique, the involution of A is w∗-continuous, and

the product of A is separately w∗-continuous (see Theorems 5.1.29 and 5.1.38 and

Corollary 5.1.30). The proof of the uniqueness of the predual involves deep results of
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5.1 Non-commutative JBW∗-algebras 3

the theory of JB-algebras (see Theorem 5.1.27) which, as we did in the first volume

of our work in similar occasions, are taken from [738] without proof. On the other

hand, the proof of the separate w∗- continuity of the product in the non-commutative

case follows an argument in [481].

The section also contains theorems taken from [481] asserting that, in a non-

commutative JB∗-algebra, M-ideals are precisely the closed ideals (Theorem

5.1.22(i)) and that the predual of a non-commutative JBW∗-algebra is an

L-summand of the dual (Theorem 5.1.32). The section concludes by revisiting real

non-commutative JB∗-algebras in order to prove that c0 is an M-ideal of its bidual

(Corollary 5.1.57), a result which will be needed later in the proof of Theorem 5.8.27.

5.1.1 The results

Lemma 5.1.1 Let A be an algebra over K with zero annihilator, and let I,J be ideals

of A such that A = I ⊕ J. Then I = {a ∈ A : aJ = Ja = 0}.

Proof Put K := {a ∈ A : aJ = Ja = 0}. The inclusion I ⊆ K is clear since

IJ + JI ⊆ I ∩ J = 0.

Conversely, let a be in K, and write a = x + y with x ∈ I and y ∈ J. Then, by the

inclusion just proved, y = a − x ∈ K ∩ J. But, since J ⊆ {a ∈ A : aI = Ia = 0}, we

derive that y ∈ Ann(A) = 0. Therefore a = x ∈ I. �

By a direct summand of an algebra A over K we mean any ideal I of A such that

there exists another ideal J of A satisfying A = I ⊕ J.

As a straightforward consequence of Lemma 5.1.1, we get the following.

Fact 5.1.2 Let A be a normed algebra over K with zero annihilator, and let I be a

direct summand of A. Then I is closed in A.

Definition 5.1.3 Let X be a normed space over K.

(i) By an M-projection on X we mean a linear projection P : X → X such that

‖x‖ = max{‖P(x)‖,‖x−P(x)‖} for every x ∈ X.

(ii) A subspace Y of X is said to be an M-summand of X if Y is the range of an

M-projection on X.

Lemma 5.1.4 Let A be a JB∗-algebra, and let I be a direct summand of A. Then, I is

an M-summand of (the Banach space underlying) A.

Proof Let J be an ideal of A such that A = I ⊕ J. By Fact 5.1.2, I and J are closed

in A, and then, by Proposition 3.4.13, they are ∗-invariant. Therefore, I and J are

new JB∗-algebras, so I × J is a JB∗-algebra under the sup norm, and the mapping

(x,y) → x + y from I × J to A is a bijective algebra ∗-homomorphism. It follows

from Proposition 3.4.4 that ‖x+y‖ = max{‖x‖,‖y‖} for every (x,y) ∈ I ×J. Thus the
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4 JBW∗-algebras, JB∗-triples revisited, and a unit-free Vidav–Palmer theorem

projection from A onto I corresponding to the decomposition A = I ⊕ J becomes an

M-projection. �

§5.1.5 As usual, by a dual Banach space over K we mean (the first component of)

a couple (X,Y), where X and Y are Banach spaces over K such that Y ′ = X. The

Banach space Y is called the predual of X, and is usually denoted by X∗.

Definition 5.1.6 By a non-commutative JBW∗-algebra (respectively, a JBW∗-

algebra, an alternative W∗-algebra, a W∗-algebra) we mean a non-commutative

JB∗-algebra (respectively, a JB∗-algebra, an alternative C∗-algebra, a C∗-algebra)

which is a dual Banach space. Thus JBW∗-algebras are precisely those non-

commutative JBW∗-algebras which are commutative (cf. Definition 3.3.1), alter-

native W∗-algebras are precisely those non-commutative JBW∗-algebras which

are alternative (cf. Fact 3.3.2), and therefore W∗-algebras are precisely those

non-commutative JBW∗-algebras which are associative. Non-commutative JBW∗-

algebras (respectively, alternative W∗-algebras) were incidentally introduced in the

paragraph immediately before Proposition 4.2.71 (respectively, in Remark 3.5.40).

We note that, by the Banach–Alaoglu and Krein–Milman theorems, the closed unit

ball of a non-commutative JBW∗-algebra has extreme points, so that the implication

(iv)⇒(i) in Theorem 4.2.36 applies to get the following.

Fact 5.1.7 Nonzero non-commutative JBW∗-algebras are unital.

Lemma 5.1.8 Let A be an algebra over K, and let I be an ideal of A having a

unit e. Then e is an idempotent in A and I = eA. Moreover, if A is flexible and power-

associative, then e is central in A.

Proof Clearly e is an idempotent in A and we have eA ⊆ I = eI ⊆ eA, hence I = eA.

Suppose that A is flexible and power-associative. Let x be in A 1
2
(e). Then e• x = 1

2
x,

so e • x = e • (e • x) = 1
2

e • x because e • x ∈ I, and so x = 0. Thus A 1
2
(e) = 0.

Since A 1
2
(e) = (Asym) 1

2
(e), and Asym is power-associative (cf. Corollary 2.4.18), it

follows from Lemma 3.1.14 that e is central in Asym. By Corollary 4.3.48, e is

central in A. �

§5.1.9 Given a dual Banach space X over K, any w∗-closed subspace M of X will be

considered canonically as a new dual Banach space. Indeed, by the bipolar theorem,

such a subspace M must be the polar in X of its prepolar M◦ in X∗, and conse-

quently we have M = (M◦)
◦ ≡ (X∗/M◦)

′. With this convention it becomes clear

that the weak∗ topology of M coincides with the restriction to M of the weak∗

topology of X.

Fact 5.1.10 Let A be a non-commutative JBW∗-algebra, and let I be a w∗-closed

ideal of A. Then:

(i) There exists a central idempotent e ∈ A such that I = eA.

(ii) I is an M-summand of A.
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5.1 Non-commutative JBW∗-algebras 5

Proof By Proposition 3.4.13, I is ∗-invariant, and hence it is a new non-

commutative JBW∗-algebra. Therefore, by Fact 5.1.7, I has a unit e, and the

proof of assertion (i) is concluded by applying Lemma 5.1.8. Now it turns out

that J := (1 − e)A is an ideal of A and that A = I ⊕ J. Hence I is a direct summand

of A, and the proof of assertion (ii) is concluded by invoking Lemma 5.1.4. �

The proof we have just given shows that, as happens with the unit of any ∗-algebra,

the idempotent e must be self-adjoint. As we note in the next remark, this is not new

for us.

Remark 5.1.11 Let A be a non-commutative JB∗-algebra. We already know

that central idempotents of A are self-adjoint (cf. Fact 3.3.4, §4.3.38, and either

Theorem 4.3.47 or Corollary 4.3.48). Nevertheless, the most natural verification of

this result consists of noticing that the centre Z(A) of A is a commutative C∗-algebra

(cf. Proposition 3.4.1(i)), and of applying then to Z(A) the commutative Gelfand–

Naimark theorem. Another proof, close to that of Fact 5.1.10, is the following.

Let e be a central idempotent of A. Then I := eA is an ideal of A, and is closed in

A because I = {a ∈ A : a = ea}. Therefore, by Proposition 3.4.13, I is ∗-invariant.

Since e is a unit for I, it follows that e∗ = e.

The notions of L-summand and of M-ideal of a normed space were incidentally

introduced in Subsection 2.9.4. Now we are going to recall and develop them in a

more detailed way.

Definition 5.1.12 Let X be a normed space over K.

(i) By an L-projection on X we mean a linear projection P : X → X such that

‖x‖ = ‖P(x)‖+‖x−P(x)‖ for every x ∈ X.

(ii) A subspace Y of X is said to be an L-summand of X if Y is the range of an

L-projection on X.

(iii) By an M-ideal of X we mean a closed subspace Y of X such that Y◦ is an

L-summand of X′.

Some comments on Definitions 5.1.3 and 5.1.12 are in order.

§5.1.13 Let X be a normed space over K. There is an obvious duality between

L- and M-projections. Indeed,

P is an

{

L-projection

M-projection

}

on X if and only if P′ is an

{

M-projection

L-projection

}

on X′.

As a consequence, M-summands of X are M-ideals of X.

Proposition 5.1.14 Let X be a normed space over K. Then any two L- (respectively,

M-)projections on X commute.
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6 JBW∗-algebras, JB∗-triples revisited, and a unit-free Vidav–Palmer theorem

Proof Let P and Q be L-projections on X. Then for x ∈ X we have

‖Q(x)‖ = ‖PQ(x)‖+‖(IX −P)Q(x)‖

= ‖QPQ(x)‖+‖(IX −Q)PQ(x)‖+‖Q(IX −P)Q(x)‖

+‖(IX −Q)(IX −P)Q(x)‖

= ‖QPQ(x)‖+‖Q(x)−QPQ(x)‖+2‖PQ(x)−QPQ(x)‖

≥ ‖Q(x)‖+2‖PQ(x)−QPQ(x)‖,

so that PQ = QPQ. But likewise we obtain P(IX −Q) = (IX −Q)P(IX −Q) which is

equivalent to QP = QPQ. Therefore PQ = QP.

Now that we know that any two L-projections commute, the fact that any two

M-projections commute follows by invoking §5.1.13. �

Corollary 5.1.15 Let X be a normed space over K, and let Y be an L- (respectively,

M-)summand of X. Then there is a unique L- (respectively, M-)projection on X whose

range is Y.

Lemma 5.1.16 Let X be a nonzero complex Banach space, and let P be an L- or

M-projection on X. Then P ∈ H(BL(X), IX).

Proof In both cases there is a function f : R+
0 ×R

+
0 → R

+
0 such that

‖y+ z‖ = f (‖y‖,‖z‖) for all y ∈ P(X) and z ∈ ker(P).

Let r be in R. Then exp(irP) = eirP+ IX −P. Therefore for every x ∈ X we have

‖exp(irP)(x)‖ = ‖eirP(x)+ (IX −P)(x)‖ = f (‖P(x)‖,‖(IX −P)(x)‖) = ‖x‖.

Thus ‖exp(irP)‖ = 1, and Corollary 2.1.9(iii) concludes the proof. �

Proposition 5.1.17 Let X be a nonzero complex Banach space, let Y be an M-ideal

of X, and let T be a hermitian operator on X. Then T(Y) ⊆ Y.

Proof Let P be the L-projection onto the polar Y◦ of Y in X′. Then the transpose

operator T ′ of T is also a hermitian operator on X′ (cf. Corollary 2.1.3) so, for each

t ∈ R, exp(itT ′) is a surjective linear isometry on X′ (cf. Corollary 2.1.9(iii)). It

follows easily that exp(itT ′)Pexp(−itT ′) is a new L-projection on X′. By Proposition

5.1.14, we realize that [exp(itT ′)Pexp(−itT ′),P] = 0. Computing the coefficient of t

in the power-series development of the left-hand side, we have [[T ′,P],P] = 0. Since

L-projections are hermitian operators (cf. Lemma 5.1.16), it follows from Corollary

2.4.3 that [T ′,P] = 0. Which implies that T ′(Y◦) ⊆ Y◦, and finally T(Y) ⊆ Y . �

Fact 5.1.18 Let E and F be topological spaces, let x be in E, and let f : E → F

be a function such that f (x) is a cluster point of f (xλ) whenever xλ is any net in E

converging to x. Then f is continuous at x.

Proof Assume that f is not continuous at x. Let � stand for the set of all neigh-

bourhoods of x in E ordered by reverse inclusion. Then there exists a neighbourhood
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5.1 Non-commutative JBW∗-algebras 7

N of f (x) in F such that for every λ ∈ � we can find xλ ∈ λ with f (xλ) /∈ N. It becomes

clear that limλ xλ = x and that f (x) is not a cluster point of the net f (xλ), contrary to

the assumption. �

A celebrated theorem of S. Banach (sometimes attributed to M. Krein and

V. Šmulyan) asserts that a linear form on the dual X′ of a Banach space X is

w∗-continuous if (and only if) so is its restriction to BX′ (see for example [1161,

Corollary 3.11.4]). An apparently more general formulation of this result is collected

in the following.

Fact 5.1.19 Let X be a Banach space over K, let Y be a normed space over K, and

let T : X′ → Y ′ be a linear or conjugate-linear mapping whose restriction to BX′ is

w∗-continuous. Then T is w∗-continuous.

Proof It is enough to show that for each y ∈ Y the linear form f on X′ defined by

f (x′) := T(x′)(y) (or f (x′) := T(x′)(y)) is w∗-continuous. But this follows from the

assumption that T|BX′ is w∗-continuous and the Banach theorem quoted immediately

above. �

Corollary 5.1.20 Let X be a Banach space over K, and let P be a linear projection

on X′. Then P is w∗-continuous if (and only if) P is bounded and both P(X′) and

ker(P) are w∗-closed in X′.

Proof Suppose that P is bounded and that P(X′) and ker(P) are w∗-closed in X′.

Let x′ be in BX′ , and let x′
λ be a net in BX′ w∗-convergent to x′. Take a cluster point

y′ of the net P(x′
λ) in the weak∗ topology. Then x′ − y′ is a cluster point of the net

x′
λ − P(x′

λ) in the weak∗ topology. Since P(X′) and ker(P) are w∗-closed in X′, it

follows that y′ ∈ P(X′) and x′ −y′ ∈ ker(P). Therefore y′ = P(x′), and hence P(x′) is a

cluster point of the net P(x′
λ) in the weak∗ topology. Keeping in mind the arbitrariness

of x′ ∈BX′ and of the net x′
λ w∗-convergent to x′, it follows from Fact 5.1.18 that P|BX′

is w∗-continuous. Finally, by Fact 5.1.19, P is w∗-continuous. �

The reader might wonder why we did not introduce the notion of an ‘L-ideal’

of a normed space X over K, meaning a closed subspace of X whose polar is an

M-summand of X′. The reason is given by the following.

Lemma 5.1.21 Let X be a Banach space over K. Then we have:

(i) M-summands of X′ are w∗-closed.

(ii) M-projections on X′ are w∗-continuous.

(iii) L-summands of X are precisely those closed subspaces of X whose polars are

M-summands of X′.

Proof To prove assertion (i), let us consider a decomposition X′ = Y ⊕∞ Z, and let

us assume to the contrary that Y is not w∗-closed. In this case, by the Krein–Šmulyan

theorem (see for example [778, Corollary 2.7.12]), there exists a net x′
λ in BY w∗-

convergent to some x′ ∈ Z, x′ �= 0. Then y′
λ := x′

λ + x′

‖x′‖
defines a net in BX′ whose

w∗-limit has norm 1+‖x′‖ > 1, a contradiction.
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8 JBW∗-algebras, JB∗-triples revisited, and a unit-free Vidav–Palmer theorem

Assertion (ii) follows from assertion (i) and Corollary 5.1.20.

Assertion (iii) follows from assertion (ii) and §5.1.13. �

Theorem 5.1.22 Let A be a non-commutative JB∗-algebra. Then:

(i) The M-ideals of A are precisely the closed ideals of A.

(ii) The M-summands of A are precisely the direct summands of A.

Proof Let I be an M-ideal of A. For a ∈ A, let Ta stand for either La or Ra. Let x be

in H(A,∗). Then, by Lemma 3.6.24 and Proposition 5.1.17, we have Tx(I) ⊆ I, i.e.

xI, Ix ⊆ I. Since every element a ∈ A can be written as a = x+ iy with x,y ∈ H(A,∗),

it follows that I is an ideal of A. Now let I be a closed ideal of A. We know that A′′ is

a unital non-commutative JBW∗-algebra with separately w∗-continuous product (cf.

Theorem 3.5.34), and that consequently I◦◦ is an ideal of A′′. Since I◦◦ is w∗-closed,

it follows from Fact 5.1.10 that I◦◦ is an M-summand of A′′. Therefore, by Lemma

5.1.21(iii), I is an M-ideal of A. This concludes the proof of assertion (i).

We already proved in Lemma 5.1.4 that direct summands of A are M-summands.

Conversely, let I be an M-summand of A. Let P be the M-projection onto I. Then

both I and J := (IA − P)(A) are M-ideals of A with A = I ⊕ J. Therefore, by asser-

tion (i), I and J are ideals of A. Thus I is a direct summand of A. This concludes the

proof of assertion (ii). �

§5.1.23 Let X be a dual Banach space over K. We say that X∗ is the unique predual

of X if, whenever Z is any Banach space over K such that Z′ = X, and we see X∗

and Z as subspaces of X′ via the corresponding canonical embeddings, we have

X∗ = Z. Formulating this notion in a slightly more precise way, as is done in [954,

Définition 1], the following fact becomes a tautology.

Fact 5.1.24 Let X and Y be dual Banach spaces over K having a unique predual.

Then surjective linear isometries from X to Y are w∗-continuous.

Now we recall the definition of the order in a JB-algebra, together with some

related results.

§5.1.25 Let A be a JB-algebra. Since the unital extension A1 of A becomes a unital

JB-algebra with n(A1,1) = 1 (cf. Corollary 3.1.11 and Proposition 3.1.4(iii)), 1 is a

vertex of BA1
, and hence A enjoys of the order induced by the numerical-range order

of (A1,1) as defined in §2.3.34. Indeed, an element a in A is called positive whenever

V(A1,1,a) ⊆ R
+
0 . The set A+ of all positive elements in A is a closed proper convex

cone in A, and the order in A is given by:

a ≤ b if and only if b−a ∈ A+.

In the case that A is unital, the passing to the unital extension is unnecessary, i.e. the

order in A, as defined above, coincides with the numerical-range order of (A,1) (cf.

§3.1.27). Anyway, if a,b are in A, and if 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖ (cf. Fact 2.3.36).

Moreover, according to Lemma 3.1.29, we have A+ = {a2 : a ∈ A} (which puts in

agreement our definition of the order with the one given in [738, 3.3.3]), and

Ua(A
+) ⊆ A+ for every a ∈ A. (5.1.1)
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5.1 Non-commutative JBW∗-algebras 9

Definition 5.1.26 Let A be a JB-algebra. A linear functional f on A is said to be

positive if f (a) ≥ 0 whenever a is a positive element of A. The JB-algebra A is said

to be monotone complete if each bounded increasing net aλ in A has a least upper

bound a in A. Suppose that A is monotone complete. A linear functional f on A is

called normal if it is bounded and if f (aλ) → f (a) for each net aλ as above.

Now we involve in our development the following outstanding result whose proof

is omitted.

Theorem 5.1.27 [738, Theorem 4.4.16] Let A be a JB-algebra. Then the following

conditions are equivalent:

(i) A is monotone complete and the set of all positive normal linear functionals on

A separates the points of A.

(ii) A is a dual Banach space.

Moreover, if the above conditions are fulfilled, then the predual of A is unique and

consists of the normal linear functionals on A.

According to the above theorem and the definition of a JBW-algebra in [738, 4.1.1]

(as those JB-algebras A satisfying condition (i) above), we introduced JBW-algebras

as those JB-algebras which are dual Banach spaces (cf. the paragraph immediately

before Proposition 3.1.12).

§5.1.28 Let A be a non-commutative JB∗-algebra. Then H(A,∗) becomes a JB-

algebra in a natural way (cf. Corollary 3.4.3), and hence, as we agreed in §3.4.68,

it will be seen endowed with the order remembered in §5.1.25. By the sake of

shortness, the order of H(A,∗) is called the order of A, positive elements of H(A,∗)

are called positive elements of A, and we set A+ := H(A,∗)+. Thus, an element

a ∈ A is positive if and only if a = h2 for some h ∈ H(A,∗). As a consequence, we

have that

a∗ •a ≥ 0 for every a ∈ A. (5.1.2)

We note that, by Fact 4.1.67(ii) and Proposition 4.5.17(ii),

A+ = {h ∈ H(A,∗) : J-sp(A1,h) ⊆ R
+
0 },

and that, if A is unital, then we have in fact

A+ = {h ∈ H(A,∗) : J-sp(A,h) ⊆ R
+
0 }.

Needless to say that, in the case that A is actually a C∗-algebra, we find back the

usual order on A (cf. §1.2.47 and Proposition 2.3.39(i)).

Theorem 5.1.29 Let A be a non-commutative JBW∗-algebra. Then we have:

(i) H(A,∗) is w∗-closed in A, and hence is a JBW-algebra in a natural way (cf.

Corollary 3.4.3 and §5.1.9).

(ii) The involution of A is w∗-continuous.
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(iii) A∗ = H(A,∗)∗ ⊕ iH(A,∗)∗, meaning that, for each h∗ ∈ H(A,∗)∗, the mapping

h+ ik → h∗(h)+ ih∗(k) (h,k ∈ H(A,∗))

belongs to A∗, and that, for each a∗ ∈ A∗, there exist unique functionals

h∗,k∗ ∈ H(A,∗)∗ such that

a∗(h+ ik) = h∗(h)− k∗(k)+ i(h∗(k)+ k∗(h)) for all h,k ∈ H(A,∗).

(iv) A has a unique predual.

(v) The positive part A+ of A is w∗-closed in A.

(vi) A equals the norm-closed linear hull of the set of its self-adjoint idempotents.

Proof We may suppose that A �= 0. Then, by Fact 5.1.7, A is unital.

In view of the Krein–Šmulyan theorem, to prove assertion (i) it is enough to show

that H(A,∗)∩BA is w∗-closed in A. We argue by contradiction, so that there exists

a net hλ in H(A,∗) ∩BA w∗-convergent to h + ik with h,k ∈ H(A,∗) and k �= 0.

Replacing hλ with −hλ if necessary, we may suppose that there is a positive number

α in J-sp(A,k) (cf. Fact 4.1.67(i) and Corollary 4.1.72(i)). Take n ∈ N such that

n >
1−α2

2α
. (5.1.3)

Noticing that, for each λ, the closed subalgebra of A generated by hλ and 1 is a

C∗-algebra (cf. Proposition 3.4.1(ii)), we have

‖hλ + in1‖ = ‖(hλ + in1)∗(hλ + in1)‖
1
2 = ‖h2

λ +n21‖
1
2 ≤ (‖h2

λ‖+n2)
1
2 ≤ (1+n2)

1
2 .

Therefore, since h+ ik = w∗- limhλ, we conclude that

‖h+ ik + in1‖ ≤ (1+n2)
1
2 . (5.1.4)

On the other hand, since H(A,∗) is a JB-algebra in a natural way (cf. Corollary 3.4.3),

and the involution of A is an isometry (cf. Proposition 3.3.13), we have

‖k +n1‖ = ‖(k +n1)2‖
1
2 ≤ ‖(k +n1)2 +h2‖

1
2

= ‖(h+ i(k +n1))∗ • (h+ i(k +n1))‖
1
2 ≤ ‖h+ i(k +n1)‖. (5.1.5)

Finally, since α+n ≤ ‖k+n1‖ (because α ∈ J-sp(A,k) and Theorem 4.1.17 applies),

it is enough to invoke (5.1.5), (5.1.4), and (5.1.3) to get

‖k +n1‖ ≤ ‖h+ i(k +n1)‖ ≤ (1+n2)
1
2 < α +n ≤ ‖k +n1‖,

the desired contradiction.

Keeping in mind that P := 1
2
(IA + ∗) is a bounded linear projection on the real

Banach space underlying that of A satisfying P(A) = H(A,∗) and ker(P) = iH(A,∗),

assertion (ii) follows from assertion (i) and Corollary 5.1.20.
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