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Preface

Reviewing the non-associative part of a monograph
by Irving Kaplansky

In 1970, Irving Kaplansky published his small monograph [762] on Algebraic and
analytic aspects of operator algebras, and devoted its last section to providing the
reader with his impressions concerning non-associative normed algebras. Actually,
he began the section by saying:

I predict that when the time is ripe there is going to be quite a flurry of activity concerning
nonassociative Banach algebras in general, and nonassociative C∗-algebras in particular.
Let me take the space to speculate a little on what we may see some day.

Many years have passed since the publication of [762] and, as a matter of fact,
most of Kaplansky’s predictions have come true, some even exceeding the original
expectations. The diverse results corroborating the accuracy of Kaplansky’s predic-
tions will be used to illustrate the content of the book we are introducing. Therefore,
let us continue reproducing Kaplansky’s words in short excerpts, and insert some
clarifying comments.

The speculation can start encouragingly, with a fact. The (complex) Gelfand–Mazur
Theorem works fine: a normed division algebra must be the complex numbers. Of course,
we must agree on what a division algebra A is to be. We take it to mean that for any nonzero
x, both Rx and Lx are one-to-one and onto, where Rx (Lx) denotes right (left) multiplication
by x. (Actually, for the proof all we need is Rx.)

With the words ‘for the proof all we need is Rx’, Kaplansky is suggesting the
notion of a right-division algebra.

Suppose then that A is a normed division algebra. We claim that A is one-dimensional,
and by way of contradiction we assume that x and y are linearly independent. Then for
every complex scalar λ , Rx−λy = Rx −λRy is a bounded operator on A which is one-to-one
and onto. The same is true of RxR−1

y −λ I. But RxR−1
y must have something in its spectrum.

It seems obvious to us that Kaplansky implicitly assumes that the (possibly non-
associative) normed algebra A above is complete, to be sure that ‘the same is true
of RxR−1

y −λ I’ concerning boundedness. Under this assumption, Kaplansky’s claim
(that complete normed one-sided division complex algebras are isomorphic to C) is
stated in Corollary 2.7.3, whereas the non-complete case is raised as Problem 2.7.4
(see also Theorem 4.1.63 for a partial affirmative answer). Actually, a result better
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xii Preface

than Kaplansky’s claim holds. Indeed, if A is a complete normed complex algebra,
and if it is a quasi-division algebra (which means that, for every nonzero x ∈ A, at
least one of the operators Lx,Rx is one-to-one and onto), then dim(A) � 2 (The-
orem 2.7.7) and, in general, no more can be said (Example 2.5.36). Moreover, if in
addition A is unital or nearly associative, then A is isomorphic to C (Corollaries 2.7.9
and 2.7.10). It is also worth mentioning that, for associative (and even alternative)
algebras, the notions of division, one-sided division, and quasi-division coincide,
and also coincide with the classical notion of a division algebra in this setting –
namely that the algebra is unital and each nonzero element has an inverse (Propos-
ition 2.5.38).

Let us continue with Kaplansky’s words:

On the other hand, the real Gelfand–Mazur theorem does not seem to have received any
attention. The conjecture is that any real normed division algebra is finite-dimensional, after
which the topologists would teach us that the dimension is 1, 2, 4, or 8.

The conjecture that normed division real algebras are finite-dimensional was first
formulated by Wright [640], after proving it in the particular case of absolute-valued
algebras (Corollary 2.6.24). The general case of the conjecture, even with the addi-
tional requirement of completeness, remains open (Problem 2.7.45). Nevertheless,
normed one-sided division real algebras need not be finite-dimensional, even if they
are absolute-valued and complete (Theorem 2.7.38). The enormous theorem of ‘the
topologists’ (that finite-dimensional division real algebras are of dimension 1, 2, 4,
or 8) is stated without proof in Theorem 2.6.51, referring the reader to the whole of
Chapter 11 of [727] for a complete proof. The particularization to absolute-valued
algebras is much more elementary, and is stated in Fact 2.6.50.

Kaplansky continues as follows:

There is a related circle of ideas which has received a good deal of attention. In [337],
Inglestam proved the following pretty theorem: if an associative real Banach algebra A
is built on a Hilbert space and has a unit of norm 1, then in the first place A is finite-
dimensional; moreover A must be the reals, complexes, or quaternions in their ordinary
norm. An alternative account was given by Smiley [590]. The crucial point here is the
behaviour of the unit element relative to convexity, and nonassociative generalizations
have been given by Strzelecki [605, 606] and Inglestam [338]. (One should note the dif-
ference between this problem and that of Urbanik and Wright [620], who do not assume a
Hilbert space but deduce it from the equality ‖xy‖= ‖x‖‖y‖.)

Ingelstam’s theorem (that R, C,H, and O are the unique norm-unital normed
alternative real algebras whose norm comes from an inner product) is stated in Cor-
ollary 2.6.22. Here H and O stand for the algebra of Hamilton’s quaternions and the
algebra of Cayley numbers, respectively. Strzelecki’s generalization (that R, C,H,
and O are the unique norm-unital normed alternative real algebras whose closed unit
ball has a unique tangent hyperplane at the unit) is stated as the equivalence (ii)⇔(iii)
in Theorem 2.6.21.

In our opinion, the non-commutative Urbanik–Wright theorem (that R, C,H, and
O are the unique unital absolute-valued real algebras) becomes one of the jew-
els of the theory of non-associative normed algebras. Therefore, we devote special
attention to it. We state it as the equivalence (i)⇔(iii) in Theorem 2.6.21, and provide
a second proof in §2.7.67. The non-commutative Urbanik–Wright theorem had also
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Preface xiii

been predicted by Kaplansky in [377], who, by means of a general theorem on the
so-called unital composition algebras, reduced the proof to the case that the norm
comes from an inner product. The two proofs we have given of the non-commutative
Urbanik–Wright theorem follow Kaplansky’s indication. We also state the commuta-
tive Urbanik–Wright theorem, proved in [620] as well, that R, C, and another natural
two-dimensional algebra, are the unique absolute-valued commutative real algebras
(Theorem 2.6.41).

Now let us go beyond Gelfand–Mazur considerations to general theory. I divide the
remarks under three headings, corresponding to the three classes of nonassociative algebras
that have withstood the test of time.

(1) Lie algebras. Let me be honest. I have nothing to say, even by way of the wildest
speculation, about a possible theory of Banach Lie algebras.

Banach Lie algebras will be discussed in our book only in an incidental way.
Nevertheless, let us say that a complete structure theory for Lie H∗-algebras has been
developed (cf. Remark 2.6.54 for references), and that different aspects of general or
particular Banach Lie algebras have been considered in [47, 96, 97, 98, 99, 130,
175, 188, 253, 254, 452, 453, 569, 604, 615, 627]. For a comprehensive account, the
reader is referred to the books [687, 688, 740].

(2) Alternative. Alternative rings are only a slight generalization of associative rings. It
is therefore a reasonable presumption that most standard associative results will survive,
perhaps in a suitably altered form, and perhaps with a lot of extra proof.

The ‘reasonable presumption’ above is indeed correct. As a relevant sample,
Kaplansky’s celebrated theorem [375], that normed associative real algebras with no
nonzero topological divisor of zero are isomorphic to R, C, or H, has its ‘suitably
altered form’ for alternative algebras (Theorem 2.5.50).

Alternative C∗-algebras look like a plausible topic. Over the complex numbers the essen-
tially new algebra – the Cayley matrix algebra – has every right to be called a C∗-algebra.
But the subject should be developed in real style, so as to allow the Cayley division algebra
to survive.

We feel that Kaplansky assumes the current Gelfand–Naimark characterization
of closed ∗-invariant subalgebras of operators on complex Hilbert spaces and that
consequently, by an ‘alternative C∗-algebra’, he means a complete normed alternative
complex algebra A endowed with a conjugate-linear algebra involution ∗ satisfying
‖a∗a‖ = ‖a‖2 for every a ∈ A. If this is so, then the complex Cayley matrix alge-
bra C(C) is indeed an alternative C∗-algebra (Proposition 2.6.8). Moreover, C(C)
becomes the unique ‘essentially new’ alternative C∗-algebra. Indeed, C(C) is the
unique prime alternative C∗-algebra which is not associative and, by a standard
C∗-argument, the theory of general alternative C∗-algebras reduces to the cases of
prime associative C∗-algebras and that of C(C) [125, 481]. It is also worth men-
tioning that, in the case of unital algebras, there are relevant redundancies in the
definition of an alternative C∗-algebra suggested above. The redundances are so
severe that, as we prove in Theorem 3.2.5, the alternative identities x2y = x(xy) and
yx2 = (yx)x follow from the remaining requirements (see also Theorem 3.5.53 for a
non-unital variant).
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xiv Preface

As far as we know, a systematic treatment of real alternative C∗-algebras has
not been done to date. Anyway, real alternative C∗-algebras can be introduced as
closed ∗-invariant real subalgebras of complex ones (see Definition 4.2.45). With
this convention, clearly, the algebra O of Cayley numbers ‘survives’.

Alternative AW ∗-algebras probably have a decisive structure theory. (I feel sure that sub-
ject will be developed in AW ∗ rather than in W ∗ style – unless somebody cares to work up
the theory of Cayley Hilbert space.) There ought to be a unique direct sum decomposition
into four homogeneous pieces: (a) real Cayley matrix, (b) Cayley division, (c) complex
Cayley matrix, (d) associative.

As a matter of fact, concerning ‘AW ∗ style’, no progress has been made on the
above prediction, even in the complex case. However, the ‘W ∗ style’ has become
extremely successful. Indeed, as shown by G. Horn [331], every (complex) alter-
native W ∗-algebra has a unique direct sum decomposition into two pieces: (a) the
algebra of all continuous functions from a suitable compact Hausdorff hyper-Stonean
space to C(C); (b) an associative von Neumann algebra. It can be derived from
Horn’s theorem that every real alternative W ∗-algebra has ‘a unique direct sum
decomposition into four pieces’: (a) the algebra of all continuous functions from a
suitable compact Hausdorff hyper-Stonean space to the real Cayley matrix algebra
C(R); (b) the same with O instead of C(R); (c) the same with C(C) instead of
C(R); (d) a real associative von Neumann algebra. Thus, ‘in W ∗ style’, Kaplansky’s
prediction is right.

(3) Jordan. In saying that Jordan Banach algebras ought to be studied we have the
blessing of the Master himself [461]. In recent years Topping [813, 614], Effros and Størmer
[228] and Størmer [601, 602, 603] have made significant progress. In one way, however,
they made an undesirable retreat from [461]. By assuming from the start that they were
dealing with operators on a Hilbert space, they ruled out the exceptional Jordan algebra,
and left to the future the possibility of a theorem asserting that suitable infinite-dimensional
Jordan Banach algebras are special. Admittedly I am prejudiced, but perhaps the AW ∗ point
of view is a good one here.

Eight years after the above paragraph was written, Alfsen, Shultz, and Størmer
[15] removed the ‘undesirable retreat from [461]’ by introducing the so-called
JB-algebras. JB-algebras are complete normed Jordan real algebras which include
both Jordan algebras of self-adjoint ‘operators on a Hilbert space’ (Corollary 3.1.2)
and ‘the exceptional Jordan algebra’ (Example 3.1.56). JB-algebras enjoy a deep and
complete structure theory which has been comprehensively developed in Hanche-
Olsen and Størmer [738], and has been revisited recently in Alfsen and Shultz
[673]. Different approaches to JB-algebras can be found in Ayupov, Rakhimov,
and Usmanov [684], and Iochum [748]. Since we are unable to organize the basic
theory of JB-algebras in a better way than that of [738], we have limited ourselves
to state without proof those results which are needed for our actual purposes, and to
complement the theory in some aspects (originated by the papers of Wright [641]
and Wright and Youngson [643]) which are not covered by the Hanche-Olsen
and Størmer book. This is done from Section 3.1. Among the results taken from
[738], we emphasize the one asserting that JB-algebras generated by two elements
are (isometrically isomorphic to) Jordan algebras of self-adjoint operators on a
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Preface xv

Hilbert space (Proposition 3.1.3). Thus, ‘suitable infinite-dimensional Jordan Banach
algebras are special’.

Kaplansky concludes with the following comment:

Kadison’s beautiful results [358, 359] on isometries of C∗-algebras deserve to be gener-
alized to Jordan C∗-algebras if only to encompass the exceptional Jordan algebra.

What Kaplansky means by a ‘Jordan C∗-algebra’ is not in doubt because he
himself later introduced this notion in detail in his final lecture to the 1976
St. Andrews Colloquium of the Edinburgh Mathematical Society, and pointed out its
potential importance. Jordan C∗-algebras (called JB∗-algebras since Youngson’s
paper [652]) were first studied by Wright [641], who proved that the passing
from each JB∗-algebra to its self-adjoint part establishes a bijective categorical
correspondence between JB∗-algebras and JB-algebras (see Corollary 3.4.3 and
Theorem 3.4.8).

Kadison’s celebrated Theorem A of [358] is fully discussed in Section 2.2. Actu-
ally, we prove the unit-free Paterson–Sinclair generalization [480] of Kadison’s result
(Theorem 2.2.19), starting from a non-associative germ (Theorem 2.2.9). An appro-
priate version for JB-algebras of the Kadison–Paterson–Sinclair theorem, following
the arguments in [643, 223, 342], is stated in Theorem 3.1.21. Therefore, as first
proved in [643], for isometries preserving units of unital JB∗-algebras, Kadison’s
theorem survives (see Proposition 3.4.25) ‘encompassing the exceptional Jordan
algebra’. Nevertheless, Kadison’s theorem does not survive for general isometries,
nor even in the case of closed ∗-invariant unital Jordan subalgebras of operators on
Hilbert spaces. The reason is that, as shown by Braun, Kaup, and Upmeier [126],
two such algebras can be linearly isometric without being ∗-isomorphic (see Anti-
theorem 3.4.34). Anyway, the Kadison–Paterson–Sinclair theorem survives verbatim
in the case of alternative C∗-algebras and also, in a suitably altered form, in the case
of JB∗-algebras which are dual Banach spaces [366].

About the core of the book

Now that we have concluded our review of the non-associative part of Kaplansky’s
monograph [762], let us comment about the leitmotiv of the present book. (To
this end, we found the Introduction of [366] useful.) Our aim is to deal with
non-associative generalizations of C∗-algebras. To this end, we realize that most
generalizations appearing in the literature, like JB∗-algebras, JB-algebras (both
had already been discussed when we reviewed [762]), and JB∗-triples, contain
C∗-algebras, but only after suitable manipulations. Thus C∗-algebras become
JB∗-algebras after replacing the associative product xy with the Jordan product

x• y :=
1
2
(xy+ yx).

They are JB-algebras after the same replacement and then passing to the self-adjoint
part, and they are also JB∗-triples after replacing the product with the triple product

{xyz} :=
1
2
(xy∗z+ zy∗x).
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xvi Preface

As a matter of fact, many years ago we tried to approach the non-associative gener-
alizations of C∗-algebras in a somewhat more ingenuous way. Indeed, we removed
associativity in the abstract characterizations of unital (associative) C∗-algebras
given either by the Gelfand–Naimark theorem or by the Vidav–Palmer theorem, and
studied (possibly non-unital) closed ∗-invariant subalgebras of the Gelfand–Naimark
or Vidav–Palmer algebras born after removing associativity.

To be more precise, for a norm-unital complete normed (possibly non-associative)
complex algebra A, we considered the following conditions:

(GN) (Gelfand–Naimark axiom). There is a conjugate-linear vector space involu-
tion ∗ on A satisfying 1∗ = 1 and ‖a∗a‖= ‖a‖2 for every a in A.

(VP) (Vidav–Palmer axiom). A = H(A,1)+ iH(A,1).

In both conditions, 1 denotes the unit of A, whereas, in (VP), H(A,1) stands for the
closed real subspace of A consisting of those elements h in A such that f (h) belongs
to R for every bounded linear functional f on A satisfying ‖ f‖= f (1) = 1.

As we said before, if the norm-unital complete normed complex algebra A
above is associative, then (GN) and (VP) are equivalent conditions, both providing
nice characterizations of unital C∗-algebras (see Lemma 2.2.5 and Theorems 1.2.3
and 2.3.32). In the general non-associative case we were considering, things began
to be more amusing. Indeed, it is easily seen that (GN) implies (VP) (refer again to
Lemma 2.2.5), but the converse implication is not true (see Example 2.3.65).

The amusing aspect of the non-associative consideration of the Vidav–Palmer
and the Gelfand–Naimark axioms greatly increased thanks to the fact (explained
in what follows) that Condition (VP) (respectively, (GN)) on a norm-unital complete
normed complex algebra A implies that A is ‘nearly’ (respectively, ‘very nearly’)
associative. To specify our last assertion, let us recall some elementary concepts of
non-associative algebra. Alternative algebras are defined as those algebras A satis-
fying a2b = a(ab) and ba2 = (ba)a for all a,b in A. By Artin’s theorem (stated in
Theorem 2.3.61), an algebra A is alternative (if and) only if, for all a,b in A, the
subalgebra of A generated by {a,b} is associative. According to Definition 2.4.9
and Proposition 3.2.1, non-commutative Jordan algebras can be introduced as those
algebras A satisfying the Jordan identity (ab)a2 = a(ba2) and the flexibility con-
dition (ab)a = a(ba). As shown in Proposition 2.4.19, non-commutative Jordan
algebras are power-associative (i.e. all subalgebras generated by a single element
are associative) and, as a consequence of Artin’s theorem, alternative algebras are
non-commutative Jordan algebras. For an element a in an algebra A, we denote by
Ua the mapping b → a(ab+ba)−a2b from A to A. By means of Definitions I and II
below, we provide the algebraic notions just introduced with analytic robes. We note
that the notion of an alternative C∗-algebra, emphasized in Definition I, had already
appeared when we reviewed the monograph [762].

Definition I By an alternative C∗-algebra we mean a complete normed alternative
complex algebra (say A) endowed with a conjugate-linear algebra involution ∗ satis-
fying ‖a∗a‖= ‖a‖2 for every a in A.
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Preface xvii

Definition II By a non-commutative JB∗-algebra we mean a complete normed
non-commutative Jordan complex algebra (say A) endowed with a conjugate-linear
algebra involution ∗ satisfying ‖Ua(a∗)‖= ‖a‖3 for every a in A.

Since the equality Ua(b) = aba holds for all elements a,b in an alternative algebra,
it is not difficult to realize that alternative C∗-algebras become particular examples
of non-commutative JB∗-algebras. Actually, alternative C∗-algebras are precisely
those non-commutative JB∗-algebras which are alternative (see Fact 3.3.2). Now, by
means of Theorems GN and VP which follow, we can specify how the behaviour of
the Gelfand–Naimark and Vidav–Palmer axioms in the non-associative setting were
clarified.

Theorem GN Norm-unital complete normed complex algebras fulfilling the
Gelfand–Naimark axiom are nothing other than unital alternative C∗-algebras.

Theorem VP Norm-unital complete normed complex algebras fulfilling the Vidav–
Palmer axiom are nothing other than unital non-commutative JB∗-algebras.

Now, keeping in mind Theorems GN and VP above, together with the obvious
fact that closed ∗-invariant subalgebras of an alternative C∗-algebra (respectively,
of a non-commutative JB∗-algebra) are alternative C∗-algebras (respectively, non-
commutative JB∗-algebras), there is no doubt that, even in the non-unital case,
both alternative C∗-algebras and non-commutative JB∗-algebras become reason-
able non-associative generalizations (the latter containing the former) of classical
C∗-algebras. Therefore the main goal of our book will be to prove Theorems GN
and VP (see Theorems 3.2.5 and 3.3.11), together with their non-unital variants
(see Theorem 3.5.53 and [365]), and to describe alternative C∗-algebras and non-
commutative JB∗-algebras by means of the so-called representation theory.

It is worth mentioning that although our approach to the non-associative gen-
eralizations of C∗-algebras is different from those of JB∗-algebras, JB-algebras,
and JB∗-triples, in the end all approaches give rise essentially to the same math-
ematical creature. Indeed, Kaplansky’s JB∗-algebras are nothing other than those
non-commutative JB∗-algebras which are commutative. On the other hand, every
non-commutative JB∗-algebra becomes a JB∗-algebra after symmetrizing its product
(see Fact 3.3.4); JB∗-algebras and JB-algebras coincide after a categorical corres-
pondence (a fact already noted when we reviewed [762]); non-commutative JB∗-
algebras become JB∗-triples in a natural way (see Theorem 4.1.45); and every
JB∗-triple can be seen as a closed subtriple of a suitable JB∗-algebra (a fact
collected without proof in Theorem 4.1.113). Therefore most basic results in the
classical theory of JB∗-algebras, JB-algebras, and JB∗-triples will be involved in our
development.

Since JB∗-triples had not appeared when we reviewed [762], let us comment about
them briefly. Roughly speaking, JB∗-triples become a functional-analytic solution
to the problem of the classification of all ‘bounded symmetric domains’ in com-
plex Banach spaces. Partial solutions to this problem in the same line are due to
Loos [772], who settled the finite-dimensional case, and to Harris [313], who proved
that the open unit ball of each norm-closed subspace of any C∗-algebra, which is
also closed under the triple product {xyz}= 1

2 (xy∗z+ zy∗x), is a bounded symmetric
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xviii Preface

domain. The definitive solution, due to Kaup [380, 381], asserts that every bounded
symmetric domain in a complex Banach space is biholomorphically equivalent to the
open unit ball of a suitable complex Banach space, and that if the open unit ball of a
complex Banach space is a bounded symmetric domain, then the Banach space itself
is almost a C∗-algebra, and there is an intrinsically defined triple product {· · ·} on it
which behaves algebraically and geometrically like the one obtained from the binary
product of a C∗-algebra by taking {xyz}= 1

2 (xy∗z+zy∗x). The precise formulation of
this last fact gives rise to the definition of a JB∗-triple (see §2.2.27 and Fact 4.1.41).

JB∗-triples have been intensively studied in recent years and their basic theory can
be found in the monographs of Chu [710], Dineen [721], Friedman and Scarr [732],
Iordanescu [750], Isidro and Stachó [751], and Upmeier [814, 815], as well as in the
survey papers of Chu and Mellon [173], Kaup [384], Rodrı́guez [525], and Russo
[547]. The initial binary approach of our book complements these works.

About the organization of the book

The work we are introducing is covered in two volumes. Roughly speaking, the
dividing line between the two can be drawn between what can be done before and
after involving the holomorphic theory of JB∗-triples and the structure theory of non-
commutative JB∗-algebras. Volume 1 is now concluded, whereas Volume 2 exists
today only in the authors’ minds. Therefore we are going to describe in detail the
content of the first volume (Chapters 1–4), and announce in a less precise form what
we intend to do in the second (Chapters 5–8).

Volume 1

In Chapter 1, we develop the basic theory of normed algebras, putting special em-
phasis on the cases of complete normed unital associative complex algebras and
of (associative) C∗-algebras. Non-associative normed algebras are considered here
only when they do not offer special difficulties, or difficulties can be overcome in an
elementary way. Thus, the first three sections of the chapter are mainly devoted to
attracting the attention of the non-expert reader. The chapter is complemented with
a fourth section where some selected topics in the theory of compact and weakly
compact operators (including recent developments [441, 596]) are discussed.

Chapter 2 is essentially devoted to settling the two first steps in the proof of
the ‘non-associative Vidav–Palmer theorem’ (Theorem VP), namely that the natural
involution of any Vidav–Palmer algebra is an algebra involution (see Theorem 2.3.8)
and that Vidav–Palmer algebras are non-commutative Jordan algebras (see The-
orem 2.4.11). Among the applications of these results, we emphasize the Kadison–
Paterson–Sinclair theorem on isometries of C∗-algebras [358, 480] proved in
Theorem 2.2.19, the Blecher–Ruan–Sinclair non-associative characterization of
(associative) C∗-algebras [106] proved in Theorem 2.4.27, and the non-commutative
Urbanik–Wright theorem (already discussed when we reviewed [762]) proved in
Theorem 2.6.21. (We missed the formulation and a proof of this last theorem in the
delightful book Numbers [727].) Applications of the study of contractive projections
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Preface xix

on C∗-algebras are also made (see Theorems 2.3.68 and 2.4.24). As absolute-valued
algebras arise naturally in the Urbanik–Wright theorem, we devote special attention
to them (see Sections 2.6, 2.7, and 2.8). Since the Vidav–Palmer axiom depends only
on the normed space of the algebra and on the unit, we follow [22, 425] to develop,
where possible, the theory of numerical ranges of elements of norm-unital normed
algebras in the more general setting of a normed space, in which a norm-one element
has been distinguished (see Sections 2.1 and 2.9). This approach (which involves
relevant results of pure geometry of normed spaces [56, 268, 287, 291, 293, 299])
complements those of Bonsall–Duncan [694, 695, 696], Doran–Belfi [725], and
Palmer [786, 787] in their books.

In Chapter 3 our development depends heavily on the basic theory of JB-
algebras, which is taken without proof from Hanche-Olsen and Størmer [738],
and is complemented in some aspects not covered by that book (see Section 3.1
and Subsection 3.4.1). In particular, surjective linear isometries between JB-
algebras are described in detail (see Theorem 3.1.21), and Wright’s categorical
correspondence between JB-algebras and JB∗-algebras [641] is established (see
Fact 3.4.9). Chapter 3 is essentially devoted to proving Theorem GN (see The-
orem 3.2.5), concluding the proof of Theorem VP (see Theorem 3.3.11), developing
the theory of alternative C∗-algebras and of non-commutative JB∗-algebras in
those aspects which do not involve the so-called ‘Jordan spectral theory’ (see
Subsections 3.4.2, 3.4.4, 3.5.1, 3.5.3, and 3.6.2), and proving the unit-free variant
of Theorem GN (see Theorem 3.5.53). The behaviour of the original Gelfand–
Naimark axiom ‖a∗a‖ = ‖a∗‖‖a‖ in the non-associative setting is fully discussed,
generalizing the associative forerunners due to Glimm and Kadison [290] and
Vowden [629] (see Subsections 3.5.2, 3.5.4, and 3.5.6). Some auxiliary results,
taken from the non-geometric theory of non-associative normed algebras, are
also included. Thus Dixmier’s fundamental theorem [723] on continuous auto-
morphisms, which are exponentials of continuous derivations, is proved (see
Theorem 3.4.49).

In Chapter 4, the Jacobson–McCrimmon notion of the Jordan inverse [754, 433,
436] is involved to derive a spectral theory for normed non-commutative Jordan
algebras, which generalizes the one developed in Sections 1.1 and 1.3 for normed
associative algebras. This is done in Subsections 4.1.1, 4.1.2, 4.1.4, and 4.1.5.
Jordan spectral theory is applied to continue the development of the basic theory
of alternative C∗-algebras and of non-commutative JB∗-algebras. In particular,
the relationship between non-commutative JB∗-algebras and JB∗-triples is settled
(see Theorems 4.1.45 and 4.1.55). The functional-analytic treatment of JB∗-triples
is continued in Section 4.2, where Kaup’s commutative Gelfand–Naimark type
theorems for JB∗-triples [380, 381] are proved (see Theorems 4.2.7 and 4.2.9)
and then, following [126, 269, 385, 655], the convexity properties of the closed
unit balls of JB∗-triples and of non-commutative JB∗-algebras are established (see
Theorems 4.2.24, 4.2.28, 4.2.34, and 4.2.36). Following [77, 78], we describe C∗-
algebras and JB∗-algebras generated by a non-self-adjoint idempotent (see Theor-
ems 4.3.11, 4.3.16, 4.3.29, and 4.3.32), and derive Spitkovsky’s theorem [595], that
C∗-algebras generated by a non-self-adjoint idempotent are generated by two self-
adjoint idempotents (see Corollary 4.3.17); we also discuss the appropriate variant
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xx Preface

of Spitkovsky’s theorem for JB∗-algebras (see Corollary 4.3.34). We prove that non-
commutative JB∗-algebras have minimum norm topology (see Theorem 4.4.29) and
minimality of norm (see Proposition 4.4.34). These results generalize associative
forerunners by Cleveland [176] and Bonsall [111], respectively.

We state Behncke’s theory of complete normed hermitian Jordan complex
∗-algebras [82], which is proved following the Aupetit–Youngson arguments [48],
and is presented in a somewhat new way involving the so-called JB∗-representations
(see Theorem 4.5.29 and Corollary 4.5.30). Then a theory of complete normed
hermitian alternative complex ∗-algebras is derived (see Theorem 4.5.37 and
Corollary 4.5.39) in such a way that it contains the classical associative forerunners
[493, 565] as stated in Bonsall–Duncan [696, Section 41]. Generalizing Sakai’s
theorem [807], we prove that domains of closed densely defined derivations of
any unital non-commutative JB∗-algebra are closed under the functional calcu-
lus of class C2 at self-adjoint elements (see Theorem 4.6.63). The chapter also
includes some auxiliary results taken from the general theory of non-associative
normed algebras. Thus the non-associative generalization [516] of Johnson’s
uniqueness-of-norm theorem [353] (see also [696, 715, 786]), as well as Aupetit’s
celebrated forerunner for non-commutative Jordan algebras [40], are settled (see
Section 4.4). Along the same lines, a non-associative version of [522], as well as non-
associative applications of Bollobás’ extremal algebra [110, 182], are discussed (see
Section 4.6).

Volume 2

Chapter 5 will be devoted to proving what can be seen as a unit-free version of the
non-associative Vidav–Palmer theorem, namely that non-commutative JB∗-algebras
are precisely those complete normed complex algebras having an approximate unit
bounded by one, and whose open unit ball is a bounded symmetric domain [365].
Some ingredients in the long proof of this result have been already established in
Volume 1. This is the case of the Bohnenblust–Karlin Corollary 2.1.13, the non-
associative Vidav–Palmer theorem (Theorem 3.3.11) as well as its dual version (Cor-
ollary 3.3.26), Proposition 3.5.23, Theorem 4.1.45, and the equivalence (ii)⇔(vii)
in the Braun–Kaup–Upmeier Theorem 4.2.24. The new relevant ingredients to be
proved in the chapter are: (i) the Chu–Iochum–Loupias result that bounded linear
operators from a JB∗-triple to its dual are weakly compact [172] (equivalently, via
[717, Corollary on p. 12], that all continuous products on the Banach space of a
JB∗-triple are Arens regular); (ii) Kaup’s theorem that JB∗-triples are precisely those
complex Banach spaces whose open unit ball is a bounded symmetric domain [381];
(iii) the contractive projection theorem for JB∗-triples collected without proof in
Theorem 2.3.74; and (iv) Dineen’s celebrated result that the bidual of a JB∗-triple
is a JB∗-triple [213].

Chapter 6 will contain the representation theory for alternative C∗-algebras,
already sketched when we reviewed [762], and the representation theory for
non-commutative JB∗-algebras, following [19, 124, 222, 481, 482, 641]. In these
papers a precise classification of certain prime non-commutative JB∗-algebras (the
so-called ‘non-commutative JBW ∗-factors’) is obtained, and the fact that every
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Preface xxi

non-commutative JB∗-algebra has a faithful family of the so-called ‘Type I’ factor
representations is proven. When these results specialize for classical C∗-algebras,
Type I non-commutative JBW ∗-factors are nothing other than the (associative)
W ∗-factors consisting of all bounded linear operators on some complex Hilbert
space [738, Proposition 7.5.2], and, consequently, Type I factor representations are
precisely irreducible representations on Hilbert spaces. The chapter will contain also
a classification of all prime non-commutative JB∗-algebras, obtained in [255, 363]
by applying Zel’manov’s purely algebraic techniques in [437, 662, 663]. Many
applications of the representation theory will be discussed. Among them, we
emphasize the generalization to non-commutative JB∗-algebras [340] of Kaplansky’s
characterization of commutativity of C∗-algebras by means of the absence of
isotropic elements [761, Theorem B in Appendix III].

In Chapters 7 and 8, we will discuss selected topics in the theory of non-associative
normed algebras, which need not be directly related to the non-associative generaliz-
ations of C∗-algebras. Chapter 7 will deal with the analytic treatment of Zel’manov’s
prime theorems for Jordan structures, already sketched in Chapter 6. Thus several
direct contributions of Zel’manov to the theory of normed Jordan algebras [147, 538]
(one of which was refined later in [447]) and the binary results in [146, 151, 152,
539] will be included with proofs. The ternary results in [448, 449] will be simply
surveyed. The survey papers [145, 450, 532] could provide the reader with a more
detailed overview of the intended content of the whole of Chapter 7.

The concluding Chapter 8 will deal with miscellany in the theory of non-
associative normed algebras. We will complement our knowledge on non-associative
generalizations of Rickart’s dense-range-homomorphism theorem (see Theorem
4.1.19 and Proposition 4.1.108) with those obtained in [165, 529]. Complement-
ing Corollary 4.4.55, some automatic continuity theorems for homomorphisms
‘into’, taken from [165, 462, 529], will also be included. Automatic continuity
of Lie homomorphisms, culminating in [130] through the papers of Berenguer–
Villena [97, 98] and Aupetit–Mathieu [47] already discussed in Subsection 4.4.5,
will also receive special attention. As an auxiliary tool for the proof of the main
result in [130], we will incorporate the discussion in [91] about normed Jordan
algebras ‘with finite spectrum’. Actually, the theory of normed Jordan struc-
tures subjected to ‘finiteness conditions’ would merit being systematically or-
ganized. Nevertheless, we will not be doing this, and will limit ourselves to
surveying this matter by reviewing results from Aupetit [43, 44], Aupetit–Baribeau
[45], Aupetit–Maouche [46], Benslimane–Boudi [87, 88], Benslimane–Fernández–
Kaidi [89], Benslimane–Jaa–Kaidi [90], Benslimane–Kaidi [91], Benslimane–
Rodrı́guez [95], Boudi [119], Boudi–Marhnine–Zarhouti–Fernández–Garcı́a [120],
Bouhya–Fernández [121], Fernández [250, 251, 252], Fernández–Garcı́a–Sánchez
[256], Fernández–Rodrı́guez [258], Hessenberger [322, 323, 324, 325], Hessen-
berger–Maouche [326], Loos [402, 404, 405], Maouche [413, 412], Pérez–Rico–
Rodrı́guez–Villena [489], and Wilkins [636]. Another favourite topic to be included
in this chapter is that of the general theory of non-associative H∗-algebras, which
incidentally appears in Remark 2.6.54, Lemma 2.7.50, Subsection 2.8.2, and
Corollary 4.1.104 of this volume. This will be done by taking the appropri-
ate material from the papers [142, 144, 148, 149, 198, 199, 259, 526, 624]
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(see also [687, Chapters 7 and 8] and [525, Section E]). The chapter will conclude
with the non-associative discussion of the Rota–Strang paper [544] covered in
[452, 453].
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