Index

Alamouti coding
- comparison with maximal ratio combining, 128–129
decoding, 124
encoding, 118–119
how to simulate, 127–128
performance results, 125–129
theoretical analysis, 127

antenna correlation
- dependence on antenna spacing, 105–108
dependence on scattering angle, 106–107
impact on MIMO capacity, 103
array gain, 7, 60
augmented OFDM symbol, 204
average mutual information, 32–33

BLAST
- D-BLAST, 135, 164, 166–168
- H-BLAST, 166
- V-BLAST, 5, 162, 165–166
blind-based channel estimation, 214
breakpoint distance, 73

channel eigenvalues, 45, 47, 49, 51–52, 54, 164
channel estimation (CE)
- classes of techniques, 214
- least squares estimation, 222
- LMMSE estimation, 222
- maximum likelihood estimation, 221
- narrowband channel estimation, 220–227
- pilot allocation strategies, 215–220
- pilot spacing, 217, 219
- role of pilot tones, 215
- role of training symbols, 214
- simulation results, 225–227
- time-frequency interpolation, 229–230
- wideband channel estimation, 227–230
channel impulse response
- linear time-variant, 75
- low-pass channel model, 76
- low-pass equivalent, 75–76
- two-dimensional nature, 76–77
channel rank, 16, 44, 45
channel state information (CSI), 42
classes of multipath channels, 90–93
closed loop MIMO, 17–18
code rate, 132
coding advantage criterion, 144
coding gain, 11, 134, 135, 143–145, 157, 158, 160
coherece bandwidth
- 50th percentile bandwidth, 84
- 90th percentile bandwidth, 84
definition, 83
- relation to delay power spectrum, 84
- relation to delay spread, 84
- relation to spaced-frequency correlation functions, 84
coherence time
- 50th percentile expression, 90
definition, 85, 89
- relation to Doppler spread, 89
component code, 187
conditional entropy, 33
correlation mapper, 239
CSIR, 42
CSIT, 42
cyclic extension, 204
cyclic prefix, 204
cyclic shift diversity (CSD), 240, 249
data streams, 2, 7, 15, 16, 20, 44–45, 58, 162–166,
- 169, 187, 233–234, 237
delay power spectrum, 79
delay spread
- definition, 78, 80
- excess delay, 80
- mean excess delay, 80
- measured values, 83
- rms excess delay, 80
- determinant criterion, 144
direct mapping, 240
distributed mapping, 256, 257
diversity
- diversity combining, 4, 8–11, 115, 118
equal gain combining, 9, 10, 135
- frequency diversity, 8
maximal ratio combining, 9, 13, 115–117, 127, 129
polarization diversity, 8
selective combining, 9
spatial diversity, 8
time diversity, 8
diversity gain, 7, 11, 14, 134–136, 142–144, 166
diversity order, 7, 11, 14, 114, 116, 128, 183, 184, 194
diversity-multiplexing tradeoff, 134
Doppler spectrum
Clark’s Doppler model, 86
definition, 87
Doppler model used in IEEE 802.11n, 87
general Doppler power spectrum, 89
physical cause, 85–87
relation to spaced-time correlation function, 89
Doppler spread
definition, 85
physical cause, 85–87
double Rayleigh, 109
downlink resource grid, 253, 254
Dreissen, Peter, 4
eigen-channels, 16, 49
eigenbeamforming, 15, 18, 42, 47–50
eigenmode power allocation, 51–52, 56
optimal power allocation, 50–53
single-mode, 53–54, 58, 60, 234
entropy, 30
equal power allocation, 42, 43
ergodic capacity
definition, 63
performance results, 63–64
ETU (extended typical urban) channel model, 201, 217, 219
excess delay, 80
fast fading, 93
flat fading
definition, 90
system model under flat fading, 90–91
Foschini, Gerry, 4, 5
free space loss, 70, 72–74
frequency selective fading
definition, 91
potential capacity improvement, 199–200
system equation under F.S. fading, 91–93
techniques for mitigating, 198–203
Friis equation, 72
Friis, Harald T., 72
full-rate space-time codes
definition, 133
examples, 146–149
Gray coding, 143
Greenfield mode, 235–237, 247, 249
high-capacity criterion, 98
HT mode, 233, 235
IEEE 802.11a, 232
IEEE 802.11a/g, 233–236, 238, 239
IEEE 802.11n, see WiFi
IEEE 802.11n-2009, 232, 233
Information
definition, 28–30
properties of, 29
interference cancellation
with LMMSE, see LMMSE-IC
with zero forcing, see ZF-IC
interference suppression
comparison with interference cancellation, 174
in zero forcing, 174
intrinsic channel parameters, 77
Iospan, Inc., 5, 18
Jack Winters, 5
Kronecker channel model, 101–103
advantage of Kronecker model, 103
antenna correlation, 103–105
relation to practical channels, 101–103
large-scale fading, 71
layer mapper, 255–259
legacy mode, 235–238
LMMSE, 164, 175–179
LMMSE-IC, 164, 179–182
localized mapping, 256, 257
LOS channel model, 110–111
LTE
data rates, 260–263
layer mapper, 255–259
OFDM parameter values, 255
resource block, 253
spatial diversity in, see transmit diversity
spatial multiplexing in, 259–260
transmission blocks (TB), 254
transmit diversity in, 257–259
transmitter architecture, 255–257
waveform description, 253–255
LTE frame structure, 253
maximal-ratio receive combining, 115
maximum likelihood detection, 114, 115, 118
as applied in Alamouti decoding, 124
definition, 123
mean excess delay, 80
MIMO capacity
for MISO, 59–60
for SIMO, 58–59
general expressions, 38–39
impact of antenna correlation, 103
impact of Rician K-factor, 110
<table>
<thead>
<tr>
<th>Index</th>
<th>287</th>
</tr>
</thead>
<tbody>
<tr>
<td>under CSIR only, 44</td>
<td>for CSIR only, 42</td>
</tr>
<tr>
<td>under optimal channel conditions, 47</td>
<td>for CSIR with CSIT, 47</td>
</tr>
<tr>
<td>MIMO capacity, definition, 35</td>
<td>for single-mode eigenbeamforming, 53</td>
</tr>
<tr>
<td>MIMO definition, 1</td>
<td>power delay profile</td>
</tr>
<tr>
<td>MISO, definition of, 3</td>
<td>definition, 79</td>
</tr>
<tr>
<td>mixed mode, 235–237</td>
<td>example measurements, 81</td>
</tr>
<tr>
<td>MNM, 19–21</td>
<td>power law propagation, 71–74</td>
</tr>
<tr>
<td>modulation and coding schemes (MCS), 235, 237–239, 251, 252</td>
<td>pseudo inverse, see Moore–Penrose pseudo inverse</td>
</tr>
<tr>
<td>Moore–Penrose pseudo inverse, 169</td>
<td>quasi-OSTBC, 135</td>
</tr>
<tr>
<td>multi-group space-time coding (MGSTC)</td>
<td>rank criterion, 144</td>
</tr>
<tr>
<td>decoding, 189–194</td>
<td>Rayleigh fading, 93–95</td>
</tr>
<tr>
<td>encoding, 187</td>
<td>receive covariance matrix, 101–102</td>
</tr>
<tr>
<td>group-dependent space-time coding, 193</td>
<td>receive diversity, 4, 9, 19, 20, 114–117, 252, 257</td>
</tr>
<tr>
<td>performance, 194–196</td>
<td>reflection coefficient, 72–73</td>
</tr>
<tr>
<td>multi-user MIMO, 6, 7</td>
<td>resource block, 253</td>
</tr>
<tr>
<td>multipath channels</td>
<td>Rician fading, 95–96</td>
</tr>
<tr>
<td>definition, 70</td>
<td>Rician K-factor, 96</td>
</tr>
<tr>
<td>phenonomenology, 70–72</td>
<td>rms excess delay, 80</td>
</tr>
<tr>
<td>multipath intensity profile, 79</td>
<td>sampling theorem, 91</td>
</tr>
<tr>
<td>multiple carrier techniques, 201</td>
<td>SC-FDMA, 253, 256–257</td>
</tr>
<tr>
<td>mutual Information, 31–32</td>
<td>shadowing, 71</td>
</tr>
<tr>
<td>noise amplification, 170–171</td>
<td>Shannon sampling theorem, 91</td>
</tr>
<tr>
<td>normalization, 43, 264–265</td>
<td>Shannon, Claude, 28</td>
</tr>
<tr>
<td>Nyquist–Shannon sampling theorem, 91</td>
<td>signature vector, 97</td>
</tr>
<tr>
<td>OFDM, 199, 203–209</td>
<td>SIMO, definition of, 3</td>
</tr>
<tr>
<td>OFDM sub-carriers, 202</td>
<td>single carrier techniques, 200</td>
</tr>
<tr>
<td>OFDM symbol, 204</td>
<td>single-user MIMO, 6, 7</td>
</tr>
<tr>
<td>OFDMA, 210–211</td>
<td>SISO capacity, definition, 34</td>
</tr>
<tr>
<td>open loop MIMO, 17–18</td>
<td>SISO, definition of, 3</td>
</tr>
<tr>
<td>OSTBC</td>
<td>slow fading, 93</td>
</tr>
<tr>
<td>complex, 149, 150</td>
<td>small-scale fading, 71</td>
</tr>
<tr>
<td>computation savings, 152</td>
<td>smart antennas, 5–6</td>
</tr>
<tr>
<td>decoding, 150–152, 271–273</td>
<td>space-frequency block coding (SFBC), 211–213</td>
</tr>
<tr>
<td>definition, 146</td>
<td>space-time codeword, 132</td>
</tr>
<tr>
<td>examples, 146–150</td>
<td>space-time coding</td>
</tr>
<tr>
<td>how to simulate, 153</td>
<td>Alamouti coding, 118–125</td>
</tr>
<tr>
<td>real, non-square, 147</td>
<td>design criteria, 144</td>
</tr>
<tr>
<td>real, square, 146</td>
<td>full-rate, 133</td>
</tr>
<tr>
<td>outage capacity</td>
<td>orthogonal space-time block codes, 146–155</td>
</tr>
<tr>
<td>definition, 65</td>
<td>purpose, 1</td>
</tr>
<tr>
<td>performance results, 66–67</td>
<td>quasi-OSTBC, 135</td>
</tr>
<tr>
<td>theoretical expression for SIMO channel, 65–67</td>
<td>taxonomy, 134–136</td>
</tr>
<tr>
<td>pair-wise error probability (PEP)</td>
<td>space-time trellis codes (STTC)</td>
</tr>
<tr>
<td>definition, 136</td>
<td>comparison with STBCs, 155–156</td>
</tr>
<tr>
<td>importance in code design, 136–137</td>
<td>encoding, 156</td>
</tr>
<tr>
<td>relation to decoding error, 142–143</td>
<td>history, 155</td>
</tr>
<tr>
<td>upper bounds, 140–142</td>
<td>performance, 157–160</td>
</tr>
<tr>
<td>path loss exponents, 74</td>
<td>spectral efficiency of, 157</td>
</tr>
<tr>
<td>pilot tone, 215, 218</td>
<td>spaced-time correlation function, 89</td>
</tr>
<tr>
<td>power allocation strategies</td>
<td>spatial expansion, 240</td>
</tr>
<tr>
<td>effect on MIMO performance, 55, 57</td>
<td>spatial mapper, 240–242</td>
</tr>
</tbody>
</table>
spatial multiplexing (SM)
 decoding of, 163, 164, 168–181, 189–194
 definition, 2, 15
 maximum data streams, 163
 performance, 181–186, 194–196
 types of, 164
 spatial streams, 239, 243, 251, 256, 259
 spatial white channels, 62
 spectral efficiency, 133
 stream parser, 239, 241
 subcarrier mapper, 256
 taxonomy of space-time codes, 134
 Telatar, Emre, 28
 time dispersion, 78
 training symbol, 214, 221, 228–230, 245
 training-based channel estimation, 214
 transmission blocks (TB), 254
 transmit covariance matrix, 101–102
 Transmit diversity
 advantages over receive diversity, 9
 challenges, 9, 11, 117
 definition, 9
 transmit selection diversity, 18
 transport block size (TBS), 261
 two-ray propagation model, 72–74
 UE category, 260–263

uncorrelated scattering, 79

waterfilling
 graphical depiction, 52
 relationship to eigenbeamforming, 50
 waterfilling algorithm, 50, 52
 wide sense stationary (WSS), 78, 79
 Wiener filtering, 230
 WiFi, 232–252
 Alamouti coding in, 243
 channel estimation, 247–251
 channel models, 246
 data rates, 251
 MIMO techniques used by, 234
 modulation and coding schemes, 235, 237–239, 251, 252
 OFDM parameter values, 246
 packet structure, 235–237
 space–time coding, 234, 242–244
 spatial diversity in, 241, 242
 spatial multiplexing in, 234, 237, 241–242
 transmit beamforming (TxBF), 234
 transmitter architecture, 237–240
 WSSUS channels, 79

ZF, 2, 164, 168–175
ZF-IC, 164, 171–175