
PART ONE

Paradoxical Decompositions, or the
Nonexistence of Finitely Additive Measures
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1

Introduction

It has been known since antiquity that the notion of infinity leads very quickly to
seemingly paradoxical constructions, many of which seem to change the size of
objects by operations that appear to preserve size. In a famous example, Galileo
observed that the set of positive integers can be put into a one-one correspon-
dence with the set of square integers, even though the set of nonsquares, and
hence the set of all integers, seems more numerous than the squares. He deduced
from this that “the attributes ‘equal,’ ‘greater’ and ‘less’ are not applicable to
infinite . . . quantities,” anticipating developments in the twentieth century, when
paradoxes of this sort were used to prove the nonexistence of certain measures.

An important feature of Galileo’s observation is its resemblance to a duplicat-
ing machine; his construction shows how, starting with the positive integers, one
can produce two sets, each of which has the same size as the set of positive inte-
gers. The idea of duplication inherent in this example will be the main object of
study in this book. The reason that this concept is so fascinating is that, soon after
paradoxes such as Galileo’s were being clarified by Cantor’s theory of cardinality,
it was discovered that even more bizarre duplications could be produced using
rigid motions, which are distance-preserving (and hence also area-preserving)
transformations. We refer to the Banach–Tarski Paradox on duplicating spheres
or balls, which is often stated in the following fanciful form: a pea may be taken
apart into finitely many pieces that may be rearranged using rotations and transla-
tions to form a ball the size of the sun. The fact that the Axiom of Choice is used
in the construction makes it quite distant from physical reality, though there are
interesting examples that do not need the Axiom of Choice (see Thm. 1.7, §§4.2,
4.3, 11.2).

Two distinct themes arise when considering the refinements and ramifications
of the Banach–Tarski Paradox. First is the use of ingenious geometric and alge-
braic methods to construct paradoxes in situations where they seem impossible
and thereby getting proofs of the nonexistence of certain measures. Second, and
this comprises Part II of this book, is the construction of measures and their use
in showing that some paradoxical decompositions are not possible.
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4 1 Introduction

We begin with a formal definition of the idea of duplicating a set using certain
transformations. The general theory is much simplified if the transformations used
are all bijections of a single set, and the easiest way to do this is to work in the
context of group actions. Recall that a group G is said to act on a set X if to
each g ∈ G there corresponds a function (necessarily a bijection) from X to X ,
also denoted by g, such that for any g, h ∈ G and x ∈ X , g(h(x)) = (gh)(x) and
e(x) = x, where e denotes the identity of G.

Definition 1.1. Let G be a group acting on a set X and suppose E ⊆ X
is a nonempty subset of X . Then E is G-paradoxical (or paradoxical with
respect to G) if, for some positive integers m, n, there are pairwise disjoint
subsets A1, . . . ,An,B1, . . . ,Bm of E and g1, . . . , gn, h1, . . . , hm ∈ G such that
E =⋃

gi(Ai) and E =⋃
h j(Bj ).

Loosely speaking, the set E has two disjoint subsets (
⋃

Ai,
⋃

Bj ) each of which
can be taken apart and rearranged via G to cover all of E. If E is G-paradoxical,
then the sets witnessing that may be chosen so that {gi(Ai)}, {h j(Bj )}, and {Ai} ∪
{Bj} are each partitions of E. For the first two, one need only replace Ai,Bj by
smaller sets to ensure pairwise disjointness of {gi(Ai)} and {h j(Bj )}, but the proof
that, in addition, {Ai} ∪ {Bj} may be taken to be all of E is more intricate and will
be given in Corollary 3.7.

1.1 Examples of Paradoxical Actions

1.1.1 The Banach–Tarski Paradox

Any ball in R3 is paradoxical with respect to G3, the group of isometries of R3.

This result, a paradigm of the whole theory, will be proved in Chapter 3.
More generally, we shall consider the possibility of paradoxes when X is a met-
ric space and G is a subgroup of the group of isometries of X (an isometry
is a bijection from X to X that preserves distance). In the case that G is the
group of all isometries of X , we shall suppress G, using simply, E is paradox-
ical. We shall be concerned mostly with the case that X is one of the Euclidean
spaces Rn.

1.1.2 Free Non-Abelian Groups

Any group acts naturally on itself by left translation. The question of which groups
are paradoxical with respect to this action turns out to be quite fascinating and is
discussed in Chapter 12. In this context, the central example is the free group
on two generators. Recall that the free group F with generating set M is the
group of all finite words using letters from {σ, σ−1 : σ ∈ M}, where two words
are equivalent if one can be transformed to the other by the removal or addition
of finite pairs of adjacent letters of the form σσ−1 or σ−1σ. A word with no such
adjacent pairs is called a reduced word, and to avoid the use of equivalence classes,
F may be taken to consist of all reduced words, with the group operation being
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1.1 Examples of Paradoxical Actions 5

Figure 1.1. The free group of rank 2. The small enclosed region represents W (σ−1),
and left translation of this by σ gives the words in the larger enclosed region.

Thus W (σ ) ∪ σW (σ−1) = F .

concatenation; the concatenation of two words is equivalent to a unique reduced
word. (From now on, all words will be assumed to be reduced.) The identity of
F , which is denoted by e, is the empty word. A subset S of a group is called free
if no nonidentity reduced word using elements of S gives the identity. Any two
free generating sets for a free group have the same size, which is called the rank
of the free group. Free groups of the same rank are isomorphic; any group that
is isomorphic to a free group will also be called a free group. See [MKS66] for
further details about free groups and their properties.

Theorem 1.2. A free group F of rank 2 is F-paradoxical, where F acts on itself
by left multiplication.

Proof. Suppose σ, τ are free generators of F . If ρ is one of σ±1, τ±1, let W (ρ)
be the set of elements of F whose representation as a word in σ, σ−1, τ, τ−1

begins, on the left, with ρ. Then F = {e} ∪W (σ ) ∪W (σ−1) ∪W (τ ) ∪W (τ−1),
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6 1 Introduction

and these subsets are pairwise disjoint. Furthermore, W (σ ) ∪ σW (σ−1) = F (see
Fig. 1.1) and W (τ ) ∪ τW (τ−1) = F. For if h ∈ F \W (σ ), then σ−1h ∈W (σ−1)
and h = σ (σ−1h) ∈ σW (σ−1). Note that this proof uses only four pieces.

The preceding proof can be improved so that the four sets in the paradoxical
decomposition cover all of F rather than just F \ {e}. The reader might enjoy
trying to find such a neat four-piece paradoxical decomposition of a rank 2 free
group (or see Fig. 3.2). When we say that a group is paradoxical, we shall be
referring to the action of left translation; this should cause no confusion with the
usage mentioned in Example 1.1.1.

1.1.3 Free Semigroups

We shall on occasion be interested in the action of a semigroup S (a set with
an associative binary operation and an identity) on a set X . Because of the lack
of inverses in a semigroup, the function on X induced by some σ ∈ S may not
be a bijection; thus it is inappropriate to apply Definition 1.1 to such actions.
Nonetheless, there are similarities between free semigroups and free groups, as
the following proposition shows. A free semigroup with free generating set T is
simply the set of all words using elements of T as letters, with concatenation being
the semigroup operation. The rank of a free semigroup is the number of elements
in T . A free subsemigroup of a group is a subset of the group that contains e and
is closed under the group operation such that the semigroup is isomorphic to a
free semigroup.

Proposition 1.3. A free semigroup S, with free generators σ and τ , contains two
disjoint sets A and B such that σS = A and τS = B. Any group having a free
subsemigroup of rank 2 contains a paradoxical set.

Proof. Let A be the set of words whose leftmost term is σ and B the same using
τ . Then σS = A and τS = B (see Fig. 1.2). If S is embedded in a group, then S
itself is a paradoxical subset of the group because σ−1(A) = S = τ−1(B).

Figure 1.2. A paradox in a group having a free subsemigroup S of rank 2. If A is the
set of words with σ on the left (gray background) and B are those with τ on the left

(not gray and not e), then σ−1(A) = S = τ−1(B). The thicker edges indicate left
multiplication by σ .
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1.1 Examples of Paradoxical Actions 7

Figure 1.3. The method of constructing the permutation f1 of X from two bijections f , g
from X to subsets of X .

1.1.4 Arbitrary Bijections

The following result, showing that any infinite set is paradoxical using arbitrary
bijections, is the modern version of Galileo’s observation about the integers. The
implications with (c) as hypothesis use the Axiom of Choice (AC). Recall that, in
the presence of AC, the cardinality of an infinite set X , |X |, is the unique cardinal
ℵα for which there is a bijection with X . In the absence of AC, |X | is used only in
the context of the equivalence relation: |X | = |Y | iff there is a bijection from X
to Y .

Theorem 1.4. The following are equivalent:

(a) |X | = 2|X |.
(b) X is paradoxical with respect to the group of all permutations of X , that

is, all bijections from X to X .
(c) X is infinite or empty.

Proof. We will show (a)⇒ (b)⇒ (c)⇒ (a).
(b)⇒ (c) is clear because finite sets do not admit paradoxes.
(a) ⇒ (b). This proof uses the classic back-and-forth idea of the Schröder–

Bernstein Theorem (see Thm. 3.6). We start with a partition of X into A and
B and bijections f : X → A and g: X → B. We need bijections f1 and f2 from
X to X so that f1 agrees with f on A and f2 agrees with f on B. To get f1,
let h = g ◦ f : X → B and let C = A ∪ h(A) ∪ h(h(A)) ∪ . . . , which is a disjoint
union because h is one-to-one (see Fig. 1.3). Let D = X \C. Then f maps C onto
f (C) ⊆ A, and g( f (C)) = C \A. Therefore g is a bijection from X \ f (C) to D.
So let f1 be f on C and g−1 on D.
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8 1 Introduction

The construction of f2 is similar. Let h = f ◦ f : X → A and C = B ∪ h(B) ∪
h(h(B)) ∪ . . . . Then f maps C to X \C bijectively and f −1 is a bijection of X \C
with C. So let f2 be f on C and f −1 on X \C.

A similar argument gets gi so that g1 agrees with g on A and g2 agrees with g
on B.

These functions now give us X = f −1
1 ( f (A)) ∪ f −1

2 ( f (B)). Similarly, X can
be realized as a union of permutations restricted to g(A) and g(B). Because f (A),
f (B), g(A), g(B) are pairwise disjoint, and this shows that X is paradoxical.

(c) ⇒ (a). This is a consequence of the Axiom of Choice. First, it is proved
for cardinals by transfinite induction, and then AC (in the form: every set may
be mapped bijectively onto a cardinal) is invoked (see [KM68, Chap. 8]). Alter-
natively, one can give a more direct proof using Zorn’s Lemma (see [End77,
p. 163]).

1.2 Geometrical Paradoxes

The first example of a geometrical paradox, that is, one using isometries, arose
in connection with the existence of a non–Lebesgue measurable set. The well-
known construction of such a set fits into our context if Definition 1.1 is modified
to allow countably many pieces. Thus E is countably G-paradoxical means that

E =
∞⋃

i=1

giAi =
∞⋃

i=1

hiBi,

where {A1,A2, . . . ,B1,B2, . . .} is a countable collection of pairwise disjoint sub-
sets of E and gi, hi ∈ G. Recall that S1 denotes the unit circle and SO2(R) denotes
the group of rotations of the circle.

Theorem 1.5 (AC).∗ S1 is countably SO2(R)-paradoxical. If G denotes the group
of translations modulo 1 acting on [0, 1), then [0, 1) is countably G-paradoxical.

Proof. Let M be a choice set for the equivalence classes of the relation on S1

given by calling two points equivalent if one is obtainable from the other by a
rotation about the origin through a (positive or negative) rational multiple of 2π
radians. Because the rationals are countable, these rotations may be enumerated as
{ρi : i = 1, 2, . . .}; let Mi = ρi(M ). Then {Mi} partitions S1 and, because any two
of the Mi are congruent by rotation, the even-indexed of these sets may be (indi-
vidually) rotated to yield all the Mi, that is, to cover the whole circle. The same
is true of {Mi : i odd}. This construction is easily transferred to [0, 1) using the
bijection taking (cos θ, sin θ ) to θ/2π , which induces an isomorphism of SO2(R)
with G.

Corollary 1.6 (AC). (a) There is no countably additive, rotation-invariant mea-
sure of total measure 1, defined for all subsets of S1.

∗ In the sequel, theorems whose proof uses the Axiom of Choice will be followed by (AC).
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1.2 Geometrical Paradoxes 9

(b) There is a subset of [0, 1] that is not Lebesgue measurable.
(c) There is no countably additive, translation-invariant measure* defined on

all subsets of Rn and normalizing [0, 1]n.

Proof. (a) Suppose μ is such a measure and let A and B be disjoint subsets of
the circle that witness the paradox of Theorem 1.5; then the properties of μ give
1 ≥ μ(A ∪ B) = μ(A)+ μ(B) = 2, a contradiction.

(b) This follows from (c); in fact, {α ∈ [0, 1) : (cosα, sinα) ∈ M} is not
Lebesgue measurable.

(c) For R1, such a measure cannot exist because its restriction to subsets of
[0, 1] would be invariant under translations modulo 1, contradicting Theorem 1.5.
Such a measure in Rn would induce one on the subsets of R, by the correspon-
dence A ↔ A× [0, 1]n−1.

The connection between the Axiom of Choice and the existence of nonmea-
surable sets is complex, involving the theory of large cardinals and forcing—
two branches of contemporary set theory. We consider these connections in more
detail in Chapter 15. For now, we note only that (without assuming Choice) the
following two assertions are not equivalent:

� All sets of reals are Lebesgue measurable.
� There is a countably additive, translation-invariant extension of Lebesgue mea-

sure to all sets of reals.

It is known that the second assertion does not imply the first.
It comes as a bit of a surprise that even with the restriction to finitely many

pieces, paradoxes can be constructed using isometries. The following construc-
tion, the first of its kind, does not require any form of the Axiom of Choice, which
adds some weight to the comment of Eves [Eve63] that the result is “contrary to
the dictates of common sense.” Recall that when no group is explicitly mentioned,
it is understood that the isometry group is being used.

Theorem 1.7 (Sierpiński–Mazurkiewicz Paradox). There is a paradoxical sub-
set of the plane R2.

The reason this paradox exists is that the planar isometry group G2 has a free
non-Abelian subsemigroup that acts in a particularly nice way (Thm. 1.8). The
single most important idea in constructing a paradoxical decomposition is the
transfer of an algebraic paradox from a group or semigroup (as in Prop. 1.3) to
a set on which it acts. This technique was first used, independently, by Hausdorff
and by Sierpiński and Mazurkiewicz. The next theorem shows that a free sub-
semigroup exists for plane isometries.

* Measures are allowed to have values in [0,∞].
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10 1 Introduction

Theorem 1.8. There are two isometries, σ , τ , of R2 that generate a free subsemi-
group of G2. Moreover, σ and τ can be chosen so that for any two words w1 and
w2 in σ , τ having leftmost terms σ , τ , respectively, w1(0, 0) 
= w2(0, 0).

Proof. Choose θ so that β = eiθ is transcendental; θ = 1 works, but it is simpler
just to use the fact that the unit circle is uncountable whereas the set of alge-
braic numbers is countable. Then let σ be rotation by θ and let τ be translation
by (1, 0). In C, σ is multiplication by β and τ is addition of 1. We need only
prove that σ and τ satisfy the second assertion, because freeness follows from
that. For if w1 = w2, where w1 and w2 are distinct semigroup words and one
of them is (the identity or) an initial segment of the other, then left cancellation
yields v = e for a nontrivial word v . If v has σ on the left, then vτ (0) = τ (0),
and if v has τ on the left, then vσ (0) = σ (0), contradicting the second assertion
in either case. And if neither is an initial segment of the other, then left can-
cellation yields w1 and w2, which are equal in G2 but have different leftmost
terms.

So, suppose w1 = τ j1ρ j2 · · · τ jm and w2 = ρk1τ k2 · · · τ k	 , where m, 	 � 1 and
each exponent is a positive integer; because ρ(0) = 0, it is all right to assume that
w1 and w2 both end in a power of τ , unless w2 is simply ρk1 . Then

w1(0) = j1 + j3u j2 + j5u j2+ j4 + · · · + jmu j2+ j4+···+ jm−1

and

w2(0) = k2uk1 + k4uk1+k3 + · · · + k	u
k1+k3+···+k	−1 (= 0 if w2 = ρk1 ).

If w1(0) = w2(0), these two expressions may be subtracted to yield a noncon-
stant polynomial with integer coefficients that vanishes for the value eiθ , and this
contradicts the choice of θ .

Using the isometries of Theorem 1.8 (and working in C), we can prove The-
orem 1.7 by directly constructing a paradoxical set in the plane. Let E be the
orbit of 0 under the free subsemigroup of Theorem 1.8. Then let A = σ (E ) and
B = τ (E ). Figure 1.4 shows the orbit of 0 in C, where σ is replaced by multipli-
cation by β and τ by addition of 1. The framed numbers form A, and the others
are B; we have E = A/β = B− 1.

Another way of saying this is that E is the set of complex numbers of the
form a0 + a1β + · · · + anβ

n where n and the coefficients are nonnegative inte-
gers. Then A is the set of such numbers for which a0 = 0, and B consists of the
others.

We can state this construction in a more abstract form as follows.

Proposition 1.9. Suppose a group G acting on X contains σ , τ such that for
some x ∈ X , any two words in σ , τ beginning with σ , τ , respectively, disagree
when applied to x. Then there is a nonempty G-paradoxical subset of X.

Proof. Let S be the subsemigroup of G generated by τ and ρ, and let E be
the S-orbit of x. Then E ⊇ τ (E ), ρ(E ), and the hypothesis on x implies that
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