A CONCISE GUIDE TO GEOPRESSURE

Geopressure drives fluid flow and is important for hydrocarbon exploration, carbon sequestration, and designing safe and economical wells. This concise guide explores the origins of geopressure and presents a step-by-step approach to characterizing and predicting pressure and least principal stress in the subsurface. The book emphasizes how geology, and particularly the role of flow along permeable layers, drives the development and distribution of subsurface pressure and stress. Case studies, such as the Deepwater Horizon blowout, and laboratory experiments are used throughout to demonstrate methods and applications. It succinctly discusses the role of elastoplastic behavior, the full stress tensor, and diagenesis in pore pressure generation, and it presents workflows to predict pressure, stress, and hydrocarbon entrapment. It is an essential guide for academics and professional geoscientists and petroleum engineers interested in predicting pressure and stress, and understanding the role of geopressure in geological processes, well design, hydrocarbon entrapment, and carbon sequestration.

PROFESSOR PETER B. FLEMINGS holds the Leonidas T. Barrow Centennial Chair in Mineral Resources with the Jackson School of Geosciences at The University of Texas at Austin. He leads "UT GeoFluids," a long-running industry-sponsored effort dedicated to developing new concepts and approaches to predict pressure and stress in the subsurface. He served on the U.S. Department of Energy's well integrity team during the Deepwater Horizon blowout, he is a Geological Society of America fellow, and he was a distinguished lecturer for the American Association of Petroleum Geologists and the International Ocean Drilling Program. He has served as chief scientist on numerous scientific drilling expeditions.

A CONCISE GUIDE TO GEOPRESSURE

Origin, Prediction, and Applications

PETER B. FLEMINGS The University of Texas at Austin

Cambridge University Press 978-1-107-04234-6 — A Concise Guide to Geopressure Peter B. Flemings Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107042346 DOI: 10.1017/9781107326309

© Peter B. Flemings 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Flemings, Peter Barry, 1960– author.

Title: A concise guide to geopressure : origin, prediction, and applications / Peter B. Flemings, University of Texas, Austin.

Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2021. | Includes bibliographical references and index.

Identifiers: LCCN 2020041265 (print) | LCCN 2020041266 (ebook) | ISBN 9781107042346 (hardback) | ISBN 9781107326309 (ebook)

Subjects: LCSH: Petroleum - Geology. | Sedimentary basins.

Classification: LCC TN870.5 .F54 2021 (print) | LCC TN870.5 (ebook) | DDC 553.2/8-dc23

LC record available at https://lccn.loc.gov/2020041265

LC ebook record available at https://lccn.loc.gov/2020041266

ISBN 978-1-107-04234-6 Hardback

Additional resources for this publication at www.cambridge.org/flemings.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-04234-6 — A Concise Guide to Geopressure Peter B. Flemings Frontmatter <u>More Information</u>

Contents

Ack	nowle	edgments	<i>page</i> viii
List	of No	omenclature	ix
	•		
1	Intro	oduction	1
	1.1		1
	1.2	Audience and Application	5
	1.3	The Discipline of Pore Pressure Analysis	6
	1.4	Nomenclature	8
	1.5	Summary	8
2	Res	ervoir Pore Pressure	9
-		Introduction	9
		Pore Pressure	9
		Vertical Stress and Vertical Effective Stress	12
		Overpressure, and Pressure Gradient Plots	13
	2.5		14
		Capillary Pressure	17
	2.0		27
	2.8	Summary	33
3	Muo	drock Material Behavior	34
	3.1	Introduction	34
	3.2	Mudrock Material Behavior	35
	3.3	Stress State	49
	3.4	Generalized Mudrock Compaction Model	56
		Summary	62

v

vi

4	The Origins of Geopressure	64
	4.1 Introduction	64
	4.2 Pore Pressure Generation and Dissipation under Vertical Loading	64
	4.3 Sedimentation and Overpressure	79
	4.4 Pore Pressure in Complex Stress States	92
	4.5 Viscous Compaction	99
	4.6 Summary	102
5	Pore Pressure Prediction in Mudrocks	103
	5.1 Introduction	103
	5.2 Application to the Eugene Island 330 Oil Field	
	and the Pathfinder Well	105
	5.3 Details of Pore Pressure Prediction	109
	5.4 Other Normal Compaction Trend Methods	114
	5.5 Comparison of Pressure Prediction Models	118
	5.6 Summary	122
6	Pore Pressure Prediction: Unloading, Diagenesis,	
	and Non-Uniaxial Strain	123
	6.1 Introduction	123
	6.2 Pore Pressure Prediction in the Presence of Unloading	123
	6.3 Pore Pressure Prediction with Smectite-Illite Transformation	132
	6.4 Pore Pressure Prediction in Different Tectonic Environments	138
	6.5 Summary	140
7	Pressure and Stress from Seismic Velocity	142
	7.1 Introduction	142
	7.2 Seismic Velocity	142
	7.3 Reflection Tomography	149
	7.4 Seismic-Based Pore Pressure Prediction	151
	7.5 Summary	164
8	Overburden Stress, Least Principal Stress, and Fracture	
	Initiation Pressure	167
	8.1 Introduction	167
	8.2 Characterization of Overburden Stress	167
	8.3 Least Principal Stress and Fracture Initiation Pressure	175
	8.4 Summary	193

Contents

Cambridge University Press 978-1-107-04234-6 — A Concise Guide to Geopressure Peter B. Flemings Frontmatter <u>More Information</u>

Contents	vii
9 Trap Integrity	194
9.1 Introduction	194
9.2 Capillary (Membrane) Seal	194
9.3 Mechanical Seal	203
9.4 Summary	210
10 Flow Focusing and Centroid Prediction	211
10.1 Introduction	211
10.2 Flow Focusing	211
10.3 Field Examples	217
10.4 Predicting the Centroid Depth	220
10.5 The Impact of Reservoir Hydrocarbons on Centroid Position	228
10.6 Reservoir Compaction and the Centroid Model	229
10.7 Summary	230
11 Flow Focusing, Fluid Expulsion, and the Protected Trap	233
11.1 Introduction	233
11.2 The Popeye-Genesis Protected Trap	233
11.3 Shallow Water Flow and Submarine Landslides	243
11.4 Outcrop Examples	245
11.5 Summary	247
References	249
Index	264

Acknowledgments

I am fascinated with how depositional processes, stratigraphy, and flow couple to drive geological processes in sedimentary basins. I dedicate this book to the graduate students who joined me in this journey. It is an honor and a joy to try to keep up with your sharp and creative minds. In 2000, I began the GeoFluids Consortium, an industry-sponsored effort to understand pressure and stress in sedimentary basins. Almost every example from this book stems from this collaborative effort to understand the subsurface. My industry colleagues have patiently taught our group, provided data to further our efforts, and been outspoken in their ideas. In 2002, I joined the MIT geotechnics group for a sabbatical. Jack Germaine (Dr. G.) took me under his wing, guided my experimental efforts, and patiently answered every question. We are lifelong friends. At MIT, I took a theoretical soil mechanics course and a young doctoral student, Maria Nikolinakou, was my teaching assistant. Maria and I are now colleagues at U.T., and I learn from her every day. Also at U.T., Mahdi Heidari and I have found exciting problems at the interface of geology and engineering. Mahdi patiently reviewed many chapters of this book. Paul Hicks began my education in multiphase flow behavior. Today, David DiCarlo and I collaborate in multiphase flow. Niven Shumaker generously shared examples and methods for pore pressure prediction from seismic data. This journey began at Penn State and continues at the University of Texas. I am grateful to the Nittany Lions and the Longhorns for the freedom to pursue this journey. Aaron Price and Constantino Panagopulos were invaluable editors, compilers, and figure generators. I could not have gotten this done without their perseverance. My father Merton Flemings, inspired me to develop an understanding of the individual processes that drive pore pressure and to understand how these processes link. My running friends provided helpful reviews and emotional support. Lastly, I am grateful for the support and patience of my wife, Ann, and my son, Nicholas.

Nomenclature

This list contains definitions of symbols, dimensions, and the section of the book where they are first used. All symbols are defined in the text. There is, inevitably, some duplication.

English Units

			SI	
Symbol	Name	Dimensions	Unit	Reference
A	Parameter in velocity-effective stress equation	$\frac{L^2T}{M}$	$\frac{m}{Pa \cdot s}$	Chapter 5 (Eq. 5.7)
A	Parameter in velocity-density equation	$\frac{L^4}{MT}$	$\frac{m^4}{kg \cdot s}$	Chapter 6 (Eq. 6.7)
A	Surface area	L^2	m^2	Chapter 2 (Eq. 2.12)
A	Reservoir area	L^2	m^2	Chapter 10 (Eq. 10.2)
A _e	Parameter in velocity full effective stress equation	$\frac{L^2T}{M}$	$\frac{m}{Pa \cdot s}$	Chapter 7 (Eq. 7.14)
В	Parameter in velocity-effective stress equation	-	-	Chapter 5 (Eq. 5.7)
В	Parameter in velocity-density equation	-	-	Chapter 6 (Eq. 6.7)
В	Skempton coefficient	-	-	Chapter 4 (Eq. 4.7)
B _e	Parameter in velocity vs. equivalent effective stress equation	-	-	Chapter 7 (Eq. 7.14)
BSE	Backscattered electron			Chapter 3 (Fig. 3.4)
Cα	Coefficient of secondary consolidation	-	-	Chapter 3 (Eq. 3.5)
c_b	Bulk compressibility	$\frac{L^2T}{M}$	$\frac{1}{Pa}$	Chapter 2 (Eq. 2.8)
c_f	Fluid compressibility	$\frac{L^2T}{M}$	$\frac{1}{Pa}$	Chapter 4 (Eq. 4.8)
c_s	Solid compressibility	$\frac{L^2T}{M}$	$\frac{1}{Pa}$	Chapter 2 (Eq. 2.8)

(cont.)

х

			SI	
Symbol	Name	Dimensions	Unit	Reference
v	Coefficient of consolidation	$\frac{L^2}{T}$	$\frac{m^2}{s}$	Chapter 4 (Eq. 4.24)
2	Parameter in Butterfield equation	-	-	Chapter 5 (Table 5.1)
2	Loading efficiency	-	-	Chapter 4 (Eq. 4.9)
2	Parameter in Eaton equations	$\frac{L^2T}{M}$	$\frac{m}{Pa \cdot s}$	Chapter 5 (Equations 5.6 and 5.12)
20	Compression index (conventional log space)	-	-	Chapter 3 (Eq. 3.1)
Çe	Expansion index (conventional log space)	-	-	Chapter 3 (Fig. 3.5) Chapter 6 (Eq. 6.2)
lt _{ma}	Matrix travel time	$\frac{T}{I}$	$\frac{s}{m}$	Chapter 5 (Eq. 5.3)
lt	Travel time	$\frac{T}{L}$ $\frac{T}{L}$	S	Chapter 5 (Eq. 5.3)
2	Void ratio	L -	m -	Chapter 3 (Eq. 3.1)
min	Minimum void ratio	-	-	Chapter 6 (Eq. 6.1)
u	Void ratio, unloaded	-	_	Chapter 6 (Eq. 6.2)
u ² λ	Void ratio at $s' =$ unity along any stress ratio η	-	-	Chapter 3 (Eq. 3.21)
λ_{K_0}	Void ratio at s' = unity under uniaxial strain conditions	-	-	Chapter 3 (Eq. 3.25)
λ_{iso}	Void ratio at s' = unity under isostatic (t=0) conditions	-	-	Chapter 3 (Eq. 3.22)
λτ	Void ratio at s' = unity under Coulomb failure conditions	-	-	Chapter 3 (Fig. 3.17)
20	Void ratio at σ'_{v0}	-	-	Chapter 3 (Eq. 3.1)
1	Void ratio at the end of primary consolidation	-	-	Chapter 3 (Eq. 3.5)
2100	Void ratio at stress 100 kPa	-	-	Section 3.2.1
EI-330	Eugene Island 330 oil field, Gulf of Mexico			Chapter 5
EMW	Equivalent mud weight	$\frac{M}{L^2T^2}$	$\frac{kg}{m^2 s^2}$	Chapter 2 (Eq. 2.10)
ESP	Effective stress path			Chapter 3 (Fig. 3.9)
	Parameter in Issler equation	-	-	Chapter 5 (Eq. 5.3)
7	Applied load	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.2)
BP	Fracture breakdown pressure	$\frac{M}{LT^2}$	Pa	Chapter 8 (Fig. 8.8)
ЪCР	Fracture closure pressure	М	Pa	Chapter 8 (Fig. 8.8)
ΊT	Formation integrity test	$\frac{LT^2}{M}$ $\frac{M}{LT^2}$	Pa	Chapter 8 (Fig. 8.8)
TPP	Fracture propagation pressure	$\frac{M}{LT^2}$	Pa	Chapter 8 (Fig. 8.8)
FWL	Free water level	L1 ⁻		Chapter 9 (Fig. 9.2)
FOL	Free oil level			Chapter 9 (Fig. 9.6)
5	Acceleration of gravity	$\frac{L}{T^2}$	$\frac{m}{s^2}$	Chapter 2 (Eq. 2.1)
, ;	Flow focusing ratio	-	-	Section 10.2.2
GR	Gamma ray			Section 5.3.1

List of Nomenclature

Cambridge University Press 978-1-107-04234-6 — A Concise Guide to Geopressure Peter B. Flemings Frontmatter <u>More Information</u>

List of Nomenclature

(cont.)

			SI	
Symbol	Name	Dimensions	Unit	Reference
GWC	Gas-water contact	-	-	Chapter 2 (Fig. 2.1)
h_{FWL}	Height above free water level	L	т	Chapter 9 (Fig. 9.5)
h _{FOL}	Height above free oil level	L	т	Chapter 9 (Fig. 9.6)
h _{GWC}	Height of gas-water contact above free water level	L	т	Chapter 2 (Eq. 2.23)
h _{OWC}	Height of oil-water contact above free water level	L	т	Chapter 2 (Eq. 2.24)
ISIP	Instantaneous shut-in pressure	$\frac{M}{LT^2}$	Pa	Chapter 8 (Fig. 8.8)
k _{mr}	Mudrock permeability	$\frac{\frac{M}{LT^2}}{L^2}$	m^2	Chapter 10 (Eq. 10.2)
k	Permeability	L^2	m^2	Chapter 4 (Eq. 4.18)
K	Principal stress ratio	-	-	Chapter 3 (Eq. 3.15)
K_0	Lateral stress ratio for one dimen- sional strain	-	-	Chapter 3 (Eq. 3.3)
K_{0NC}	Normally consolidated lateral stress ratio for one dimensional strain	-	-	Chapter 3 (Fig. 3.8)
K_f	Stress ratio at Coulomb failure	-	-	Chapter 3 (Eq. 3.8)
ĹĹ	Liquid limit	-	-	Section 3.2.1
LOP	Leak-off pressure	$\frac{M}{LT^2}$	Pa	Chapter 8 (Fig. 8.8)
М	Slope of the Coulomb failure line in s' -t space	-	-	Chapter 3 (Equations 3.4 and 3.18)
т	Sedimentation rate	$\frac{L}{T}$	<u>m</u>	Chapter 4, (Eq. 4.30)
m_v	Coefficient of volume compressibility	$\frac{\frac{L}{T}}{\frac{LT^2}{M}}$	$\frac{\frac{m}{s}}{\frac{l}{Pa}}$	Chapter 4 (Eq. 4.11)
mbsf	Meters below seafloor	L	M	Chapter 3
n	Porosity	-	-	Chapter 3 (Eq. 3.2)
n_0	Reference porosity	-	-	Chapter 5 (Eq. 5.1)
n _m	Fraction of porosity that is bound water	-	-	Chapter 6 (Eq. 6.10)
N	Normal interparticle force	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.1)
NCT	Normal compaction trend			Chapter 5
OWC	Oil-water contact			Chapter 2 (Fig. 2.6)
PPG	Pounds per gallon	$\frac{M}{L^2T^2}$	$\frac{kg}{m^2s^2}$	Chapter 2 (Eq. 2.10)
q	Darcy flow velocity	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 4 (Eq. 4.18)
q	Deviatoric stress	$\frac{\frac{L}{T}}{\frac{M}{LT^2}}$	s Pa	Chapter 3 (Fig. 3.9)
Q	Volumetric flux	$\frac{M}{L^3}$	$\frac{m^3}{s}$	Chapter 4 (Eq. 4.19)
r	Capillary tube radius	L	M	Chapter 2 (Eq. 2.16)
r_t	Threshold pore throat radius	L	M	Chapter 2 (Fig. 2.12)
R	Radius of curvature	L	M	Chapter 2 (Eq. 2.16)

xi

xii

List of Nomenclature

(cont.)

			SI	
Symbol	Name	Dimensions	Unit	Reference
R	Resistivity	$\frac{L^3M}{T^3I^2}$	Ω .m	Chapter 5 (Eq. 5.10)
R	Bubble radius	L	М	Chapter 2 (Eq. 2.13)
R_h	Resistivity at equivalent hydrostatic effective stress	$\frac{L^3M}{T^3I^2}$	Ω .m	Chapter 5 (Eq. 5.10)
RBBC	Resedimented Boston blue clay			Chapter 3 (Fig. 3.2)
RGoM- EI	Resedimented Gulf of Mexico – Eugene Island mudrock			Chapter 3 (Fig. 3.2)
RPC	Resedimented Presumpscot clay			Chapter 3 (Fig. 3.2)
s'	Average or principal effective stresses in plane of shearing	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.10)
s_e'	Average stress under isotropic conditions	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.20)
S_t	Storage coefficient	$\frac{L^2T}{M}$	$\frac{1}{Pa}$	Chapter 4 (Eq. 4.32)
S	Storage coefficient	$\frac{L^2T}{M}$	$\frac{1}{Pa}$	Chapter 4 (Eq. 4.35)
S	Smectite	192	14	Chapter 6 (Fig. 6.10)
S+I	Smectite plus illite			Chapter 6 (Fig. 6.10)
S_w	Wetting phase saturation	-	-	Chapter 2 (Fig. 2.12)
Sigma	Present effective stress	$\frac{M}{LT^2}$	Pa	Chapter 6 (Fig. 6.8)
Sigmax	Maximum past effective stress	$\frac{\frac{M}{LT^2}}{\frac{M}{LT^2}}$	Pa	Chapter 6 (Fig. 6.8)
t	Maximum shear stress in plane of shearing	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.11)
t	Time	Т	S	Chapter 4 (Eq. 4.19)
Т	Tensile strength	$\frac{M}{LT^2}$	Pa	Chapter 8 (Eq. 8.1)
Т	Dimensionless time factor for sedimentation	-	-	Chapter 4 (Eq. 4.30)
T_{v}	Dimensionless time factor for pore pressure dissipation	-	-	Chapter 4 (Eq. 4.27)
TSP	Total stress path			Chapter 3 (Fig. 3.9)
TVDrkb	True vertical depth below kelly bushing	L	М	Chapter 6 (Fig. 6.8)
TVD _{SS}	True vertical depth below sea surface	L	М	Chapter 2 (Eq. 2.1)
и	Pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.3)
u_b	Borehole pressure	$\frac{M}{LT^2}$	Pa	Chapter 8 (Eq. 8.1)
<i>u_c</i>	Capillary pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.20)
u_{cgo}	Gas-oil capillary pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Fig. 2.6)
u _{cHg-air}	Mercury-air capillary pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.22)
u_{cmig}	Minimum capillary pressure for migration of non-wetting phase	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.24)

Cambridge University Press 978-1-107-04234-6 — A Concise Guide to Geopressure Peter B. Flemings Frontmatter <u>More Information</u>

List of Nomenclature

(cont.)

Symbol	Name	Dimensions	SI Unit	Reference
Symbol				
u _{cow}	Oil-water capillary pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.22, Fig. 2.6)
u_{crit}^{res}	Critical reservoir pressure at which seal leakage occurs	$\frac{M}{LT^2}$	Pa	Chapter 9 (Eq. 9.3)
u_d	Displacement pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Fig. 2.12)
u _{de}	Extrapolated displacement pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Fig. 2.12)
ug	Gas phase pressure	$\frac{M}{IT^2}$	Pa	Chapter 2 (Fig. 2.6)
u_h	Hydrostatic pressure	$\frac{\frac{M}{LT^2}}{\frac{M}{LT^2}}$	Pa	Chapter 2 (Eq. 2.1)
u^m	Pore pressure induced by mean stress	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.34)
<i>u</i> _o	Oil phase pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.13)
u ^q	Pore pressure induced by shear stress	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.34)
$u_{s'}$	Pore pressure induced by average stress	$\frac{M}{LT^2}$	Pa	Chapter 6 (Fig. 6.14)
u_t	Threshold pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Fig. 2.12)
u_w	Water phase pressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.13)
u_w^{res}	Water pressure in reservoir	$\frac{M}{LT^2}$	Pa	Chapter 9 (Eq. 9.4)
u*	Overpressure	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.3)
u_{res}^*	Reservoir overpressure	$\frac{M}{LT^2}$	Pa	Chapter 10 (Eq. 10.2)
u_{mr}^*	Mudrock overpressure	$\frac{M}{LT^2}$	Pa	Chapter 10 (Eq. 10.2)
U	Average degree of consolidation	-	-	Chapter 4 (Eq. 4.28)
U	Cohesion energy per molecule	$\frac{ML^2}{T^2}$	J	Section 2.6.1
U	Slope of the velocity-effective stress unloading curve	$\frac{L^2T}{M}$	$\frac{m^2s}{kg}$	Chapter 6 (Eq. 6.4)
UCS	Unconfined compressive strength	$\frac{M}{LT^2}$	Pa	Chapter 8 (Eq. 8.3)
V	Velocity	$\frac{M}{LT^2}$ $\frac{L}{T}$	$\frac{m}{s}$	Chapter 5 (Eq. 5.4)
V	Volume	L^3	m^3	Chapter 2 (Eq. 2.12)
V_h	Velocity at equivalent hydrostatic effective stress	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 5 (Eq. 5.4)
V _{max}	Velocity at preconsolidation stress	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 6 (Eq. 6.5)
V_n	Interval velocity	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 7 (Eq. 7.8)
V_{NMO}	Normal moveout velocity	$\frac{L}{T}$ $\frac{L}{T}$ $\frac{L}{T}$	$\frac{m}{s}$	Chapter 7 (Eq. 7.7)
V_o	Volume of oil	L^3	m^3	Chapter 2 (Eq. 2.12)
V_0	Reference velocity in velocity density cross plot	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 6 (Eq. 6.7)
V_p	Vertical velocity	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 7 (Eq. 7.9)
V _{rms}	Root mean square velocity	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 7 (Eq. 7.3)
V_u	Unloaded velocity	$\frac{L}{T}$ $\frac{L}{T}$ $\frac{L}{T}$ $\frac{L}{T}$	m	Chapter 6 (Eq. 6.4)
V_w	Velocity of sound in water	$\frac{L}{T}$	s m s	Chapter 5 (Eq. 5.7)

xiii

xiv

List of Nomenclature

(cont.)

			SI	
Symbol	Name	Dimensions	Unit	Reference
V_w	Volume of water	L^3	m^3	Chapter 2 (Eq. 2.12)
v	Specific volume	-	-	Section 5.4.1 (Table 5.1)
v_0	Reference specific volume	-	-	Chapter 5 (Table 5.1)
W_L	Liquid limit	-	-	Section 3.2.1
W	Work done	$rac{ML^2}{T^2} L^1$	$\frac{kg.m^2}{s^2}$	Chapter 2 (Eq. 2.12)
Ζ	Depth	\hat{L}^{I}	m	Chapter 2 (Eq. 2.4)
\overline{Z}	Centroid depth	L	т	Chapter 10 (Eq. 10.1)
Z_{base}	Depth of reservoir base	L	т	Chapter 10 (Eq. 10.3)
Z _{crest}	Depth of reservoir crest	L	M	Chapter 10 (Eq. 10.1)
Ζ	Relative depth of centroid	-	-	Chapter 10 (Eq. 10.1)
Z_{wd}	Water depth	L	т	Chapter 2 (Eq. 2.2)

Greek Units

Symbol	Name	Dimensions	SI Unit	Reference
α	Pore pressure coefficient	-	-	Chapter 2 (Eq. 2.7)
α	Fitting parameter in Eaton velocity equation	$\frac{1}{T}$	S	Chapter 5 (Eq. 5.5)
α	Fitting parameter in Eaton resistiv- ity equation	$\frac{L^2M}{T^3I^2}$	Ω	Chapter 5 (Eq. 5.11)
α	Fitting parameter for Gardner vel- ocity-density transform	$\frac{T}{L}$	$\frac{s}{m}$	Chapter 7 (Eq. 7.10)
α_b	Bulk sediment thermal expansion coefficient	$\frac{1}{K}$	$\frac{1}{^{\circ}\!\mathrm{C}}$	Chapter 4 (Eq. 4.33)
α_f	Fluid thermal expansion coefficient	$\frac{1}{K}$	$\frac{1}{^{\circ}C}$	Chapter 4 (Eq. 4.33)
α_m	Matrix thermal expansion coefficient	$\frac{1}{K}$	$\frac{1}{^{\circ} \mathbb{C}}$ $\frac{1}{^{\circ} \mathbb{C}}$	Chapter 4 (Eq. 4.33)
α_s	Solid thermal expansion coefficient	$\frac{1}{K}$	$\frac{1}{^{\circ}C}$	Chapter 4 (Eq. 4.33)
β	Compaction coefficient	$\frac{LT^2}{M}$	$\frac{1}{^{\circ}C}$ $\frac{1}{Pa}$	Chapter 5 (Eq. 5.1)
β	Fitting parameter for Gardner vel- ocity-density transform	-	-	Chapter 7 (Eq. 7.10)
γ	Interfacial tension	$\frac{M}{T^2}$	$\frac{mN}{m}$	Chapter 2 (Eq. 2.14)
γ	Fitting parameter in Eaton velocity equation	$\frac{L}{T}$	$\frac{m}{s}$	Chapter 5 (Eq. 5.5)
γ	Fitting parameter in Eaton resistiv- ity equation	$\frac{L^3M}{T^3I^2}$	$\Omega \cdot m$	Chapter 5 (Eq. 5.11)
γ_{Hg-air}	Mercury air interfacial tension	$\frac{M}{T^2}$	$\frac{mN}{m}$	Chapter 2 (Eq. 2.22)

Cambridge University Press 978-1-107-04234-6 — A Concise Guide to Geopressure Peter B. Flemings Frontmatter <u>More Information</u>

List of Nomenclature

(cont.)

mbol	Name	Dimensions	SI Unit	Reference
ws	Non-wetting fluid-solid interfacial tension	$\frac{M}{T^2}$	$\frac{mN}{m}$	Chapter 2 (Eq. 2.14)
v	Oil-water interfacial tension	$\frac{M}{T^2}$	$\frac{mN}{m}$	Chapter 2 (Eq. 2.12)
\$	Wetting fluid-solid interfacial tension	$\frac{M}{T^2}$	$\frac{mN}{m}$	Chapter 2 (Eq. 2.14)
	Thomsen delta	-	-	Chapter 7 (Eq. 7.9)
? <i>s</i> ′	Change in void ratio due to average stress change	-	-	Chapter 3 (Eq. 3.26)
P_q	Change in void ratio due to shear stress change	-	-	Chapter 3 (Eq. 3.26)
	Slope of line in an s' -t plot	-	-	Chapter 3 (Eq. 3.14)
	Slope of line in a σ'_m -q plot	-	-	Chapter 7 (Eq. 7.15)
	Bulk viscosity	$\frac{M}{LT}$	$Pa \cdot s$	Chapter 4 (Eq. 4.38)
5	Slope of line in an s' - t plot at critical state	-	-	Chapter 3 (Eq. 3.18)
0	Slope of line in an s' - t plot under uniaxial compression	-	-	Chapter 3 (Eq. 3.19)
	Slope of line in an s' -t plot at Coulomb failure	-	-	Chapter 3 (Eq. 3.17)
	Contact angle	-	radians	Chapter 2 (Eq. 2.14)
	Inclination of a surface relative to the plane upon which the principal stress is acting	-	radians	Chapter 3 (Fig. 3.12)
r	Inclination of Coulomb failure surface relative to the plane upon which the principal stress is acting	-	radians	Chapter 3 (Eq. 3.9)
lg–air	Mercury-air contact angle	-	radians	Chapter 2 (Eq. 2.22)
v	Oil-water contact angle	-	radians	Chapter 2 (Eq. 2.22)
	Slope on a plot of void ratio vs. natural log of average stress	-	-	Chapter 3 (Eq. 3.21)
	overpressure ratio	-	-	Chapter 2 (Eq. 2.11)
	Viscosity	$\frac{M}{LT}$	$Pa \cdot s$	Chapter 4 (Eq. 4.18)
	Mean stress loading efficiency	$\frac{\frac{M}{LT}}{\frac{LT^2}{M}}$	$\frac{1}{Pa}$	Chapter 4 (Eq. 4.34)
	Shear stress loading efficiency	$\frac{LT^2}{M}$	$\frac{1}{Pa}$	Chapter 4 (Eq. 4.34)
	Unloading coefficient	M -	-	Chapter 6 (Eq. 6.8)
	Poisson's ratio	-	-	Chapter 8 (Eq. 8.5)
	Density	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 2 (Eq. 2.4)
	Bulk density	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 2 (Eq. 2.5)
	Gas density			Section 2.2
	•	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	
ax	Density at preconsolidation stress	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 6 (Eq. 6.8)

xv

xvi

List of Nomenclature

(cont.)
--------	---

Symbol	Name	Dimensions	SI Unit	Reference
ρ_o	Oil density	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Section 2.2
$ ho_{pw}$	Pore water density	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 2 (Eq. 2.2)
$ ho_{sw}$	Seawater density	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 2 (Eq. 2.2)
ρ_v	Density for an observed velocity under normal compaction	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 6 (Eq. 6.8)
$ ho_0$	Reference density in velocity- density cross plot for normal compaction	$\frac{M}{L^3}$	$\frac{kg}{m^3}$	Chapter 6 (Eq. 6.7)
$\sigma^{'}$	Effective normal stress	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.1)
σ	Total normal stress	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.2)
$\sigma_{\!f\!f}^{'}$	Normal effective stress on failure plane at Coulomb failure	$\frac{M}{LT^2}$	Ра	Chapter 3 (Eq. 3.7)
$\sigma_{h}^{'}$	Minimum horizontal effective stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.3)
$\sigma_{e}^{'}$	Equivalent stress	$\frac{M}{LT^2}$	Pa	Chapter 7 (Eq. 7.15)
σ_h	Minimum horizontal stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.13)
σ_H	Maximum horizontal stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Fig. 3.14)
σ_m	Mean total stress	$\frac{M}{LT^2}$	Pa	Chapter 4 (Eq. 4.7)
$\sigma_{m}^{'}$	Mean effective stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Fig. 3.9)
$\sigma_{p}^{'}$	Preconsolidation stress	$\frac{M}{LT^2}$	Pa	Chapter 6 (Eq. 6.2)
$\sigma_{u}^{'}$	Unloaded vertical effective stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Fig. 3.5, Eq. 6.2)
σ_v	Vertical total stress	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.6)
$\sigma_v^{'}$	Vertical effective stress	$\frac{M}{LT^2}$	Pa	Chapter 2 (Eq. 2.7)
$\sigma_{vh}^{'}$	Vertical effective stress if pore pressure is hydrostatic	$\frac{M}{LT^2}$	Pa	Chapter 5 (Eq. 5.4)
σ_{l}	Maximum principal stress	$\frac{M}{LT^2}$	Pa	Section 3.3
$\sigma_{l}^{'}$	Maximum principal effective stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.8)
σ_2	Intermediate principal stress	$\frac{M}{LT^2}$	Pa	Section 3.3
σ_3	Least principal stress	$\frac{M}{LT^2}$	Pa	Section 3.3
$\sigma_{3}^{'}$	Least principal effective stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.8)
σ_3^{seal}	Least principal stress in seal above reservoir	$\frac{M}{LT^2}$	Pa	Chapter 9 (Eq. 9.3)
$\sigma_{ heta}^{'}$	Normal effective stress to a plane at angle theta to the principal stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Fig. 3.12)
τ	Shear stress	$\frac{\frac{M}{LT^2}}{\frac{M}{LT^2}}$	Pa	Chapter 3 (Eq. 3.6)
$ au_{f\!f}$	Shear stress on failure surface at Coulomb failure	$\frac{M}{LT^2}$	Pa	Chapter 3 (Eq. 3.7)

List of Nomenclature

xvii

Symbol	Name	Dimensions	SI Unit	Reference
$ au_ heta$	Shear stress on a plane at angle θ to the principal stress	$\frac{M}{LT^2}$	Pa	Chapter 3 (Fig. 3.12)
$ au_{ heta f}$	Shear stress at failure along critical failure plane	$\frac{M}{LT^2}$	Pa	Chapter 3 (Fig. 3.13a)
ϕ'	Friction angle based on effective stress	-	radians	Chapter 3 (Eq. 3.7)