

Global Energy Justice

We need new ways of thinking about, and approaching, the world's energy problems. Global energy security and access is one of the central justice issues of our time, with profound implications for happiness, welfare, freedom, equity, and due process. This book combines up-to-date data on global energy security and climate change with fresh perspectives on the meaning of justice in social decision-making. Benjamin K. Sovacool and Michael H. Dworkin address how justice theory can help people to make more meaningful decisions about the production, delivery, use, and effects of energy. Exploring energy dilemmas in real-life situations, they link recent events to eight global energy injustices and employ philosophy and ethics to make sense of justice as a tool in the decision-making process. They go on to provide remedies and policies that planners and individuals can utilize to create a more equitable and just energy future.

BENJAMIN K. SOVACOOL is Professor of Business and Social Sciences and Director of the Center for Energy Technologies, AU-Herning, Aarhus University, Denmark. He is also Associate Professor at Vermont Law School, where he manages the Energy Security and Justice Program at the Institute for Energy and the Environment (IEE).

MICHAEL H. DWORKIN is a Professor of Law and Director of the IEE at Vermont Law School.

Global Energy Justice

Problems, Principles, and Practices

BENJAMIN K. SOVACOOL

Aarhus University

and

MICHAEL H. DWORKIN

Vermont Law School

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107665088

© Benjamin K. Sovacool and Michael H. Dworkin 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Sovacool, Benjamin K.

Global energy justice: problems, principles, and practices / Benjamin K. Sovacool, Aarhus University, and Michael H. Dworkin, Vermont Law School. pages cm

ISBN 978-1-107-66508-8 (paperback)

1. Energy policy. 2. Social justice. I. Dworkin, Michael H. II. Title. HD9502.A2S6763 2014 333.79-dc23

2014010871

ISBN 978-1-107-04195-0 Hardback ISBN 978-1-107-66508-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

The science of political economy, and the distribution of resources, bears a nearer resemblance to the science of morals and politics than to mathematics.

Thomas Malthus, 1820

To Ethan and Zachary Sovacool, and Samuel and Alice Dworkin, so that you might live in a better, more energy-just world.

Contents

List	t of figures	page xiii
Lisi	t of tables	xvi
Ack	nowledgements	xviii
List	t of abbreviations	XX
1	Introduction	1
2	The global energy system	31
3	Virtue and energy efficiency	88
4	Utility and energy externalities	125
5	Energy and human rights	157
6	Energy and due process	191
7	Energy poverty, access, and welfare	223
8	Energy subsidies and freedom	256
9	Energy resources and future generations	288
10	Fairness, responsibility, and climate change	319
11	The imperative of making just energy decisions	353
Ind	ex	378

vii

Analytical table of contents

Li	st of figures	page xiii
Li	st of tables	xvi
A	cknowledgements	xviii
Li	st of abbreviations	XX
1	Introduction	1
	"Energy justice" as a concept and a tool	5
	Energy as a concept	6
	Justice as a concept	9
	Energy justice as a concept	13
	Chapters to come	18
	What is reality?	19
	What is justice?	20
	What is to be done?	20
	Parallel frameworks	21
	Novelty and contribution	22
	Focus on justice	22
	Interdisciplinary methodology	25
	Broad definition of decision-makers	25
	Global comparisons	26
	Towards energy justice	29
2	The global energy system	31
	Introduction	31
	Fundamental concepts	32
	Fuels, prime movers, delivery mechanisms, and end-uses	36
	Resources and fuels	36
	Prime movers and end-uses	38
	Internal combustion engines	38
	Jet turbines	40
	Households and other devices	41
	Delivery mechanisms	44
	Pipelines	44

viii

Αr	nalytical table of contents	ix
	Tankers	45
	Electric transmission and distribution	46
	Towards global energy systems	47
	Extractive industries	49
	Oil and gas	49
	Coal	53
	Uranium	55
	Critical materials	57
	Electricity	60
	Transport	61
	Agriculture	65
	Environmental and social impacts	68
	Climate change	68
	Air pollution	74
	Water use and contamination	79
	Land use and deforestation	82
	Other pollution	83
	Conclusion	86
3	Virtue and energy efficiency	88
	What is reality?	90
	Energy conversion and use	90
	Aging capital stock and blackouts	95
	Declining energy payback ratios	100
	Social barriers to energy-efficient behavior	101
	Opportunity costs	106
	What is justice?	108
	An ideal state	109
	Happiness	110
	Balance	111
	What is to be done?	113
	Electricity demand-side management	113
	Transportation demand-side management	116
	Reductions in energy intensity	117
	Energy-efficiency labeling and fuel economy	
	standards	118
	Smarter grids and electricity pricing	119
	Information and awareness campaigns	123
4	Utility and energy externalities	125
	What is reality?	126
	Climate change	127

x

Analytical table of contents

	Electricity generation	129
	Automobiles and transport	130
	Oil and gas production	132
	Mountaintop removal coalmining	133
	Uranium mining	135
	Nuclear waste storage and decommissioning	136
	Indoor air pollution	139
	What is justice?	139
	Jeremy Bentham	141
	John Stuart Mill	143
	Henry Sidgwick	144
	What is to be done?	145
	Placing a price on carbon	145
	Accurate price signals and tax shifting	147
	Environmental bonds	153
5	Energy and human rights	157
	What is reality?	158
	Occupational hazards and accidents	159
	Human rights abuses	165
	Corruption	169
	Social and military conflict	172
	What is justice?	174
	Immanuel Kant	175
	What is to be done?	179
	Energy truth commissions and inspection panels	180
	Improved impact assessments	181
	Extractive industry transparency initiatives	184
	Protect, respect, and remedy	187
5	Energy and due process	191
	What is reality?	193
	Unfair negotiations	193
	Involuntary resettlement	195
	Improper licensing and deception	199
	Community marginalization	202
	What is justice?	206
	Due process	206
	Procedural justice	208
	What is to be done?	213
	Better information disclosure	
	and auditing	213

Ar	nalytical table of contents	xi
	Broader public involvement and participatory energy	
	decision-making	214
	Community-based energy research	215
	Participatory technology assessment and consensus	
	conferences	215
	Debates, referendums, review boards,	
	and consultation	218
	Free prior informed consent	220
7	Energy poverty, access, and welfare	223
	What is reality?	224
	Accessibility, energy poverty, and drudgery	225
	Fuel poverty, health, and excess winter deaths	231
	Intellectual property	233
	What is justice?	237
	John Rawls	238
	Amartya Kumar Sen	242
	Martha C. Nussbaum	243
	What is to be done?	246
	Investing in small-scale renewable energy	246
	Harnessing the "pro-poor public private	
	partnership" approach	249
	Social pricing and assistance programs	253
8	Energy subsidies and freedom	256
	What is reality?	258
	Defining subsidies	258
	Government deficits	262
	Increased consumption and reduced efficiency	265
	Anticompetitive behavior and poor investment	267
	Energy shortages and exacerbation of poverty	269
	Externalities and emissions	271
	Subsidy "lock-in" and "addiction"	272
	What is justice?	273
	Robert Nozick	274
	Milton Friedman	275
	Libertarian theory in a nutshell	276
	What is to be done?	279
	Eliminating inappropriate subsidies	280
	Subsidy impact studies	282
	Sunset clauses	285
	Adjustment packages	286

xii

Analytical table of contents

9	Energy resources and future generations	288
	What is reality?	291
	Long-lived nuclear waste	291
	Resource depletion	294
	What is justice?	300
	Ronald Dworkin	301
	Brian Barry	303
	Edith Brown Weiss	305
	What is to be done?	310
	Efficiency and innovation	311
	Natural resource funds	314
	Renewable energy	315
10	Fairness, responsibility, and climate change	319
	What is reality?	320
	Towards global calamity	321
	What is justice?	326
	Respect for future generations	327
	Honoring subsistence rights	329
	Responsibility and corrective justice	330
	What is to be done?	332
	Greenhouse development rights	333
	Community-based adaptation	336
	Mitigation stabilization wedges	339
11	The imperative of making just energy decisions	353
	The perversity of energy injustice	356
	The necessity of comprehensive intervention	358
	The import of values behind technologies	362
	Presenting an energy justice framework	366
	Availability	367
	Affordability	368
	Due process	368
	Information	369
	Sustainability	369
	Intragenerational equity	370
	Intergenerational equity	370
	Responsibility	371
	Synthesis	371
	The criticality of choice	375
Index		378

1.1 Descriptive, normative, and prescriptive components

Figures

	of energy justice	page 19
1.2	Balance of carbon dioxide emissions embodied in	
	imports and exports of the largest trading countries	28
2.1	A comparison of densities for common fuels	39
2.2	Trends in luminous efficiency for various lighting devices,	,
	1850–2010	42
2.3	World population growth (right axis), per capita gross	
	domestic product (left axis), and primary energy use (left	
	axis), 1800–2010	48
2.4	Share of global greenhouse gas emissions by sector, gas,	
	and country, 2010	70
2.5	Projected greenhouse gas emissions, 1900–2100	72
2.6	Atmospheric concentration of carbon dioxide (ppm),	
	1900–2000	72
2.7	Temperature change from preindustrial times (°C),	
	1900–2100	73
2.8	Cities with high concentrations of particulate matter	
	pollution, 2008–2009 (PM ₁₀ concentration	
	micrograms/m ³)	78
2.9	Global freshwater evaporated from dam reservoirs	
	(km ³ /year), 1900–2010	80
3.1	Inefficiencies involved in modern forms of energy	
	conversion and use	93
3.2	Wasted energy in the global energy system, 2012	94
3.3	Age of US coal generators by capacity, in 2012	96
3.4	Average load factor for the US electric grid, 1955–2010	96
3.5	Energy payback ratios for various energy fuels and	
	technologies	101
3.6	McKinsey cost curve for carbon dioxide abatement	
	options	115

xiii

xiv List of figures

3.7	Energy-efficiency savings in eleven Organisation for	
	Economic Co-operation and Development Countries,	
	1973–2006	118
3.8	Malaysian electricity bill showing ascending block-rate	
	tariffs	122
4.1	Oil and gas production near Baku, Azerbaijan	133
4.2	Mountaintop removal coalmining near Kayford	
	Mountain, West Virginia	134
4.3	The dangers of household cooking and indoor air	
	pollution	140
5.1	Comparison of occupational and accident risks	
	associated with various energy systems	165
6.1	The Three Gorges Dam in China	197
7.1	Bedouin villages in Southern Israel without access to the	
	electricity grid that surrounds them	227
	Annual deaths worldwide by cause, 2012 and 2030	228
7.3	Key characteristics of the "pro-poor public private	
	partnership" approach	250
8.1	Subsidies for gasoline and diesel in selected countries	264
8.2	Global energy research expenditures, 1974–2010	
	(millions of US\$)	270
8.3	Top thirty "most effective" policies for promoting clean	
	energy $(n = 181)$	281
9.1	Major global energy reserves for leading energy nations,	
	2012	295
9.2	Global production of fossil fuels, 1800–2200	297
9.3	Estimated direct economic costs of oil dependence to the	
	United States, 1970–2010 (billions of US\$)	298
9.4	Average energy use of a new refrigerator in the United	
	States (kilowatt-hours), 1950–2014	313
10.1	Average emissions rates for cumulative carbon dioxide	
	emissions by country, 1880–2004	325
10.2	Example of a per capita emissions "contraction and	
	convergence" strategy, 1980–2040	332
10.3	Stabilization "wedges" and "triangles" for mitigating	
	emissions	341
10.4	Base energy technology scenario for the Western United	
	States, 2020–2050	347

List of figures		XV
10.5	Growth rates of selected renewable energy technologies	
	(%), 2010–2012	348
10.6	Global investment rates in selected renewable energy	
	technologies (billions of US\$), 2007–2012	348

Tables

1.1	Energy justice concepts and contexts	page 14
1.2	Parallel terminology for our analytical framework	21
2.1	Fundamental differences between energy resources	
	and fuels	36
2.2	Major producers of crude oil and natural gas liquids	
	(thousand barrels per day) and reserves (million barrels),	
	1995–2010	50
2.3	Major producers of natural gas (billion cubic meters)	
	and reserves (billion cubic meters), 1995-2010	51
2.4	Top ten largest oil and gas companies by reserves	
	and production	52
2.5	Number of coalmines worldwide	54
2.6	Top coal producers worldwide (million tons)	54
2.7	Global production of uranium, 2005–2012 (metric tons)	56
2.8	Top uranium mining companies, 2012	57
2.9	Materials for nuclear and renewable power plant	
	construction (tons/installed GW equivalent)	58
2.10	World production of petroleum liquids by region,	
	2009–2040 (million barrels per day)	63
2.11	Global environmental degradation associated with	
	energy use	68
2.12	Global leaders in carbon dioxide equivalent emissions	
	from deforestation	83
2.13	Major sources of global energy pollutants	84
3.1	Lifecycle equivalent carbon dioxide emissions (grams	
	of CO ₂ /kWh) for selected "clean" sources of modern	
	energy	107
3.2	Carbon-to-cost ratio for "clean" sources of modern	
	energy	108
3.3	Comparison between conventional electricity grids	
	and "smart grids"	120

xvi

List of tables		xvii
4.1	Approximate causes of death in the United States, 2011	131
	Negative externalities associated with various energy	
	systems (cents/kWh in 1998 dollars)	149
4.3	Examples of environmental and energy tax shifting	152
	Major coalmining accidents in the United States,	
	1940–2010	160
5.2	Major cases of energy-related corruption, 1960–2010	170
	Impact-benefit agreements in Canada, 2012	185
6.1	Participatory technology assessments undertaken from	
	2005 to 2009	217
7.1	Number and share of population without access to	
	modern energy services, 2009	226
7.2	Average excess winter mortality in twelve countries,	
	2008	232
7.3	Community improvement from the Cinta Mekar	
	Microhydro Project, 2004–2008	252
	Types of global energy subsidies	259
8.2	VAT energy subsidies removed in Europe, 1983–2005	282
8.3	Successful examples of national subsidy reform,	
	1952–2012	283
9.1	Life expectancy of proven fossil-fuel and uranium	
	resources, 2012	296
9.2	Prices of end-use energy in Britain, 1300–2000	
	(1900 = 100)	312
	Renewable energy technologies and associated fuel cycles	316
10.1	Criteria and indicators for Shue's "standard of decent	
	living"	330
10.2	Characteristics of a greenhouse development rights	
	framework based on responsibility and capacity	335
10.3	Examples of infrastructural, organizational, and social	
	adaptation projects in the Asia-Pacific	340
	Sixteen climate stabilization wedges	343
10.5	Top five countries for renewable energy growth	
	and cumulative investment, 2010	349
11.1	Energy justice conceptual framework	367

Acknowledgements

The Energy Security and Justice Program at Vermont Law School's Institute for Energy and the Environment investigates how to provide ethical access to energy services and minimize the injustice of current patterns of energy production and use. It explores how to equitably provide available, affordable, reliable, efficient, environmentally benign, proactively governed, and socially acceptable energy services to households and consumers. One track of the program focuses on lack of access to electricity and reliance on traditional biomass fuels for cooking in the developing world. Another track analyzes the moral implications of existing energy policies and proposals, with an emphasis on the production and distribution of negative energy externalities and the impacts of energy use on the environment and social welfare.

This book is one of three produced by the Program. The first, *Energy Security*, *Equality*, *and Justice*, maps a series of prominent global inequalities and injustices associated with modern energy use. The second, *Energy and Ethics: Justice and the Global Energy Challenge*, presents a preliminary energy justice conceptual framework and examines eight case studies where countries and communities have overcome energy injustices. The third, *Global Energy Justice: Problems, Principles, and Practices*, matches eight philosophical justice ideas with eight energy problems, and examines how these ideals can be applied in contemporary decision-making.

Also, the global energy justice team would like to thank many people along the way who made the completion of this book – which took half a decade to compile and write – possible. At the top of this list are Lilei Chow and Loring Starr, for their endless, much-needed love and support. In the academic world, we are thankful to Maria D'Amico at McGill University, Mark Jaccard from Simon Fraser University, and Thomas Homer-Dixon from the Balsillie School of International Affairs for thoughtful discussions with the authors on some of the topics of this book. Also, we thank Markus Gehring from the University of

xviii

Acknowledgements

xix

Cambridge, John Haffner from Ontario Power Generation, Richard Ianda from McGill University, Robb Miller from Ecofuels Canada, and Lavania Rajamani from Queens' College in Cambridge for participating in energy justice related workshops at the Vermont Law School. David Contrada from the Institute for Energy and Environment at Vermont Law School, and Tracy Bach and Burns Weston from the Climate Legacy Initiative at Vermont Law School, deserve a special mention for writing excellent articles that certainly clarified our understanding of energy justice. Michael gives a heartfelt thanks to Professor Murray Dry of Middlebury College, who, long ago, showed him how the words of the ancient Greeks could help us define a justice worth aspiring to in today's world. In addition, we express deep gratitude to Barry Barton for both specific comments on Chapter 1 and the chance (for one of us) to spend a semester teaching and learning at the Center for Energy Resources and Environmental Law at Waikato University's Te Piringa Faculty of Law in New Zealand. We are also grateful to Professor Aleh Cherp and the Central European University in Budapest, Hungary, for an Erasmus Mundus Visiting Fellowship (for the other of us) with the Erasmus Mundus Masters Program in Environmental Sciences, Policy, and Management (MESPOM), which has supported elements of the work reported here. None of the people indicated here necessarily endorses or agrees with our argument in part or overall; and all errors are the fault of the authors alone.

Abbreviations

ACalternating current **ASE** Alliance to Save Energy **BTC** Baku-Tbilisi-Cevhan **BTU** British Thermal Unit

CAFE Corporate Average Fuel Economy carbon capture and sequestration **CCS**

CFL. compact fluorescent lamp CI Conservation International Conference of Parties COP

COP15 Fifteenth Session of the Conference of Parties

carbon dioxide CO_2

CRS Compagnies Républicaines de Sécurité Department of the Environment DOE

dwt deadweight

Environmental Impact Assessment EIA

EITI extractive industry transparency initiative

ΕI exaioule

EPA Environmental Protection Agency

energy payback ratio **EPR** energy service company **ESCO** EU European Union

Foreign Corrupt Practices Act **FCPA**

FIT feed-in tariff

5P pro-poor public private partnership

free prior informed consent **FPIC**

Government Accountability Office **GAO**

GDP gross domestic product

greenhouse development rights GDR

greenhouse gas **GHG**

GW gigawatt GWh gigawatt-hour

XX

More information

List of abbreviations

xxi

HVDC high-voltage direct current

IAEA International Atomic Energy Agency

IAP indoor air pollution
IBA Impact-Benefit Agreement
IEA International Energy Agency

IEEE Institute of Electrical and Electronics Engineers
IISD International Institute for Sustainable Development

IMF International Monetary Fund

IPCC Intergovernmental Panel on Climate Change

ITT Ishpingo Tambococha Tiputini

IUCN International Union for Conservation of Nature

JDZ Joint Development Zone

kV kilovolt
kW kilowatt
kWh kilowatt-hour
LED light-emitting diode

LIHEAP Low Income Home Energy Assistance Program

LNG liquefied natural gas LPG liquid petroleum gas

MJ megajoule

MMSD Mining Minerals and Sustainable Development

mpg miles per gallon

MTVF mountaintop mining with valley fill

MW megawatt MWh megawatt-hour

NAPAs National Adaptation Programs of Action

NASA National Aeronautics and Space Administration NEITI Nigerian Extractive Industries Transparency Initiative

NO_x nitrogen oxide

NRC National Research Council

NREL National Renewable Energy Laboratory
OECD Organisation for Economic Co-operation and

Development

ORML Oil Revenue Management Law
ORNL Oak Ridge National Laboratory

PM particulate matter ppm parts per million PSI Paul Scherrer Institute

More information

xxii List of abbreviations

PTA participatory technology assessment

PUC Public Utilities Commission

PV photovoltaic

RCI Responsibility and Capacity Indicator

REDD Reducing Emissions from Deforestation and Degradation REEEP Renewable Energy and Energy-Efficiency Partnership REN21 Renewable Energy Policy Network for the 21st Century

RGGI Regional Greenhouse Gas Initiative SCORE Sarawak Corridor of Renewable Energy

SDG&E San Diego Gas and Electric

SO₂ sulfur dioxide

SRRP Saskatchewan Rate Review Panel
T&D transmission and distribution
TRI Toxics Release Inventory

TW terawatt TWh terawatt-hour

ULCC ultra-large crude carrier

UN United Nations

UNEP United Nations Environment Program

UNESCAP United Nations Economic and Social Commission for

Asia and the Pacific

UNFCCC United Nations Framework Convention on Climate

Change

UNPFII United Nations Permanent Forum on Indigenous Issues
US EIA United States Energy Information Administration

VLCC very large crude carriers

V2G vehicle-to-grid

W Watt

WEC World Energy Council WHO World Health Organization

\$ United States dollar unless otherwise noted