

#### HEAT TRANSFER PHYSICS, SECOND EDITION

This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/moleculardynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers to enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum transport, and discussion of graphene and its phonon and electronic conductances. New appendix coverage of phonon contributions to the Seebeck coefficient, Monte Carlo methods, and ladder operators is also included.

Massoud Kaviany is a Professor in the Department of Mechanical Engineering and in the Applied Physics Program at the University of Michigan, where he has been since 1986. His area of teaching and research is heat transfer physics, with a particular interest in porous media. His current projects include atomic structural metrics in high-performance thermoelectric materials (both electron and phonon transport) and in laser cooling of solids (including ab initio calculations of photon-electron and electron-phonon couplings), and the effect of pore water in polymer electrolyte transport and fuel cell performance. His integration of research into education is currently focused on heat transfer physics, treating the atomic-level kinetics of transport and interaction of phonon, electron, fluid particle, and photon in a unified manner. It combines ab initio (fine structure), molecular dynamics, Boltzmann transport, and macroscopic treatments, but on increasing length and times scales. He is author of the monographs Principles of Heat Transfer in Porous Media (2nd Ed.) and Principles of Convective Heat Transfer (2nd Ed.), and the undergraduate textbooks Principles of Heat Transfer and Essentials of Heat Transfer. He received the College of Engineering's Education Excellence Award in 2003. He is an editor of the Journal of Nanoscale and Microscale Thermophysical Engineering and is on the editorial board of the International Journal of Heat and Mass Transfer and several other international journals. He is an ASME Fellow (since 1992) and an APS Fellow (since 2011), was Chair of the ASME Committee on Theory and Fundamental Research in Heat Transfer (1995–98), and is the recipient of the 2002 ASME Heat Transfer Memorial Award (Science) and the 2010 Harry Potter Gold Medal (Thermodynamics Science).





# **Heat Transfer Physics**

Second Edition

Massoud Kaviany
University of Michigan





#### CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107041783

© Massoud Kaviany 2008, 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published 2008

Second edition 2014

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Kaviany, M. (Massoud), author.

Heat transfer physics / Massoud Kaviany. - Second edition.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-04178-3 (hardback)

1. Nuclear reactor kinetics. 2. Change of state (Physics) 3. Heat storage. 4. Heat – Transmission.

I. Title.

QC787.N8K39 2013

536'.2-dc23 2013032185

ISBN 978-1-107-04178-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.



To curiosity, reason, doubt, dialogue, understanding, tolerance, and humility.





## Contents

| Pre | face                                                        |                                                 |                                                     | <i>page</i> xvii |
|-----|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------|
| Ack | knowi                                                       | ledgme                                          | ents                                                | xxi              |
| 1   | 1 Introduction and Preliminaries                            |                                                 |                                                     | 1                |
|     |                                                             |                                                 |                                                     |                  |
|     |                                                             | Photo                                           | on                                                  | 3                |
|     |                                                             | 1.1.1                                           | Phonon                                              | 4                |
|     |                                                             | 1.1.2                                           | Electron (and Hole)                                 | 7                |
|     |                                                             | 1.1.3                                           | Fluid Particle                                      | 8                |
|     |                                                             | 1.1.4                                           | Photon                                              | 9                |
|     | 1.2                                                         | Equil                                           | ibrium and Nonequilibrium Energy Occupancy          |                  |
|     |                                                             | Distri                                          | ibutions                                            | 10               |
|     |                                                             | 1.2.1                                           | Nonequilibrium Energy Carrier Occupancy by Energy   |                  |
|     |                                                             |                                                 | Conversion                                          | 10               |
|     |                                                             | 1.2.2                                           | Transport Phenomena Related to Energy Occupancy     |                  |
|     |                                                             |                                                 | Distributions                                       | 14               |
|     | 1.3                                                         | Partic                                          | cles, Waves, Wave Packets and Quasi-Particles, and  |                  |
|     |                                                             | Densi                                           | ity of States                                       | 16               |
|     | 1.4 A History of Contributions Toward Heat Transfer Physics |                                                 |                                                     | 17               |
|     | 1.5                                                         | Fundamental Constants and Fine-Structure Scales |                                                     | 20               |
|     |                                                             | 1.5.1                                           | Boltzmann and Planck Constants                      | 20               |
|     |                                                             | 1.5.2                                           | Atomic Units and Fine-Structure Scales              | 21               |
|     | 1.6                                                         | Princi                                          | ipal Carriers: Concentration, Energy, Kinetics, and |                  |
|     |                                                             | Speed                                           | d                                                   | 23               |
|     |                                                             | 1.6.1                                           | Principal-Energy Carriers Concentration             | 24               |
|     |                                                             | 1.6.2                                           | Principal-Carrier Energy                            | 25               |
|     |                                                             | 1.6.3                                           | Principal-Carrier Energy Transport/Transformation   |                  |
|     |                                                             |                                                 | Kinetics                                            | 26               |
|     |                                                             | 1.6.4                                           | Principal-Carrier Speed                             | 29               |
|     | 1.7                                                         | Perio                                           | dic Table of Elements                               | 29               |

vii



| viii |     |        | Contents                                           |    |
|------|-----|--------|----------------------------------------------------|----|
|      | 1.8 | Heat   | Transfer Physics: Atomic-Level Energy Kinetics     | 32 |
|      |     |        | Thermal Energy Storage                             | 32 |
|      |     |        | Thermal Energy Transport                           | 33 |
|      |     |        | Thermal Energy Transformation                      | 35 |
|      | 1.9 |        | ity of States and Carrier Density                  | 40 |
|      |     |        | nitio/MD/BTE/Macroscopic Treatments                | 42 |
|      |     | Scope  |                                                    | 44 |
|      |     | Probl  |                                                    | 46 |
| 2    | Mol | ecular | Orbitals/Potentials/Dynamics and Quantum           |    |
|      | Ene | rgy St | ates                                               | 50 |
|      | 2.1 | Intera | atomic Forces and Potential Wells                  | 50 |
|      | 2.1 |        | Interatomic Forces                                 | 52 |
|      |     |        | Intermolecular Forces                              | 52 |
|      |     |        | Kinetic and Potential Energies and Potential Wells | 53 |
|      | 2.2 |        | als and Interatomic Potential Models               | 58 |
|      |     |        | Atomic and Molecular Electron Orbitals             | 58 |
|      |     |        | Ab Initio Computation of Interatomic Potentials    | 61 |
|      |     |        | Potential Models and Phases                        | 65 |
|      |     | 2.2.4  | Examples of Atomic Bond Length and Energy          | 72 |
|      |     |        | Radial Distribution of Atoms in Dense Phase        | 73 |
|      | 2.3 |        | cular Ensembles, Temperature, and Thermodynamic    |    |
|      |     | Relat  | · · · · · · · · · · · · · · · · · · ·              | 75 |
|      |     | 2.3.1  | Ensembles and Computational Molecular Dynamics     | 75 |
|      |     |        | Energy Equipartition                               | 75 |
|      |     |        | Thermodynamic Relations                            | 76 |
|      | 2.4 |        | Itonian Mechanics                                  | 77 |
|      |     | 2.4.1  | Classical and Quantum Hamiltonians                 | 77 |
|      |     | 2.4.2  | Probability and Partition Function                 | 79 |
|      |     | 2.4.3  |                                                    |    |
|      |     |        | Mechanics                                          | 81 |
|      | 2.5 | Mole   | cular Dynamics Simulations                         | 81 |
|      |     | 2.5.1  | Ensemble and Discretization of Governing Equations | 81 |
|      |     | 2.5.2  | A Molecular Dynamics Simulation Case Study: L–J Ar |    |
|      |     |        | FCC                                                | 86 |
|      |     | 2.5.3  | L-J FCC MD Scales in Classical Harmonic Oscillator | 88 |
|      |     | 2.5.4  | L-J Potential Phase Transformations                | 92 |
|      |     | 2.5.5  | Atomic Displacement in Solids and Quantum Effects  | 93 |
|      |     | 2.5.6  | Specific Heat Capacity                             | 94 |
|      |     | 2.5.7  | Heat Flux Vector                                   | 95 |
|      | 2.6 | Schrö  | dinger Equation and Quantum Energy States          | 96 |
|      |     | 2.6.1  | Time-Dependent Schrödinger Equation and Wave       |    |
|      |     |        | Vector                                             | 97 |
|      |     | 2.6.2  | Bloch Wave Form                                    | 99 |



|   |     |         | Contents                                               | 1X  |
|---|-----|---------|--------------------------------------------------------|-----|
|   |     | 2.6.3   | Quantum-Mechanics Formalism, Bra-Ket and Matrix        |     |
|   |     |         | Element                                                | 100 |
|   |     | 2.6.4   | Quantum Mechanical, Harmonic Oscillator                | 101 |
|   |     | 2.6.5   |                                                        | 105 |
|   |     | 2.6.6   |                                                        | 109 |
|   |     | 2.6.7   | Perturbation and Numerical Solutions to Schrödinger    |     |
|   |     |         | Equation                                               | 111 |
|   | 2.7 | Probl   | ems                                                    | 115 |
| 3 | Car | rier Er | nergy Transport and Transformation Theories            | 119 |
|   | 3.1 | Boltzi  | mann Transport Equation                                | 120 |
|   |     | 3.1.1   | Particle Probability Distribution (Occupancy) Function | 120 |
|   |     | 3.1.2   | A Simple Derivation of BTE                             | 120 |
|   |     | 3.1.3   | In- and Out-Scattering                                 | 123 |
|   |     | 3.1.4   | Relaxation-Time Approximation of Scattering and        |     |
|   |     |         | Transport Properties                                   | 124 |
|   |     | 3.1.5   | Boltzmann Transport Scales                             | 128 |
|   |     | 3.1.6   | Momentum, Energy, and Average Relaxation Times         | 129 |
|   |     | 3.1.7   |                                                        | 130 |
|   |     | 3.1.8   | Numerical Solution to BTE                              | 131 |
|   | 3.2 | Energ   | gy Transition Kinetics and Fermi Golden Rule           | 131 |
|   |     |         | Elastic and Inelastic Scattering                       | 132 |
|   |     | 3.2.2   | Phonon Interaction and Transition Rates                | 133 |
|   |     | 3.2.3   | Electron (and Hole) Interaction and Transition Rates   | 134 |
|   |     | 3.2.4   | Fluid Particle Interaction and Transition Rates        | 138 |
|   |     | 3.2.5   | Photon Interaction and Transition Rates                | 138 |
|   | 3.3 | Maxw    | vell Equations and Electromagnetic Waves               | 138 |
|   |     | 3.3.1   | Maxwell Equations                                      | 138 |
|   |     | 3.3.2   | -                                                      | 142 |
|   |     | 3.3.3   | EM Wave and Photon Energy                              | 144 |
|   |     | 3.3.4   | Electric Dipole and Emission, Absorption, and          |     |
|   |     |         | Scattering of EM Waves                                 | 145 |
|   |     | 3.3.5   | Dielectric Function and Dielectric Heating             | 147 |
|   |     | 3.3.6   | Electrical Resistivity and Mobility and Joule Heating  | 151 |
|   | 3.4 | Onsag   | ger Coupled Transport Coefficients                     | 152 |
|   | 3.5 | Stoch   | astic Particle Dynamics and Transport                  | 154 |
|   |     | 3.5.1   | Langevin Particle Dynamics Equation and Brownian       |     |
|   |     |         | Motion                                                 | 154 |
|   |     | 3.5.2   | Fokker-Planck Particle Conservation Equation           | 155 |
|   |     | 3.5.3   | <u>,</u>                                               | 155 |
|   | 3.6 | Equil   | ibrium Fluctuation–Dissipation and Green–Kubo          |     |
|   |     |         | sport Theory                                           | 156 |
|   | 3.7 |         | oscopic Fluid Dynamics Equations                       | 159 |
|   | 3.8 | Macro   | oscopic Elastic Mechanics Equations                    | 159 |



x Contents

|       | 3.9  | Macro                                                    | oscopic Scales                                            | 161 |
|-------|------|----------------------------------------------------------|-----------------------------------------------------------|-----|
|       | 3.10 | Proble                                                   | ems                                                       | 163 |
| 4 Pho |      | non E                                                    | nergy Storage, Transport, and Transformation Kinetics     | 173 |
|       | 4.1  | Phono                                                    | on Dispersion in One-Dimensional Classical Lattice        |     |
|       |      | Vibra                                                    | tion                                                      | 174 |
|       | 4.2  | Phono                                                    | on Density of States and Debye Model                      | 181 |
|       |      | 4.2.1                                                    | Phonon DOS for One-Dimensional Lattice and van            |     |
|       |      |                                                          | Hove Singularities                                        | 182 |
|       |      | 4.2.2                                                    | Debye and Other Phonon DOS Models                         | 184 |
|       | 4.3  | Recip                                                    | rocal Lattice, Brillouin Zone, and Primitive Cell and Its |     |
|       |      | Basis                                                    |                                                           | 186 |
|       |      | 4.3.1                                                    | Reciprocal Lattice                                        | 187 |
|       |      | 4.3.2                                                    | Brillouin Zone                                            | 189 |
|       |      | 4.3.3                                                    | Primitive Cell and Its Basis: Number of Phonon            |     |
|       |      |                                                          | Branches                                                  | 190 |
|       | 4.4  | Norm                                                     | al Modes and Dynamical Matrix                             | 191 |
|       | 4.5  | Quant                                                    | tum Theory of Lattice Vibration                           | 196 |
|       | 4.6  | Exam                                                     | ples of Phonon Dispersion and DOS                         | 198 |
|       | 4.7  | Phonon Specific Heat Capacity and Debye Average Acoustic |                                                           |     |
|       |      | Speed                                                    |                                                           | 201 |
|       |      | 4.7.1                                                    | Acoustic Phonon Specific Heat Capacity                    | 201 |
|       |      | 4.7.2                                                    | Estimate of Directional Acoustic Velocity                 | 206 |
|       | 4.8  |                                                          | ic Displacement in Lattice Vibration                      | 208 |
|       | 4.9  | Phono                                                    | on BTE and Callaway Conductivity Model                    | 211 |
|       |      | 4.9.1                                                    | Single-Mode Relaxation Time                               | 211 |
|       |      | 4.9.2                                                    | Callaway Phonon Conductivity Model from BTE               | 212 |
|       |      | 4.9.3                                                    | Callaway-Holland Phonon Conductivity Model                | 215 |
|       |      | 4.9.4                                                    | 2                                                         | 215 |
|       |      | 4.9.5                                                    | Phonon Dispersion Models: Ge As Example                   | 223 |
|       |      | 4.9.6                                                    | 1                                                         | 226 |
|       |      | 4.9.7                                                    | Lattice Thermal Conductivity Prediction                   | 228 |
|       |      |                                                          | ein and Cahill-Pohl Minimum Phonon Conductivities         | 231 |
|       | 4.11 |                                                          | ial Metrics of Phonon Conductivity: Slack Relation        | 233 |
|       |      |                                                          | Derivation of Slack Relation                              | 234 |
|       |      | 4.11.2                                                   | Force-Constant Combinative Rule for Arbitrary             |     |
|       |      |                                                          | Pair-Bond                                                 | 235 |
|       |      |                                                          | Evaluation of Sound Velocity and Debye Temperature        | 241 |
|       |      |                                                          | Prediction of Grüneisen Parameter                         | 244 |
|       |      |                                                          | Prediction of Thermal Conductivity                        | 249 |
|       | 4.12 |                                                          | on Conductivity Decomposition: Acoustic Phonons           | 254 |
|       |      |                                                          | Heat Current Autocorrelation Function                     | 255 |
|       |      |                                                          | Phonon Conductivity Decomposition                         | 258 |
|       |      | 4.12.3                                                   | Comparison with Experiment                                | 260 |



|   |             | Comenis                                                                                   | Λ.   |
|---|-------------|-------------------------------------------------------------------------------------------|------|
|   | 4.13        | Phonon Conductivity Decomposition: Optical Phonons                                        | 261  |
|   |             | Quantum Corrections to MD/G-K Predictions                                                 | 262  |
|   | 4.15        | Phonon Conductivity from BTE: Variational Method                                          | 267  |
|   | 4.16        | Experimental Data on Phonon Conductivity                                                  | 269  |
|   | 4.17        | Phonon Boundary Resistance                                                                | 271  |
|   | 4.18        | Absorption of Ultrasound Waves in Solids                                                  | 275  |
|   | 4.19        | Size Effects                                                                              | 276  |
|   |             | 4.19.1 Finite-Size Effect on Phonon Conductivity                                          | 276  |
|   |             | 4.19.2 Superlattice Phonon Conductivity                                                   | 278  |
|   |             | 4.19.3 Phonon Density of States of Nanoparticles                                          | 280  |
|   |             | 4.19.4 Phonon Conductivity Rectification in Anisotropic,                                  |      |
|   |             | One-Dimensional Systems                                                                   | 286  |
|   |             | 4.19.5 Heat Flow in Molecular Wire                                                        | 287  |
|   |             | 4.19.6 Quantum Vibrational Energy Flow in Nanostructures                                  | 288  |
|   |             | 4.19.7 Nanocone Conductivity                                                              | 289  |
|   | 4.20        | Problems                                                                                  | 289  |
| 5 | Elec        | tron Energy Storage, Transport, and Transformation Kinetics .                             | 306  |
|   | 5.1         | Schrödinger Equation for Periodic-Potential Electronic Band                               |      |
|   |             | Structure                                                                                 | 309  |
|   | 5.2         | Electronic Band Structure in One-Dimensional Ionic Lattice                                | 311  |
|   | 5.3         | Three-Dimensional Bands Using Tight-Binding                                               |      |
|   |             | Approximation                                                                             | 315  |
|   |             | 5.3.1 General LCAO                                                                        | 315  |
|   |             | 5.3.2 Example of Tight-Binding Approximation: FCC,                                        |      |
|   |             | Single s-Band                                                                             | 317  |
|   | 5.4         | Ab Initio Computation of Electron Band Structure                                          | 319  |
|   | 5.5         | Electron Band Structure for Semiconductors and Effective                                  |      |
|   |             | Mass                                                                                      | 321  |
|   | 5.6         | Periodic Electron Gas Model for Metals                                                    | 325  |
|   | 5.7         | Electron/Hole Density of Carrier and States for                                           |      |
|   |             | Semiconductors                                                                            | 327  |
|   | 5.8         | Specific Heat Capacity of Conduction Electrons                                            | 331  |
|   | 5.9         | Electron BTE for Semiconductors: Thermoelectric Force                                     | 334  |
|   |             | Electron Relaxation Time and Fermi Golden Rule                                            | 335  |
|   | 5.11        | Average Relaxation Time $\langle \langle \tau_e \rangle \rangle$ for Power-Law $\tau_e$   |      |
|   | <b>5.10</b> | (Momentum) $(E_e)$                                                                        | 338  |
|   | 5.12        | Thermoelectric Transport Property Tensors for Power-Law                                   | 2.42 |
|   | T 10        | $	au_e(E_e)$                                                                              | 343  |
|   | 5.13        | TE Transport Coefficients for Cubic Semiconductors                                        | 346  |
|   |             | 5.13.1 Seebeck, Peltier, and Thomson Coefficients, and                                    | 246  |
|   |             | Electrical and Thermal Conductivities  5.13.2 Electron Moon Erron Both for Motols         | 346  |
|   | 5 1 1       | 5.13.2 Electron Mean Free Path for Metals  Magnetic Field and Hell Fester and Coefficient | 348  |
|   | 5.14        | Magnetic Field and Hall Factor and Coefficient                                            | 349  |



xii Contents

|   | 5.15 | Electr | on–Phonon Relaxation Times in Semiconductors           | 350 |
|---|------|--------|--------------------------------------------------------|-----|
|   |      | 5.15.1 | Electron-Phonon Wave Function                          | 351 |
|   |      | 5.15.2 | Rate of Acoustic-Phonon Scattering of Electrons        | 353 |
|   |      | 5.15.3 | Rate of Optical-Phonon Scattering of Electrons         | 354 |
|   |      |        | Summary of Electron-Scattering Mechanisms and          |     |
|   |      |        | Relaxation-Time Relations                              | 359 |
|   | 5.16 | TE Tr  | ansport Coefficients Data for Metals and               |     |
|   |      |        | onductors                                              | 359 |
|   |      | 5.16.1 | Structural Defects in Crystalline Solids               | 359 |
|   |      |        | Metals                                                 | 360 |
|   |      | 5.16.3 | Semiconductors                                         | 366 |
|   |      | 5.16.4 | TE Figure of Merit $Z_e$                               | 372 |
|   | 5.17 |        | itio Computation of TE Transport Property Tensors      | 377 |
|   |      |        | TE Transport Tensors and Variable Chemical Potential   | 377 |
|   |      |        | Introduction to BoltzTraP                              | 379 |
|   |      | 5.17.3 | Relaxation Times Based on Kane Band Model              | 380 |
|   |      | 5.17.4 | Predicted Seebeck Coefficient and Electrical           |     |
|   |      |        | Conductivity                                           | 385 |
|   |      | 5.17.5 | Electric and Phonon Thermal Conductivities             | 388 |
|   | 5.18 | Electr | on and Phonon Transport Under Local Thermal            |     |
|   |      |        | quilibrium                                             | 393 |
|   |      | 5.18.1 | Derivations                                            | 393 |
|   |      | 5.18.2 | Phonon Modal Energy Equations                          | 395 |
|   |      | 5.18.3 | Summary of Conservation (Electrohydrodynamic)          |     |
|   |      |        | Equations                                              | 396 |
|   | 5.19 | Coolir | ng Length in Electron–Phonon Local Thermal             |     |
|   |      | None   | quilibrium                                             | 397 |
|   | 5.20 | Electr | onic Energy States of Ions in Crystals                 | 400 |
|   |      |        | onic Energy States of Gases                            | 404 |
|   | 5.22 | Size E | iffects                                                | 407 |
|   |      | 5.22.1 | Quantum Well for Improved TE $Z_eT$                    | 408 |
|   |      |        | Reduced Electron–Phonon Scattering Rate in             |     |
|   |      |        | Quantum Wells                                          | 411 |
|   |      | 5.22.3 | Electronic and Phonon Thermal Conductance of           |     |
|   |      |        | Graphene–Flake Junctions                               | 413 |
|   |      | 5.22.4 | Heterobarrier for Converting Hot–Phonon Energy to      |     |
|   |      |        | Electric Potential                                     | 418 |
|   | 5.23 | Proble | ems                                                    | 422 |
|   | IZI* | J Dane | Edo Enougy Chouge Trongs and and Trongfamus 4          |     |
| Ó |      |        | icle Energy Storage, Transport, and Transformation     | 434 |
|   |      |        |                                                        |     |
|   | 6.1  | Fluid  | Particle Quantum Energy States and Partition Functions | 436 |
|   |      | 6.1.1  | Translational Energy and Partition Function            | 436 |
|   |      | 6.1.2  | Vibrational Energy and Partition Function              | 438 |



|      |                                                            | Contents                                             | XII |  |  |
|------|------------------------------------------------------------|------------------------------------------------------|-----|--|--|
|      | 6.1.3                                                      | Rotational Energy and Partition Function             | 439 |  |  |
|      |                                                            | Electronic Energy and Partition Function             | 440 |  |  |
|      |                                                            | Ab Initio Computation of Vibrational and Rotational  |     |  |  |
|      |                                                            | Energy States                                        | 441 |  |  |
| 6.2  | Ideal-                                                     | Gas Specific Heat Capacity                           | 443 |  |  |
| 6.3  | Dense                                                      | -Fluid Specific Heat Capacity: van der Waals Model   | 447 |  |  |
| 6.4  | Gas B                                                      | TE, $f_f^{o}$ , and Thermal Velocities               | 451 |  |  |
|      | 6.4.1                                                      | Interparticle Collisions                             | 451 |  |  |
|      | 6.4.2                                                      | Equilibrium Distribution Function for Translational  |     |  |  |
|      |                                                            | Energy                                               | 453 |  |  |
|      | 6.4.3                                                      | Inclusion of Gravitational Potential Energy          | 456 |  |  |
| 6.5  | Ideal-                                                     | Gas Binary Collision Rate and Relaxation Time        | 457 |  |  |
| 6.6  | Ideal-                                                     | Gas Mean Free Path and Viscosity                     | 459 |  |  |
| 6.7  | Kineti                                                     | c-Limit Evaporation/Condensation Heat Transfer Rate  | 461 |  |  |
| 6.8  | Ideal-                                                     | Gas Thermal Conductivity from BTE                    | 462 |  |  |
|      | 6.8.1                                                      | Nonequilibrium BTE and Relaxation-Time               |     |  |  |
|      |                                                            | Approximation                                        | 462 |  |  |
|      | 6.8.2                                                      | Thermal Conductivity                                 | 463 |  |  |
| 6.9  | Liquio                                                     | l Thermal Conductivity from Mean Free Path and       |     |  |  |
|      | Molec                                                      | cular Dynamics                                       | 469 |  |  |
| 6.10 | Effective Conductivity with Dispersed Particles in Thermal |                                                      |     |  |  |
|      | Motio                                                      | n                                                    | 470 |  |  |
|      | 6.10.1                                                     | Langevin Derivation of Brownian Diffusion            | 471 |  |  |
|      | 6.10.2                                                     | Thermal Relaxation Time and Effective Fluid Thermal  |     |  |  |
|      |                                                            | Conductivity                                         | 472 |  |  |
| 6.11 | Intera                                                     | ction of Moving Fluid Particle and Surface           | 474 |  |  |
|      | 6.11.1                                                     | Fluid Flow Regimes                                   | 474 |  |  |
|      | 6.11.2                                                     | Knudson-Flow-Regime Surface Accommodation and        |     |  |  |
|      |                                                            | Slip Coefficients                                    | 476 |  |  |
|      |                                                            | Slip Coefficients in Transitional-Flow Regime        | 480 |  |  |
|      | 6.11.4                                                     | Solid Particle Thermophoresis in Gases               | 481 |  |  |
|      |                                                            | Physical Adsorption and Desorption                   | 482 |  |  |
|      |                                                            | Disjoining Pressure in Ultrathin-Liquid Films        | 486 |  |  |
| 6.12 |                                                            | llent-Flow Structure and Boundary-Layer Transport    | 487 |  |  |
|      | 6.12.1                                                     | Turbulent Kinetic Energy Spectrum for Homogeneous    |     |  |  |
|      |                                                            | Turbulence                                           | 489 |  |  |
|      |                                                            | Boundary-Layer Turbulent Heat Flux                   | 491 |  |  |
|      | 6.12.3                                                     | Turbulent Mixing Length and Turbulent Thermal        |     |  |  |
|      |                                                            | Conductivity                                         | 492 |  |  |
|      | 6.12.4                                                     | Spatial Variation of Boundary-Layer Turbulent Mixing |     |  |  |
|      |                                                            | Length                                               | 493 |  |  |
|      | 6.12.5                                                     | Turbulent Mixing Using Lagrangian Langevin           |     |  |  |
|      |                                                            | Equation                                             | 494 |  |  |



xiv Contents

|   | 6.13 | Therm   | al Plasmas: Plasma Thermal Conductivity              | 494 |
|---|------|---------|------------------------------------------------------|-----|
|   |      | 6.13.1  | Free Electron Density and Plasma Thermal             |     |
|   |      |         | Conductivity                                         | 496 |
|   |      | 6.13.2  | Thermal Nonequilibrium Plasma Energy Equation        | 500 |
|   |      | 6.13.3  | Species Concentrations for Two-Temperature Plasmas   | 501 |
|   |      | 6.13.4  | Kinetics of Energy Exchange Between Electrons and    |     |
|   |      |         | Heavier Species                                      | 501 |
|   | 6.14 | Size E  | ffects                                               | 502 |
|   |      | 6.14.1  | Effective Thermal Conductivity in Gas-Filled Narrow  |     |
|   |      |         | Gaps                                                 | 502 |
|   |      | 6.14.2  | Thermal Creep (Slip) Flow in Narrow Gaps             | 508 |
|   | 6.15 | Proble  | ms                                                   | 511 |
| 7 | Pho  | ton En  | ergy Storage, Transport, and Transformation Kinetics | 519 |
|   | 7.1  | Quant   | um-Particle Treatment: Photon Gas and Blackbody      |     |
|   |      | Emissi  | on                                                   | 523 |
|   | 7.2  | Lasers  | and Near-Field (EM Wave) Thermal Emission            | 527 |
|   |      | 7.2.1   | Lasers and Narrow-Band Emissions                     | 527 |
|   |      | 7.2.2   | Classical EM Wave Near-Field Thermal Emission        | 528 |
|   | 7.3  | Quant   | um and Semiclassical Treatments of Photon–Matter     |     |
|   |      | Interac | ction                                                | 529 |
|   |      | 7.3.1   | Hamiltonians of Radiation Field                      | 530 |
|   |      | 7.3.2   | Photon-Matter Interactions                           | 533 |
|   | 7.4  | Photor  | n Absorption and Emission in Two-Level Electronic    |     |
|   |      | System  | ns                                                   | 534 |
|   |      | 7.4.1   | Einstein Excited-State Population Rate Equation      | 535 |
|   |      | 7.4.2   | Einstein Coefficients for Equilibrium Electronic     |     |
|   |      |         | Population                                           | 537 |
|   |      | 7.4.3   | Spontaneous Versus Stimulated Emissions in           |     |
|   |      |         | Equilibrium Thermal Cavity $f_{ph}^{o}$              | 538 |
|   |      | 7.4.4   | Spectral Absorption Coefficient and Cross-Section    |     |
|   |      |         | Area                                                 | 539 |
|   | 7.5  | Particl | e Treatment: Photon BTE with Absorption, Emission,   |     |
|   |      | and Sc  | attering                                             | 541 |
|   |      | 7.5.1   | Combining Absorption and Emission                    | 543 |
|   |      | 7.5.2   | Photon–Free Electron Elastic Scattering Rate and     |     |
|   |      |         | Cross-Section Area                                   | 544 |
|   | 7.6  | Photor  | n Intensity: Equation of Radiative Transfer          | 547 |
|   |      | 7.6.1   | General Form of ERT                                  | 547 |
|   |      | 7.6.2   | Optically Thick Limit, Mean Free Path, and Radiant   |     |
|   |      |         | Conductivity                                         | 549 |
|   | 7.7  |         | Treatment: Field Enhancement and Photon              |     |
|   |      | Localiz |                                                      | 552 |
|   |      | 7.7.1   | Photon Localization in One-Dimensional Multilayer    | 552 |



|      |              |        | Contents                                            | AV    |
|------|--------------|--------|-----------------------------------------------------|-------|
|      | 7            | 7.7.2  | Coherence and Electric Field Enhancement            | 556   |
|      | 7            | 7.7.3  | Comparison with Particle Treatment (ERT)            | 558   |
| 7    | '.8 <b>(</b> | Contir | nuous and Band Photon Absorption                    | 562   |
|      | 7            | 7.8.1  | Photon Absorption Coefficient for Solids            | 562   |
|      | 7            | 7.8.2  | Photon Absorption Coefficient for Gases             | 567   |
| 7    | .9 (         | Contir | nuous and Band Photon Emission                      | 571   |
|      | 7            | 7.9.1  | Emission Mechanisms                                 | 571   |
|      | 7            | 7.9.2  | Absorption and Emission Reciprocity (Kirchhoff Law) | 572   |
| 7    | .10 \$       | Spectr | al Surface Emissivity                               | 574   |
| 7    | '.11 I       | Radiat | tive and Nonradiative Decays and Quantum Efficiency | 577   |
| 7    | .12          | Anti-S | tokes Fluorescence: Photon–Electron–Phonon          |       |
|      | (            | Coupl  | ings                                                | 582   |
|      | 7            | 7.12.1 | Anti-Stokes Laser Cooling (Phonon Absorption) of    |       |
|      |              |        | Ion-Doped Solids                                    | 582   |
|      | 7            | 7.12.2 | Laser Cooling Efficiency                            | 584   |
|      | 7            | 7.12.3 | Photon–Electron–Phonon Transition Rate Using        |       |
|      |              |        | Weak Coupling Approximation                         | 587   |
|      | 7            | 7.12.4 | Time Scales for Laser Cooling of Solids (Weak       |       |
|      |              |        | Couplings)                                          | 592   |
|      | 7            | 7.12.5 | Optimal Host Material                               | 596   |
|      | 7            | 7.12.6 | Photon–Electron and Electron–Phonon Transition      |       |
|      |              |        | Rates Using Strong Couplings (Ab Initio             |       |
|      |              |        | Computation)                                        | 598   |
| 7    | .13          | Gas La | asers and Laser Cooling of Gases                    | 608   |
|      | 7            | 7.13.1 | Molecular-Gas Lasers                                | 608   |
|      | 7            | 7.13.2 | Laser Doppler Cooling of Atomic Gases and Doppler   |       |
|      |              |        | Temperature                                         | 627   |
| 7    | '.14 I       | Photo  | voltaic Solar Cell: Reducing Phonon Emission        | 631   |
|      | 7            | 7.14.1 | Single-Bandgap Ideal Solar PV Efficiency            | 634   |
|      | 7            | 7.14.2 | Multiple-Bandgap Ideal Solar PV Efficiency          | 636   |
|      | 7            | 7.14.3 | Semiempirical Solar PV Efficiency                   | 639   |
| 7    | .15          | Size E | ffects                                              | 642   |
|      | 7            | 7.15.1 | Enhanced Near-Field Radiative Heat Transfer         | 642   |
|      | 7            | 7.15.2 | Photon Energy Confinement by Near-Field Optical     |       |
|      |              |        | Microscopy                                          | 645   |
|      | 7            | 7.15.3 | Hot Phonon Recycling in Photonics                   | 646   |
| 7    | '.16 I       | Proble | ems                                                 | 650   |
| APPE | ENDI         | X A:   | Tables of Properties and Universal Constants        | . 661 |
| APPE | ENDI         | IX B:  | Derivation of Green-Kubo Relation                   | . 668 |
| APPE | ENDI         | IX C:  | Derivation of Minimum Phonon Conductivity Relations | . 676 |
| APPE | ENDI         | X D.   | Derivation of Phonon Boundary Resistance            | 683   |



| xvi           | Contents                                                     |     |
|---------------|--------------------------------------------------------------|-----|
| APPENDIX E:   | Derivation of Fermi Golden Rule                              | 689 |
|               | Derivation of Equilibrium, Particle Probability  1 Functions | 696 |
| APPENDIX G:   | Phonon Contributions to the Seebeck Coefficient              | 701 |
| APPENDIX H:   | Monte Carlo Method for Carrier Transport                     | 709 |
| APPENDIX I:   | Ladder Operators                                             | 713 |
| Nomenclature  |                                                              | 719 |
| Abbreviations |                                                              | 725 |
| Glossary      |                                                              | 727 |
| Bibliography  |                                                              | 741 |
| Index         |                                                              | 765 |



### Preface

Heat is atomic motion of matter, and temperature indicates the equilibrium distribution of this motion. Nonequilibrium atomic motions, created for example by a temperature gradient, result in heat transfer. Heat transfer physics describes the thermodynamics and kinetics (mechanisms and rates) of energy storage, transport, and transformation by means of principal energy carriers. Heat is energy that is stored in the temperature-dependent motion and within the various particles that make up all matter in all of its phases, including electrons, atomic nuclei, individual atoms, and molecules. Heat can be transferred to and from matter by one or more of the principal energy carriers: electrons<sup>†</sup> (either as classical or quantum entities), fluid particles (classical particles or quantum particles), phonons (lattice-vibration quantum waves, i.e., quasi-particles), and photons<sup>‡</sup> (quantum particles). The state of the energy stored within matter or transported by the carriers can be described by a combination of classical and quantum statistical mechanics. The energy is also transformed (converted) between the various carriers. All processes that act on this energy are ultimately governed by the rates at which various physical phenomena occur, such as the rate of particle collisions in classical mechanics. It is the combination of these various processes (and their governing rates) within a particular system that determines the overall system behavior, such as the net rate of energy storage or transport. Controlling every process, from the atomic level (studied here) to the macroscale (covered in an introductory heat transfer course), are the laws of thermodynamics, including conservation of energy.

The focus of this text is on the heat transfer behavior (the storage, transport, and transformation of thermal energy) of the aforementioned principal energy carriers at the atomic scale. The specific mechanisms are described in detail, including elastic/inelastic collisions/scattering among particles, quasi-particles, and waves. Particular attention is given to the time scales over which energy transport or

xvii

 $<sup>^\</sup>dagger$  For semiconductors, the holes are included as energy carriers. For electrolytes, ion transport is treated similarly.

<sup>&</sup>lt;sup>‡</sup> Here, *photon* refers to both the classical (Maxwell) and the quantum (quasi-particle, Schrödinger) descriptions of the electromagnetic waves.



xviii Preface

transformation processes occur, so that the reader gains some sense of how they compare with one another, as well as how they combine to produce overall system energy storage—transport—transformation rates. The approach taken here begins with a survey of fundamental concepts of atomic-level physics. This survey includes a look at the energy within the electronic states of atoms, as well as interatomic forces and potentials. Various theories of molecular dynamics and transport are also described. After this overview, in-depth, quantitative analyses are performed for each of the principal energy carriers, including analysis of how they interact with each other. This combination should allow for the teaching of a thorough introduction of heat transfer physics within one semester, without prolonged preparation or significant prerequisites. In general, several areas of physics are relevant to the study of heat transfer: (a) atomic—molecular dynamics, (b) solid state (condensed matter), (c) electromagnetism, and (d) quantum optics. No prior knowledge of these areas is necessary to appreciate the material of this text (a knowledge of introductory heat transfer is assumed).

Crystalline solids and their vibrational and electronic energies are treated first. This discussion is followed by an examination of energies of fluid particles and their interactions with solid surfaces. Then the interactions of photons with matter are posed with photons as EM waves, as particles, or as quasi-particles.

The text is divided into seven chapters, starting with the introduction and preliminaries of Chapter 1, in which the microscale carriers are introduced and the scope of the heat transfer physics is defined. Chapter 2 is on molecular electronic orbitals, interatomic and intermolecular potentials, molecular dynamics, and an introduction to quantum energy states. Chapter 3 is on microscale energy transport and transition kinetics theories, including the Boltzmann transport equation, the Maxwell equations, the Langevin stochastic transport equation, the Onsager coupled transport relation, and the Green–Kubo fluctuation–dissipation transport coefficients and relations. Chapters 4, 5, 6, and 7 cover the transport and interactions of phonons, electrons, fluid particles, and photons, respectively.

The size effects (where the system size affects the atomic-level behavior) on transport and energy conversion, for each principal carrier, are considered at the ends of Chapters 4 to 7. This allows for reference to applications in nanostructured and microstructured systems.

Some of the essential derivations are given as appendices. Appendix B gives the Green–Kubo relation, Appendix C gives the minimum phonon conductivity relations, Appendix D gives the phonon boundary resistance, Appendix E gives the Fermi Golden Rule, and Appendix F gives the particle energy distribution (occupancy) functions for bosons (phonons and photons), fermions (electrons), and Maxwell–Boltzmann (fluid) particles. Appendix G is on contributions to the Seebeck coefficient from various charge-carrier interactions, including with phonons. Appendix H is on the Monte Carlo method used for the simulation of energy carrier transport. Appendix I is on the ladder operators used for the carrier state transition by creation (raising) and annihilation (lowering).



Preface xix

Some end-of-chapter problems are provided to enhance understanding and familiarity and to allow for specific calculations. When needed, computer programs are also used. A full, digital solutions manual is available.

In general, vectors (lowercase) and tensors (uppercase) are in bold type. A nomenclature, an abbreviations list, and a glossary of relevant terms are given at the end of the text. Numbers in parenthesis indicate equation numbers. The periodic table of elements, with the macroscopic (bulk) and atomic properties, is given in Appendix A (in Tables A.1 and A.2), along with the tables of the universal and derived constants and unit prefixes.

It is hoped that this treatment provides an idea of the scope and some of the fundamentals of heat transfer physics, along with some of the most recent findings in the field.

Massoud Kaviany Ann Arbor kaviany@umich.edu





## Acknowledgments

Many doctoral students and postdoctoral Fellows working with me have contributed to this book. Among them are Jae Dong Chung, Luciana da Silva, Baoling Huang, Gi Suk Hwang, Dan Johnson, Ankur Kapoor, Hyoungchul Kim, Jedo Kim, Scott Gayton Liter, Alan McGaughey, Corey Melnick, Da Hye Min, Brendan O'Connor, Xiulin Ruan, Seungha Shin, and Xiangchun Zhang. Alan, Baoling, Corey, Gayton, Gi Suk, Hyoungchul, Seungha, and Xiulin have provided many ideas and have been constant sources of inspiration. I am indebted to all of them; without them this task could not have been completed. I would also like to thank the National Science Foundation (Thermal Transport and Processes) and the Department of Energy (Basic Energy Sciences) for sponsoring the research leading to some of the materials presented here.