Numerical Reasoning in Judgments and Decision Making about Health

Every day thousands of individuals need to make critical decisions about their health based on numerical information, yet recent surveys have found that over half the population of the USA is unable to complete basic math problems. How does this lack of numerical ability (also referred to as low numeracy, quantitative illiteracy, or statistical illiteracy) impact healthcare? What can be done to help people with low numeracy skills? *Numerical Reasoning in Judgments and Decision Making about Health* addresses these questions by examining and explaining the impact of quantitative illiteracy on healthcare and in specific healthcare contexts, and discussing what can be done to reduce these healthcare disparities. This book will be a useful resource for professionals in many health fields including academics, policy makers, physicians, and other healthcare providers.

Britta L. Anderson is a Research Associate at the American College of Obstetricians and Gynecologists.

Jay Schulkin is the Senior Director of Research in the Division of Practice at the American College of Obstetricians and Gynecologists. He is also a Research Professor of Neuroscience at Georgetown University and Research Professor in the Department of Obstetrics and Gynecology at the University of Washington.

Numerical Reasoning in Judgments and Decision Making about Health

Edited by

Britta L. Anderson & Jay Schulkin

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107040946

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Numerical reasoning in judgments and decision making about health / [edited by] Britta L. Anderson & Jay Schulkin. p. ; cm. Includes bibliographical references. ISBN 978-1-107-04094-6 (hardback) I. Anderson, Britta L., editor of compilation. II. Schulkin, Jay, editor of compilation. [DNLM: 1. Health Literacy – United States. 2. Decision Making – United States. 3. Judgment – United States. 4. Mathematical Concepts – United States. WA 590] RA427 362.1–dc23

2013043959

ISBN 978-1-107-04094-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Britta L. Anderson would like to dedicate this book to Bo Peery and to her grandparents.

Jay Schulkin would like to dedicate this book to Jonathan Baron and George Loewenstein.

Contents

	List of figures	<i>page</i> ix
	List of tables	xii
	List of contributors	xiv
	Acknowledgments	xvi
	Introduction BRITTA L. ANDERSON & JAY SCHULKIN	1
1	Measuring numeracy EDWARD T. COKELY, SAIMA GHAZAL, & ROCIO GARCIA-RETAMERO	11
2	Collective statistical illiteracy in health JAN MULTMEIER, WOLFGANG GAISSMAIER, & ODETTE WEGWARTH	39
3	Physicians' understanding and use of numeric information BRITTA L. ANDERSON & JAY SCHULKIN	59
4	Patient numeracy: what do patients need to recognize, think, or do with health numbers? BRIAN J. ZIKMUND-FISHER, GILLIAN MAYMAN, & ANGELA FAGERLIN	80
5	Application of numeracy in diabetes mellitus chronic disease care JILLIAN BERKMAN & KERRI L. CAVANAUGH	105
6	Numeracy and genetic screening STEPHANIE DUKHOVNY & LOUISE WILKINS-HAUG	130
7	Using visual aids to help people with low numeracy make better decisions ROCIO GARCIA-RETAMERO & EDWARD T. COKELY	153

vii

Cambridge University Press
978-1-107-04094-6 – Numerical Reasoning in Judgments and Decision Making about Health
Edited by Britta L. Anderson , Jay Schulkin
Frontmatter
More Information

viii	Contents	
8	Anticipating barriers to the communication of critical information ELLEN PETERS	175
9	Rational healthcare RONALD PAULUS & WALTER F. STEWART	193
10	A review of theories of numeracy: psychological mechanisms and implications for medical decision making VALERIE F. REYNA & PRISCILA G. BRUST-RENCK	215
11	Do the numbers help patients decide? Ethical and empirical challenges for evaluating the impact of quantitative information PETER H. SCHWARTZ	252
	Conclusion BRITTA L. ANDERSON & JAY SCHULKIN	281
	Name index Subject index	284 287

Figures

Figure 1.1.	The structure of the Computer Adaptive	
	Berlin Test. page	23
Figure 1.2.	Theoretical differences in distributions of the	
	NUMi, abbreviated numeracy test, and the Berlin	
	Numeracy Test.	34
Figure 1.3.	Estimated difficulty ranges for various numeracy	
	tests.	34
Figure 2.1.	Arithmetic operations which need to be carried	
	out with conditional probabilities (left) or natural	
	frequencies (right) in order to determine the likelihood	
	that a woman with a positive mammography screening	
	result actually has breast cancer.	47
Figure 2.2.	Lead-time bias.	49
Figure 2.3.	Overdiagnosis bias.	50
Figure 3.1.	Example of a Bayesian problem and an	
	explanation of how to calculate the correct answer.	65
Figure 3.2.	The way physicians draw information about their	
	patient population (by thinking about future	
	patients or past experiences) will impact their	
	reasoning and their accuracy in their Bayesian	
	inferences.	67
Figure 3.3.	Patterns of numeric benefit and risk information	
	in two scenarios.	68
Figure 3.4.	Characteristics of statistics in selected volumes of	
	Pediatrics, 1952–2005.	70
Figure 4.1.	Percentage of women choosing chemotherapy in a	
	hypothetical scenario regarding choice of adjuvant	
	therapies following breast cancer surgery, by incremental	
	benefit of chemotherapy (1% vs. 5%), by whether	
	options were presented all-at-once versus sequentially,	
	and by numeracy level.	88

ix

Cambridge University Press

978-1-107-04094-6 — Numerical Reasoning in Judgments and Decision Making about Health Edited by Britta L. Anderson , Jay Schulkin Frontmatter More Information

x List	t of figures	
Figure 4.2.	Predicted ability to interpret nutrition labels by	
	literacy or numeracy status.	90
Figure 4.3.	Anticoagulation control according to literacy	
	grade level and numeracy level.	95
Figure 5.1.	Examples of items from the Diabetes Numeracy	
	Test.	110
Figure 5.2.	Construct validity model for the Diabetes	
	Numeracy Test.	111
Figure 5.3.	Examples of pages from the Diabetes Literacy and	120
E iman (1	Numeracy Education Toolkit (DLNET).	120
Figure 0.1.	A comparison of ethnicity-based carrier screening	122
Eigung 7 1	guidelines between ACOG and ACMG.	133
Figure 7.1.	information about rick reduction when they represent	
	affected in dividuals and (ton) on the antire normalitien	
	anected individuals only (top) of the entire population	156
Figure 7.2	at lisk (boltoni).	100
Figure 7.2.	graph literacy and pumeracy who correctly	
	inferred treatment risk reduction by visual aids	
	condition	157
Figure 7.3	Icon arrays representing a treatment risk	157
I iguite 7.5.	reduction of 50% with unequal samples of treated	
	and non-treated patients (i.e., 100 and 800.	
	respectively).	158
Figure 7.4.	Percentage of participants with low (a) and high	190
8	(b) numeracy whose estimates of risk reduction	
	were either accurate or lower or higher than the exact	
	value as a function of the sizes of the denominators	
	and icon arrays.	160
Figure 7.5.	(a) Icon array presented in Condition 1; (b)	
	horizontal bar graph presented in Condition 2;	
	(c) vertical bar graph presented in Condition 3; and	
	(d) pie chart presented in Condition 4.	162
Figure 7.6.	Percentage of participants who reported	
	performing the promoted behavior (condom use	
	or STD screening) when the health information	
	brochure was framed as gains or losses as a function	
	of message format (text only, text and numerical	
	information, and text and graphical information).	164
Figure 8.1.	Providing a framework increased understanding	
	of related information that follows, but decreased	

Cambridge University Press
978-1-107-04094-6 - Numerical Reasoning in Judgments and Decision Making about Health
Edited by Britta L. Anderson , Jay Schulkin
Frontmatter
More Information

List	t of figures	xi
Figure 8.2.	understanding of unrelated information among the less numerate. Hospital quality information is provided in an evaluative categories format (top) or with numbers	182
	only (bottom) in Study 1 of Peters et al. (2009).	185

Tables

Table I.1.	Definitions for numeracy and related terms.	page 2
Table 1.1.	Descriptions and references for tests used to	
	establish psychometric validity.	24
Table 1.2.	Psychometric properties of the scale: basic	
	attributes, reliability, and discriminability.	26
Table 1.3.	Psychometric properties of tests: Convergent and	
	discriminant validity.	27
Table 1.4.	Psychometric properties of the tests: Predictive	
	validity.	29
Table 1.5.	Proportion of participants in each quartile from 14	
	countries.	30
Table 1.6.	Percentage of people in each quartile from three	
	different samples estimated by the computer adaptive	
	Berlin Numeracy Test algorithm.	31
Table 1.7.	Properties of validated numeracy research	
	instruments.	33
Table 2.1.	Basic numeracy in the USA and Germany based	
	on nationally representative samples.	43
Table 2.2.	Examples of non-transparent information from a	
	variety of sources, and simple transparent solutions.	44
Table 3.1.	Instructions for the three conditions in a study	
	assessing physicians' Bayesian estimates.	66
Table 4.1	Key functions of patient numeracy and examples of	
	how these functions enable patients to act on health dat	a. 81
Table 4.2.	Examples of patient health outcomes related to	
	patient numeracy.	92
Table 5.1.	Diabetes tasks and related numeracy domains.	106
Table 5.2.	Summary of numeracy assessments in patients	
	with diabetes.	114
Table 5.3.	Clear communication strategies.	119
Table 5.4	List of web resources.	122

xii

Cambridge University Press

978-1-107-04094-6 — Numerical Reasoning in Judgments and Decision Making about Health Edited by Britta L. Anderson , Jay Schulkin Frontmatter <u>More Information</u>

List of	tables	xiii
Table 7.1. Nu die	umber of treated and non-treated patients who d in the scenarios with different denominator sizes.	159
Table 8.1. De	cision aids inform decisions about colorectal	
car	ncer screening.	176
Table 8.2. Ty	pes of barriers to effective communication of	
hea	alth information.	178
Table 8.3. Me	emory for precise numbers (Study 3) and	
acc	cessibility of feelings versus thoughts (Study 4) in	
Pet	ters et al. (2009).	186

Contributors

BRITTA L. ANDERSON, Department of Research, American College of Obstetricians and Gynecologists.

JILLIAN BERKMAN, Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center.

PRISCILA G. BRUST-RENCK, Department of Human Development, Cornell University.

KERRI L. CAVANAUGH, Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center.

EDWARD T. COKELY, Department of Cognitive and Learning Sciences, Michigan Technological University; Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

STEPHANIE DUKHOVNY, Maternal Fetal Medicine, Brigham and Women's Hospital.

ANGELA FAGERLIN, Center for Bioethics and Social Sciences in Medicine; Internal Medicine, University of Michigan; VA Ann Arbor Center for Clinical Management Research.

WOLFGANG GAISSMAIER, Department of Psychology, University of Konstanz.

ROCIO GARCIA-RETAMERO, Department of Experimental Psychology, University of Granada; Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

SAIMA GHAZAL, Department of Cognitive and Learning Sciences, Michigan Technological University, MI, USA.

GILLIAN MAYMAN, Center for Managing Chronic Disease, School of Public Health, University of Michigan.

xiv

Cambridge University Press

978-1-107-04094-6 — Numerical Reasoning in Judgments and Decision Making about Health Edited by Britta L. Anderson , Jay Schulkin Frontmatter More Information

List of contributors

xv

JAN MULTMEIER, Harding Center for Risk Literacy and Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

RONALD PAULUS, Mission Health System.

ELLEN PETERS, Department of Psychology, The Ohio State University.

VALERIE F. REYNA, Department of Human Development and Psychology, Cornell University; Cornell University Magnetic Resonance Imaging Facility; Center for Behavioral Economics and Decision Research, Cornell University.

JAY SCHULKIN, Department of Research, American College of Obstetricians and Gynecologists; Department of Neuroscience, Georgetown University; Department of Obstetrics and Gynecology, University of Washington School of Medicine.

PETER H. SCHWARTZ, Indiana University Center for Bioethics; Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine; Philosophy Department, Indiana University – Purdue University, Indianapolis.

WALTER F. STEWART, Sutter Health.

ODETTE WEGWARTH, Harding Center for Risk Literacy and Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development.

LOUISE WILKINS-HAUG, Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital; Harvard Medical School.

BRIAN J. ZIKMUND-FISHER, Health Behavior and Health Education, School of Public Health, University of Michigan; Internal Medicine, University of Michigan.

Acknowledgments

The life of the mind is a social event and we could not have done this without the help and support of our colleagues and friends.

Many of the issues that appear in this book were discussed in a small conference held at the Center for Advanced Study in the Behavioral Sciences at Stanford. We thank Stephen Kosslyn, Director of the Center, for his generous hospitality and to Hal Pashler, Ron Paulus, Ellen Peters, and Louise Wilkins-Haug who gave presentations.

Finally, we thank our granting agency, the US Department of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Research Program for their support for our research (UA6MC19010).