Seismic Risk Analysis of Nuclear Power Plants

Seismic Risk Analysis of Nuclear Power Plants addresses the needs of graduate students in engineering, practicing engineers in industry, and regulators in government agencies, presenting the entire process of seismic risk analysis in a clear, logical, and concise manner. It offers a systematic and comprehensive introduction to seismic risk analysis of critical engineering structures focusing on nuclear power plants, with a balance between theory and applications, and includes the latest advances in research. It is suitable as a graduate-level textbook, for self-study, or as a reference book. Various aspects of seismic risk analysis, from seismic hazard, demand, and fragility analyses to seismic risk quantification, are discussed, with detailed step-by-step analysis of specific engineering examples. It presents a wide range of topics essential for understanding and performing seismic risk analysis, including engineering seismology, probability theory and random processes, digital signal processing, structural dynamics, random vibration, and engineering risk and reliability.
Seismic Risk Analysis of Nuclear Power Plants

WEI-CHAU XIE
University of Waterloo

SHUN-HAO NI
Candu Energy Inc.

WEI LIU
Candu Energy Inc.

WEI JIANG
Candu Energy Inc.
Contents

Preface ix
Nomenclature xiv

1 Introduction 1
 1.1 Introduction to Types of Nuclear Power Plants 1
 1.2 Important Structures, Systems, and Components in Nuclear Power Plants 5
 1.3 Seismic Design Philosophy and Requirements 7
 1.4 Seismic Risk Analysis of Nuclear Power Plants 13

2 Engineering Seismology 17
 2.1 Earthquakes 17
 2.2 Case Study — The Great East Japan Earthquake 32
 2.3 Strong Ground Motion 37
 2.4 Probabilistic Ground-Motion Parameters 43

3 Basics of Random Processes and Structural Dynamics 57
 3.1 Random Processes 57
 3.2 Properties of Random Processes 65
 3.3 Single Degree-of-Freedom System 77
 3.4 Multiple Degrees-of-Freedom Systems 84
 3.5 Stationary Response to Random Excitation 86
 3.6 Seismic Response Analysis 95
 3.7 Nonlinear Systems 105
 3.8 Appendix — Method of Residue 108

4 Seismic Response Spectra 115
 4.1 Ground Response Spectra 115
 4.2 t-Response Spectrum 137
 4.3 Appendix 149
5 Seismic Hazard Analysis 153
 5.1 Deterministic Seismic Hazard Analysis (DSHA) 153
 5.2 Probabilistic Seismic Hazard Analysis 154
 5.3 Seismic Hazard Deaggregation 167
 5.4 Treatment of Epistemic Uncertainty 174
 5.5 Seismic Design Spectra Based on PSHA 176
 5.6 Site Response Analysis 181

6 Ground Motions for Seismic Analysis 230
 6.1 Generating Ground Motions for Seismic Analysis 230
 6.2 Spectral Matching Algorithms for Artificial Ground Motions 235
 6.3 Spectral Matching Algorithms Based on Recorded Ground Motions 239
 6.4 Generating Drift-Free and Consistent Time-Histories Using Eigenfunctions 260

7 Modelling of Structures 283
 7.1 Introduction 283
 7.2 Structural Modelling 284
 7.3 Numerical Example 294

8 Floor Response Spectra 328
 8.1 Introduction 328
 8.2 Floor Response Spectra 332
 8.3 Time-History Method for Generating FRS 335
 8.4 Direct Method for Generating FRS 339
 8.5 Scaling Method for Generating FRS 365
 8.6 Generating FRS Considering SSI 383

9 Seismic Fragility Analysis 410
 9.1 Seismic Fragility 410
 9.2 HCLPF Capacity 416
 9.3 Methodology of Fragility Analysis 418
 9.4 Conservative Deterministic Failure Margin (CDFM) Method 441
 9.5 Case Study — Horizontal Heat Exchanger 446
 9.6 Masonry Block Wall 483
10 Seismic Probabilistic Safety Assessment

10.1 Introduction

10.2 System Analysis

10.3 Seismic Risk Quantification

10.4 Seismic Margin Assessment

10.5 Seismic Probabilistic Safety Assessment with Screening Tables

10.6 Hybrid Method for Seismic Risk Assessment

10.7 Estimation of Seismic Risk from HCLPF Capacity

10.8 Numerical Examples — ECI System

Appendix A Basics of Normal and Lognormal Distributions

A.1 Normal Distribution

A.2 Lognormal Distribution

Appendix B Digital Signal Processing

B.1 Sampling

B.2 Fourier Series and Fourier Transforms

B.3 Digital Signal Processing

B.4 Digital Filters

B.5 Resampling

B.6 Numerical Example — Gaussian White Noise

Bibliography

Index
Preface

Background

Earthquakes are among the most destructive natural disasters. The Great East Japan earthquake, measuring 9.0 on the moment magnitude scale, hit Japan on March 11, 2011; the earthquake and the subsequent tsunami caused severe damage to a large number of critical engineering structures. For example, twenty-six Shinkansen bridges were damaged in the earthquake, resulting in major transportation system disruption in Japan for weeks. A total of eleven nuclear reactors shut down automatically following the earthquake. Although seismic forces did not cause any structural failure at the Fukushima Nuclear Power Plant (NPP), the flood caused by the ensuing tsunami led to a series of equipment failures, nuclear meltdowns, and releases of radioactive materials at the Fukushima Daiichi NPP. It was the largest nuclear disaster since the Chernobyl disaster of 1986 and only the second disaster to measure Level 7 on the International Nuclear Event Scale. On the other hand, the Onagawa NPP, which is the closest NPP to the epicentre, rode out the monster earthquake unscathed, demonstrating that the existing seismic design approaches have been tested by a real case of beyond design basis earthquake.

In response to the several destructive earthquakes that have occurred in recent decades, seismic risk analysis for critical engineering structures has become one of the most important and popular topics in earthquake engineering. Nuclear energy industries worldwide have launched an unprecedented and extensive re-evaluation of seismic hazards and risk to NPP systems. Furthermore, nuclear energy regulators and utilities are taking a critical look at the existing methods of estimating the seismic risk of NPPs. A number of deficiencies have been recognized in the existing methodologies of seismic risk analysis and design, which need improvements to enhance their reliability and effectiveness.

Seismic risk analysis involves a wide range of disciplines and topics, including engineering seismology, probability theory, seismic hazard analysis, seismic design earthquakes, random processes and digital signal processing, structural dynamics and random vibration, seismic fragility analysis, system reliability analysis, and seismic risk assessment. However, there is currently no book that presents a systematic introduction to and discussion on various aspects of seismic risk analysis for engineering structures, in particular NPPs, to graduate students and practicing engineers.
Objectives

This book addresses the needs of graduate students in engineering, practicing engineers in industry, and regulators in government agencies and aims to achieve the following objectives:

- **To present the entire process of seismic risk analysis in a clear, logical, and concise manner**

 Seismic risk analysis is an integral and systematic framework, in which all individual components (e.g., seismic hazard analysis, seismic demand analysis, and seismic fragility analysis) not only play their own roles but also interrelate with each other. This book is suitable not only as a textbook for graduate students in civil engineering, mechanical engineering, and other relevant programs but also as a reference book for practicing engineers and government regulators.

- **To have a balance between theory and applications**

 The book can be used as a reference for engineering graduate students, practicing engineers, and government regulators. As a reference, it has to be reasonably comprehensive and complete. Detailed step-by-step analysis for each topic of seismic risk analysis is presented with engineering examples.

- **To include the latest research advances and applications**

 Significant progress has been made on most of the topics in seismic risk analysis in the past decades. The latest research advances in improving the existing seismic risk analysis methods, including many contributions from our research team, are presented in the book.

Scope and Organization

In Chapter 1, various types of NPPs, important structures, systems, and components (SSCs) in NPPs, general seismic design philosophy, and seismic requirements for NPPs are briefly introduced. In Section 1.4, the procedure of seismic risk analysis of an NPP is outlined, which includes seismic hazard analysis, seismic demand analysis, seismic fragility analysis, system analysis, and seismic risk quantification.

In Chapter 2, fundamental principles, definitions, and terminologies in engineering seismology that are essential to the seismic risk analysis of NPPs are presented.

In Chapter 3, basic theory of random processes, structural dynamics, and random vibration is presented, which is essential background knowledge to engineering analysts in earthquake engineering.

The organization of the remainder of the book follows the general procedure of seismic risk analysis of NPPs as presented in Section 1.4.

 Chapters 4–6 are on seismic hazard analysis to provide response spectra and spectra-compatible ground-motion time-histories for seismic demand. Chapter 4 introduces seismic response spectra, including ground response spectra and t-response spectra,
which are used in the direct method for generating floor response spectra (FRS) in Chapter 8. Chapter 5 presents seismic hazard analysis, including probabilistic seismic hazard analysis (PSHA), seismic hazard deaggregation (SHD), and site response analysis. Chapter 6 introduces various methods for generating spectrum-compatible time-histories, such as Fourier-based, wavelet-based, and Hilbert–Huang transform-based spectral matching algorithms. A new method using eigenfunctions for generating consistent, drift-free, and spectrum-compatible time-histories is also presented.

Chapters 7 and 8 are on seismic demand analysis. In Chapter 7, general principles and approaches for modelling a structure into a dynamic 3D finite element model or stick model are presented. Chapter 8 presents methods for generating FRS, which are the seismic input to SSCs in an NPP. The methods presented include time-history method, direct spectra-to-spectra method for fixed-based models and considering soil–structure interaction, and the scaling method.

Chapter 9 introduces the general methods for seismic fragility analysis of SSCs, including the method of fragility analysis, high confidence and low probability of failure (HCLPF) values, and conservative deterministic failure margin (CDFM) method for determining HCLPF values. To illustrate the general approach of fragility analysis, two detailed examples on horizontal heat exchanger and masonry block wall are worked using both the fragility method and the CDFM method.

In Chapter 10, basic principles and methods of system analysis are introduced first. Two methods of seismic risk quantification, i.e., seismic margin assessment (SMA) and seismic probabilistic safety assessment (seismic PSA), are presented.

Appendix A reviews important properties and results of normal distribution and lognormal distribution.

In Appendix B, some relevant topics in digital signal processing are presented, including sampling, Fourier transforms, digital filter, and resampling a signal at a different rate, which are important in processing real earthquake records and generating spectra-compatible artificial ground-motion time-histories.

Acknowledgements

First and foremost, our sincere appreciation goes to Candu Energy Inc. (formerly Atomic Energy of Canada Limited), in particular Han Ming, who has always supported the training and growth of students and graduates from the University of Waterloo. We are very grateful to Dr. Binh-Le Lý, who has offered many insights and directions on seismic analysis and design. We appreciate the support and collaborations of our colleagues at Candu Energy Inc. We are grateful to the members of CSA N289 Technical Committee on Seismic Design for their encouragement and feedback on our research progress.

The Collaborative R&D grants from the University Network of Excellence in Nuclear Engineering (UNENE) and Natural Sciences and Engineering Research Council
(NSERC) in Seismic Risk Analysis of Nuclear Power Plants are greatly appreciated. These grants helped support collaborative research between the University of Waterloo and Candu Energy Inc. and training of PhD students at the University of Waterloo.

Dr. Zhen Cai has carefully read the book and made many helpful and critical suggestions. A number of graduate students at the University of Waterloo have reviewed and commented on portions of various drafts of this book.

Our sincere appreciation goes to Peter Gordon, former Senior Editor, and Steven Elliot, Senior Editor, Engineering, Cambridge University Press, for their trust, encouragement, and hard work to publish this book.

Wei-Chau Xie: I am grateful to my former graduate students, collaborators, co-authors, and friends, Wei Liu, Shun-Hao Ni, and Wei Jiang for their hard work during this long process and for contributing their expertise in various areas of seismic risk analysis to make this book possible.

This book is dedicated in the loving memory of my beloved mother, who passed away on Good Friday of 2016. She had always unconditionally loved and supported me. I thank my wife Cong-Rong for her love, encouragement, and support. I am very grateful to my lovely daughters, Victoria and Tiffany, for their love and encouragement. I am thrilled that we have a positive influence on their value system; they have developed great work ethics and, through hard work, have achieved great success in their academic and professional careers.

Shun-Hao Ni: I would especially like to express my sincere appreciation to Dr. Wei-Chau Xie, my professor and the leading author of this book, who has led me into the world of seismic-related research of nuclear power plants. His encouragement, guidance, and support not only enabled me to develop an understanding of the subject, but also brought us together to initiate a plan for writing this book.

Many thanks to all who have inspired, supported, and helped me during the course of writing this book. I would like to extend my gratitude to many people who have supported and helped me in various ways in my professional career, including my graduate co-supervisor, Professor Mahesh D. Pandey of the University of Waterloo.

I would like to acknowledge with gratitude, the unflagging love, support, and encouragement from my family, especially my mother, my wife, Qi Sun, and my lovely son, Kai.

Wei Liu: First and foremost, I would like to thank my mentor, Professor Xie, for his inspiration and motivation in my life and career development. Special thanks to my family, especially my two daughters, Catherine and Helen, for always cheering me up and keeping me going. I hope that one day they can read this book and understand the seismic issues that I have been working on.

Wei Jiang: I would like to express my deepest gratitude to Professor Wei-Chau Xie, who is the supervisor for my PhD study, for enabling me to be a part of this book. I
would like to thank him for inspiring me and for allowing me to grow in all aspects of life. His guidance on both research and my life have been invaluable.

I am also truly grateful to my friends and colleagues at University of Waterloo and Candu Energy Inc. for their continuous help and valuable suggestions on my career.

I want to thank my wife, Bingqian Zhou, who understood, supported, and encouraged me despite all the time it took me away from her. It was a long and difficult journey for her.

I thank my parents, my parents-in-law, and my family. This chapter of my life would be less fulfilling without their unflagging love and unconditional support throughout these years.

We appreciate hearing your comments via email (xie@uwaterloo.ca).
Nomenclature

ACI American Concrete Institute
AEP annual exceedance probability
AFE annual frequency of exceedance
ARS acceleration response spectrum/spectra
ASCE American Society of Civil Engineers
BH borehole
BNSP balance of nuclear steam plant
BOP balance of plant
BWR boiling water reactor
CD core damage
CDF core damage frequency
 cumulative distribution function
CDFM conservative deterministic failure margin
CENA Central and Eastern North America
CI conventional island
CLCS consequence limiting control system
CMS conditional mean spectrum/spectra
CoV coefficient of variation, equals mean value divided by standard deviation
Cov(X, Y) covariance of random variables X and Y
CQC complete quadratic combination
CRDM control rod drive mechanism
CSA Canadian Standard Association
CSIS containment spray injection system
DBE design basis earthquake
DFT discrete Fourier transform
DMF dynamic magnification factor
DOF degrees-of-freedom
DRS design response spectrum/spectra
DS damage state

xiv
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSHA</td>
<td>Deterministic seismic hazard analysis</td>
</tr>
<tr>
<td>DTFT</td>
<td>Discrete-time Fourier transform</td>
</tr>
<tr>
<td>ECC</td>
<td>Emergency core cooling</td>
</tr>
<tr>
<td>ECI</td>
<td>Emergency coolant injection</td>
</tr>
<tr>
<td>EMD</td>
<td>Empirical mode decomposition</td>
</tr>
<tr>
<td>ENA</td>
<td>Eastern North America</td>
</tr>
<tr>
<td>EPRI</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>ESD</td>
<td>Energy spectral density</td>
</tr>
<tr>
<td>EWS</td>
<td>Emergency water supply</td>
</tr>
<tr>
<td>FA</td>
<td>Fragility analysis</td>
</tr>
<tr>
<td>FAS</td>
<td>Fourier amplitude spectrum/spectra</td>
</tr>
<tr>
<td>FE</td>
<td>Finite element</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite impulse response</td>
</tr>
<tr>
<td>FIRS</td>
<td>Foundation input response spectrum/spectra</td>
</tr>
<tr>
<td>FLIRS</td>
<td>Foundation level input response spectrum/spectra</td>
</tr>
<tr>
<td>FRS</td>
<td>Floor response spectrum/spectra</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>GMP</td>
<td>Ground-motion parameter</td>
</tr>
<tr>
<td>GMPE</td>
<td>Ground-motion prediction equation</td>
</tr>
<tr>
<td>GMRS</td>
<td>Ground-motion response spectrum/spectra</td>
</tr>
<tr>
<td>GRS</td>
<td>Ground response spectrum/spectra</td>
</tr>
<tr>
<td>GWN</td>
<td>Gaussian white noise</td>
</tr>
<tr>
<td>HAS</td>
<td>Hilbert amplitude spectrum</td>
</tr>
<tr>
<td>HCLPF</td>
<td>High confidence and low probability of failure</td>
</tr>
<tr>
<td>HCSCP</td>
<td>Hazard-consistent, strain-compatible properties</td>
</tr>
<tr>
<td>HES</td>
<td>Hilbert energy spectrum</td>
</tr>
<tr>
<td>HSA</td>
<td>Hilbert spectral analysis</td>
</tr>
<tr>
<td>HTS</td>
<td>Heat transport system</td>
</tr>
<tr>
<td>IDFT</td>
<td>Inverse discrete Fourier transform</td>
</tr>
<tr>
<td>IDTFT</td>
<td>Inverse discrete-time Fourier transform</td>
</tr>
<tr>
<td>IFT</td>
<td>Inverse Fourier transform</td>
</tr>
<tr>
<td>IMF</td>
<td>Intrinsic mode functions</td>
</tr>
<tr>
<td>IRVT</td>
<td>Inverse random vibration theory</td>
</tr>
</tbody>
</table>
LERF | large early release frequency
LLOCA | large loss of coolant accident
LOCA | loss of coolant accident
LOOP | loss of offsite power
MCR | main control room
MDOF | multiple degrees-of-freedom
MMI | modified Mercalli intensity
NBCC | National Building Code of Canada
NEP | nonexceedance probability
NGA | next generation attenuation
NI | nuclear island
NPPs | nuclear power plants
NPS | nuclear power stations
NRCAN | Natural Resources Canada
NSP | nuclear steam plant
NUREG | Nuclear Regulatory (U.S. Nuclear Regulatory Commission)
PDF | probability density function
PEER | Pacific Earthquake Engineering Research
PGA | peak ground acceleration
PGD | peak ground displacement
PGV | peak ground velocity
PHWR | pressurized heavy water reactor
PMF | probability mass function
PSA | probabilistic safety assessment
PSD | power spectral density
PSHA | probabilistic seismic hazard analysis
PWR | pressurized water reactor
RB | reactor building
RBD | reliability block diagram
RE | reference earthquake
RLE | review level earthquake
RS | response spectrum/spectra
RVT | random vibration theory
RWST | refueling water storage tank
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>spectral acceleration</td>
</tr>
<tr>
<td>SAM</td>
<td>seismic anchor movements</td>
</tr>
<tr>
<td>SB</td>
<td>service building</td>
</tr>
<tr>
<td>SCA</td>
<td>secondary control area</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDE</td>
<td>site design earthquake</td>
</tr>
<tr>
<td>SDOF</td>
<td>single degree-of-freedom</td>
</tr>
<tr>
<td>SHD</td>
<td>seismic hazard deaggregation</td>
</tr>
<tr>
<td>SIS</td>
<td>safety injection system</td>
</tr>
<tr>
<td>SMA</td>
<td>seismic margin assessment</td>
</tr>
<tr>
<td>SME</td>
<td>seismic margin earthquake</td>
</tr>
<tr>
<td>SPRA</td>
<td>seismic probabilistic risk assessment</td>
</tr>
<tr>
<td>SPT</td>
<td>standard penetration test</td>
</tr>
<tr>
<td>SRHA</td>
<td>seismic response history analysis</td>
</tr>
<tr>
<td>SRSA</td>
<td>seismic response spectrum analysis</td>
</tr>
<tr>
<td>SRSS</td>
<td>square root of sum of squares</td>
</tr>
<tr>
<td>SSCs</td>
<td>structures, systems, and components</td>
</tr>
<tr>
<td>SSE</td>
<td>safe shutdown earthquake</td>
</tr>
<tr>
<td>SSEL</td>
<td>safe shutdown equipment list</td>
</tr>
<tr>
<td>SSI</td>
<td>soil–structure interaction</td>
</tr>
<tr>
<td>TP</td>
<td>test pit</td>
</tr>
<tr>
<td>tRS</td>
<td>t-response spectrum/spectra</td>
</tr>
<tr>
<td>TSCR</td>
<td>truncated soil column response</td>
</tr>
<tr>
<td>UHS</td>
<td>uniform hazard spectrum/spectra</td>
</tr>
<tr>
<td>USNRC</td>
<td>U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>VPSHA</td>
<td>vector-valued probabilistic seismic hazard analysis</td>
</tr>
<tr>
<td>WNA</td>
<td>Western North America</td>
</tr>
<tr>
<td>ZPA</td>
<td>zero period acceleration</td>
</tr>
</tbody>
</table>