Contents

Preface	page ix
Prologue | 1
1 Darwin's science | 2
2 Genetics arrives on the scene | 4
3 Theological responses to Darwin | 6
4 Interpretations of evolution today | 10
5 Evolution and the genome revolution | 12
6 The scope of this book | 18

1 Retroviral genealogy | 21
1.1 The retroviral life cycle | 22
1.2 Retroviruses and the monoclonality of tumours | 26
1.3 Endogenous retroviruses and the monophylicity of species | 32
1.4 Natural selection at work: genes from junk | 47
1.4.1 ERVs and the placenta | 48
1.4.2 ERVs that contribute to gene content | 55
1.5 Natural selection at work: regulatory networks | 56
1.6 Are there alternative interpretations of the data? | 58
1.7 Conclusion: a definitive retroviral genealogy for simian primates | 68

2 Jumping genealogy | 70
2.1 The activities of retroelements | 73
2.1.1 LINE-1 elements | 74
2.1.2 Alu elements | 77
2.1.3 SVA elements | 78
vi Contents

2.2 Retroelements and human disease 78

2.3 Retroelements and primate evolution 84
 2.3.1 LINE-1 elements 84
 2.3.2 Alu elements 88
 2.3.3 Retroelements and phylogeny: validation 97

2.4 More ancient elements and mammalian evolution 101
 2.4.1 Euarchontoglires: the primate–rodent group 103
 2.4.2 Boreoeutheria: incorporating the primate–rodent group and the Laurasian beasts 105
 2.4.3 Eutheria 107
 2.4.4 Mammals 111
 2.4.5 TE stories on other branches of the tree of life 114

2.5 Exaptation of TEs 116
 2.5.1 Raw material for new genes 117
 2.5.2 Raw material for new exons 118
 2.5.3 Raw material for new regulatory modules 120

2.6 The evolutionary significance of TEs 124
 2.6.1 TEs, genomic reorganisation and speciation 124
 2.6.2 TEs and evolvability 128

3 Pseudogenealogy 132
 3.1 Mutations and the monoclonal origins of cancers 135
 3.2 Old scars on DNA 138
 3.2.1 Classical marks of NHEJ 139
 3.2.2 LINEs and Alus 141
 3.2.3 NUMTs 142
 3.2.4 Interstitial telomeric sequences 145
 3.3 Pseudogenes 148
 3.3.1 Human-specific pseudogenes 152
 3.3.2 Ape-specific pseudogenes 157
 3.3.3 Simian-specific pseudogenes 163
 3.3.4 Pseudogenes and sensory perception 172
 3.3.5 Pseudogenes from further afield 180
 3.4 Processed pseudogenes 183
3.5 Rare mutations that conserve protein-coding function 187
3.6 Conclusions 189

4 The origins of new genes 194
4.1 New genes in cancer 195
4.2 Copy number variants 198
4.3 Segmental duplications 201
 4.3.1 Some early pointers 201
 4.3.2 Systematic studies of SDs 203
4.4 New genes 206
 4.4.1 Reproduction 207
 4.4.2 Hydrolytic enzymes 218
 4.4.3 Neural systems 220
 4.4.4 Blood 224
 4.4.5 Immunity 228
 4.4.6 Master regulators of the genome 236
4.5 Retрогenealogy 238
 4.5.1 Reverse-transcribed genes in primates 239
 4.5.2 Reverse-transcribed genes in mammals 246
4.6 DNA transposons 249
4.7 De novo origins of genes 254
4.8 Generating genes and genealogies 261

Epilogue: what really makes us human 265
1 Immune systems 267
2 Nervous systems 270
 2.1 Critical periods 272
 2.2 Learning from neglect 273
3 Features of personhood 277
4 Stories and narrative identity 279

References 284
Index 351