

Index

a posteriori probability, 377

a priori probability	branching processes
in decision-making, 375–376, 379	Markov chain, 309–312
situations not needing, 396-403	scaled, 446
absolute value cost function, 490–491	Brownian motion, see Wiener process
accessible state (Markov chain), 164	Burke's theorem, 309, 347–350
age for renewal process, 255–259, 300	
aperiodic class (Markov chain), 165, 306	Cauchy principle value, 22–23
arbitrary finite state (Markov chain), 175, 180	CDF, <i>see</i> cumulative distribution function (CDF)
arbitrary random walk, 419, 423-432	central limit theorem (CLT)
arithmetic average, 36	description and statement, 39-44
arithmetic renewal process, 253–258	for conditionally IID observations, 519
arrival process, 72-74, 74 n.3, 92-96, see also	for renewal processes, 225–226
renewal processes	motivation for jointly Gaussian rv s, 110
averages (time), 226–233, 328–329, 331–332, 336	relation to WLLN, 39–41
axioms of probability, 8–9	Wiener process, 144
•	Chapman–Kolmogorov equation, 168, 170, 290,
backward Markov chain, 303-307, 312-317, 323	337–341
bandpass noise, 144–145	Chebyshev inequality
Bayes' criterion, see minimum-cost rule	and convergence, 37
Bayes' law, 10, 376, 392, 408, 495–496	one-sided, 67
Bellman, R., 202	principles of, 32–33
Bellman dynamic programming algorithm, 190–194	and Wiener process, 143
Bernoulli process, <i>see also</i> binomial distribution	and WLLN, 45
analysis, 17–19	Chernoff bound
as Markov chain, 287–288	principles of, 33–36
shrinking, 82–84, 89–90	as used in binary hypothis tests, 438–439
and SLLN, 221	optimization of, 423–425
and stopping times, 235	used in random walks, 431–432
Berry–Esseen theorem, 41	circular symmetry
Bertsekas, D., 58, 202	and covariance matrices, 146–149
Bessel's inequality, 130	complex Gaussian random vectors, 145–148
binary detection with minimum-cost criterion rule,	for complex random vectors, 144–146
395–396	Gaussian PDF, 150–154
binary Kullback–Liebler divergence, 18	Gaussian processes, 154–155
binary MAP threshold rule, 379–395	class of states, 164
binary pattern, expected wait for, 182–184,	closed Jackson networks, 355–357
280–281, 481–482	CLT, see central limit theorem (CLT)
binomial distribution, 14, 18, 35–36, 43–44	communicating states, 164
birth–death chains, 288–289, 302–303, 305	complex rv, see random variable (rv); random vector
Birth-death Markov processes, 342–344, 346–347	composition of random vectors, 428–431
Blackwell's theorem, 217, 249, 253, 256, 259, 268,	conditional expectation, see also expectation
299–300	as a rv, 26–28
Borel-Cantelli lemma, 274	definition, 25–26

bounds, see inequality

Index

531

total expectation, 28	Neyman-Pearson, 397, 402-403, 439-440
conditional probability, 9–10	randomized threshold, 402–403
continuous random variable, see also random	decision theory (Markov), 189-202
variable (rv)	defective rv s, 13, 104
definition, 13, 14	delayed renewal process, 266-270, 300
expectation, 21	Dembo, A., 473
convergence	detection, see also hypothesis testing
in distribution, 40–41, 45–48	of antipodal signals in Gaussian noise, 381–383
in probability, 46–48, 70	of general signals in Gaussian noise, 383–385
infinite-state Markov chains, 170–175	of vector signals in Gaussian noise, 385–390
of random variable sequences, 45–48	with minimum cost criterion, 395–396
in mean square, 48, 70	discrete observation, 391–394, 400–401
WP1 (with probability 1), 48–51, 130–131,	discrete random variable, see also random variable
217–226	definition, 13–14
convex functions of martingales, 448	expectation, 20-21, 26
countable intersection, 7	discrete stochastic processes, see Markov chain
countable union, 6–7, 9	(finite or countable state); Markov process
covariance function	(countable state); Poisson process; renewal
definition, 125	process
and spectral density, 138-139	discrete-time Gauss-Markov processes, 126–127
complex process, 146–149	discrete-time Gaussian processes, 125–126
Gaussian process, 125	distribution function, see cumulative distribution
stationary process, 127, 134–139	function
wide-sense stationary process, 128	double or quarter game, 484
covariance matrix	duration for renewal processes, 255–259
and Gaussian PDFs, 121-128, 150-154	dynamic programming, 189–200
convex random vectors, 146-149	
definition, 108	eigenvalues, 114-120, 148-153, 176-180
Gaussian random vectors, 111, 113, 118-120	eigenvectors, see eigenvalues
properties of, 114–120	elementary renewal theorem, 217, 249, 251–252,
Cramer–Rao bound, 515–518	268
cumulative distribution function (CDF)	embedded Markov chain (Markov processes), 324
arithmetic, 253	equilibrium (renewal) process, 270
in central limit theorem, 40-41	ergodic class (countable-state Markov chain)
definition, 13	convergence (Blackwell's theorem), 300
as function of other random variables, 23-24	definition, 300
joint CDF, 14–15	ergodic class finite-state (Markov chain)
of indicator random variable, 29	convergence, 172–173
in Poisson process, 74	definition, 167
of renewal processes, 231-233, 263-266	ergodic unichain, 169-170, 173-175
use in finding expectations, 20–22	Erlang density, 78–79
WLLN, 37–38	error curve (binary hypotheses), 396–402
cycle (Markov chain), 163–164	estimation
	application areas, 488–489
De Morgan's law, 7	complex Gaussian vectors, 505, 506
decision criteria	cost function, 489–491
binary hypotheses, IID observations, 438-443	Gaussian vectors, 491–498
in hypothesis testing, 376–379	in a vector space of rv s, 507-512
decision making, see hypothesis testing	iterative, 494–496, 503–504
decision rule	Kalman, 496–498, 504–505
binary MAP threshold, 379–395	LLSE, 498–500
error curve, 396–402	MAP, 512–513
MAP, 377–379	MMSE, 491–498
minimum-cost, 395–396, 404, 409, 489	parameter, 513–521
min-max detection, 403	scalar iterative signal and noise, 494–496
ML, 380–381	scalar Kalman filter, 496–498

532 Index

scalar signal and noise, 493-494	wide-sense stationary, 128
vector signal, 500-505	Wiener process, 142–144
Euler-Mascheronei constant, 60	Gaussian random vector processes
events	circularly-symmetric complex rv estimation,
as component of probability model, 2	505–506
axioms for events, 6–7	complex random vectors, 144-155
expectation (E[X]), see also mean	rv, 107–114
definition, 19–23	Geometry for Gaussian PDFs, 118-120
as function of other random variables, 23-26	
of counting rv s in renewal processes, 249-253	Harris, T. E., 319
and Wald's equality, 238–239	Hermitian covariance matrices, 148–154
expected value, see expectation (E[X])	holding intervals (Markov process), 325
exponential bounds on thresholds, 436–438	homogeneous Markov chain, see Markov chain
exponential growth rate, 462–464	(finite state)
exponentially tight sequence, 426, 429, 438	horse race betting, 484–485
	hypothesis testing
Feller, W., 58, 271, 318	binary detection with minimum-cost criterion,
filtered processes	395–396
continuous time, 136–138	binary MAP, 379–395
Gaussian sinc processes, 134–136	decision criteria in, 376–379
finite grain event, 3	error curve, 396–402
finite sample space	min-max detection rule, 403
assigning probabilities for, 4–5	for multiple hypotheses, 403-409
and discrete random variable, 13	Neyman–Pearson rule, 402–403
and expectation, 19–20	and probability models, 375-376
first-passage time	
for countable-state Markov chains, 289–291	IID, see independent identically distributed trials
for finite-state Markov chains, 181–184	(IID)
Fisher information, 515–519	IID noise, see white noise
Fisher–Neyman factorization, 393–395	increment process (Poisson), 77–78, 81–82,
Fourier transform, 31, 128–134, <i>see also</i> spectral	142–144
density	independence, see statistical independence
frequency shift keying (FSK), 412–413	independent identically distributed trials (IID), see
Frobenius theorem, 173 n.4	also Poisson process; renewal processes
1100cmus uicorem, 173 n.+	Bernouli process, 17–19
Covacion by mathesis testing	definition, 11–12
Gaussian hypothesis testing	Gaussian processes, 108–109, 125
binary hypothesis testing in, 381–390	and martingales, 445–446
for multiple hypotheses, 405–406, 408–409	observation, 438–443
G/G/1 queue	in real world experiments, 52–55
and random walks, 420–422	and tilted probabilities, 425–428
renewal processes, 239–242	Wiener process, 144
Gaussian processes	independent increments, 77–82, 142
continuous-time, 130–132	indicator random variable, 29
definition, 124–126	inequality
discrete-time, 125–127	Bessel's, 130
Discrete-time Gauss-Markov, 126–127	Chebyshev, 32–33
Markov chain (countable state), 287–289	Chernoff, 33–36, 423–425, 430–439
matrices, 114–117	Cramer–Rao, 515–518
MMSE estimation of, 491–498	Jensen's, 449
normalized random variables in, 105–107	Markov, 32
orthonormal expansions, 128–130	Schwartz, 508
PDF, 117–124	information theory, 519–521
sinc processes, 132–136	inherent reachability (Markov decisions), 196
spectral density, 136–139	inner-product space, 508–509
stationarity, 126–128	integer time process, <i>see</i> Markov chain (finite state)
white noise, 139–142	integer-valued random walk, 419

Index

533

irreducible Markov chain, 297-299, 305, 306	reversibility of, 344–350
irreducible Markov processes, see Markov processes	steady state distributions, 329–337
iterative estimation, 494–496, 503–504	time averages, 328–329
, ,	uniformization, 341–342
Jackson networks, 350–357, see also queues	marriage problem, 480
Jensen's inequality, 449	martingale convergence theorem, 456–458
joint probability density (Gaussian)	martingales, 444
definition, 117–118	definition, 444–447
geometry, 118–120	investment model, 458–468
special case, 112–114	Kolmogorov equations, 453–458
jointly-Gaussian random vectors, 109–111, 124–126	product-form, 445–446
Jordan form, 179–180	stopping times, 450–453
***************************************	sub- and super-, 447–449
Kalman filter, 496–498, 504–505	maximum a posteriori probability (MAP)
Kelly, F. P., 319	and estimation, 491, 512–513
Kingman bound, 437–438	hypothesis testing, 379–395
Kolmogorov, A. N., 5, 11, 58	rule, 377–379
Kolmogorov differential equations, 337	maximum likelihood tests (ML), 380–381, 441, 491,
Kolmogorov equations, 453–458	512, <i>see also</i> parameter estimation
Kolmogorov's submartingale inequality, 453–455	maximum-tolerable-error cost function, 491
	mean, see also expectation
Laplace transform, 31, 249–251	contrast with median, 28–29
large deviations, 428–431	of common rv s, 14
last come first serve (LCFS) queues, 370–371	measure theory, 7, 7 n.8, 12, 12 n.13
linear transformations, 149–150	median, 28–29
Little's theorem, 242–245, 316	memoryless property (Poisson process), 75–78, 85
LLSE estimate, 498–500	MGF, see moment generating function (MGF)
	minimum mean-squared-error estimate (MMSE
MAP, see maximum a posteriori probability (MAP)	estimate), 490–500, 513, see also parameter
Markov chain (countable state)	estimation
birth-death, 288-289, 302-303, 305	minimum-cost rule
branching processes, 309–312	definition, 395–396
first-passage-time analysis of, 289–291	and estimation, 489
irreducible, 297–299, 305, 306	for multiple hypotheses, 404, 409
M/M/1 queue, 307–309	min–max detection rule, 403
recurrence of, 291–294	M/M/1 queue
renewal theory applied to, 215, 294–302	Markov chain (countable state), 307–309
reversible, 303–306	Markov processes, 326–328, 336–344
round-robin service system, 312–317	MMSE, <i>see</i> minimum mean-squared-error estimate
Markov chain (finite state)	(MMSE estimate)
classification of states, 163–167	moment generating function (MGF)
decision theory, 189–190, 200	definition, 14, 29–31
definition, 161–163	for Markov modulated random walks, 469–471
dynamic programming algorithm, 190–194	Gaussian random vectors, 108–109, 111
eigenvalues, 176–180	Gaussian rv s, 106–107
matrices, 168–175	properties, 423–433
policy-improvement algorithm, 197–200	properties, 125 155
rewards, 180–189	Neyman–Pearson rule, 397, 402–403, 439–440
stationary decision policies, 194–200	noise
Markov inequality, 32	bandpass, 144–145
Markov modulated random walks, 468–472	vector, 500–505
Markov processes birth–death process, 342–344, 346–347	white, 139–142
Chapman–Kolmogorov equation, 337–341	non-arithmetic renewal process, 253, 258–266
definition, 324–326	non artimette renewai process, 233, 230–200
Jackson networks, 350–357	observation
M/M/1 queue, 326–328	binary hypothesis testing with vector 385–391

534 Index

continuous, 394–395	for common rv s, 14
discrete, 391–394, 400–401	Gaussian, 120–124
hypothesis testing with one-dimensional, 381–385	Gaussian rv, 105–106
IID, 438–443	probability mass function (PMF)
vector, 518–519	binomial distribution, 18
one-dimensional random walk, see random walk	definition, 13
order statistics, 92–96	for common discrete rv s, 14
orthogonal matrix (Gaussian), 114-115	Poisson rv, 79–80
orthogonality principle, 509–512	probability models
orthonormal expansions (Gaussian), 128-130	components of, 2–4
outcomes, see sample points	and estimation, 488
	and hypothesis testing, 375–376
parameter estimation, 513-521, see also maximum	martingales, 458–468
likelihood tests (ML); minimum	and real world randomness, 51–57
mean-squared-error estimate (MMSE estimate)	for repeated idealized experiments, 11–12
path (Markov chain), 163-164	probability theory axioms, 5–9
pathological Gaussian noise, 141	processor sharing (round robin), 313–317
pathological Markov processes, 336-337	pseudo-covariance matrix, 146–148
PDF, see probability density function (PDF)	
periodic state (Markov chain), 165-306	queues
PMF, see probability mass function (PMF)	backward-moving, 315
Poisson process, see also Bernouli process;	Burke's theorem, 309, 347–350
independent identically distributed trials (IID);	FCFS, 239
renewal processes; Wiener process	feedback queues, 349
arrival process in, 72-74, 74 n.3, 92-96	FIFO, 239
combining, 84–86	G/G/1, 420–422
conditional arrival densities in, 92-96	G/G/m, 215
hypothesis testing in, 390–391	Jackson networks, 350–357
Markov processes (countable-state), 306,	Little's theorem, 242–245
326–328	M/D/m/m, 373
non-homogeneous, 89–92	$M/G/\infty$, 91
order statistics, 92–96	M/G/1, 245
PMF, 79–80	M/M/1, 88
properties of, 75–84	M/M/m, 309
subdividing, 86–89	PASTA property, 248
two-dimensional, 103	Pollaczek-Khinchin theorem, 248
policy improvement (Markov decisions), 197-200	processor sharing, 313–317
portfolios for investment	round-robin queues, 316
constant fractional allocation, 461-465	tandem queues, 350
time-varying allocation, 465–468	unfinished work, 246–249
positive definite matrix, 115–117	
positive recurrence	random variable (rv), see also random vectors
Markov processes (countable-state), 329-330,	complex, 13, 22, 145-146
333, 335	convergence, 45–48
semi-Markov processes (countable-state),	defective, 13, 104
359–360	definition, 12–14
positive semi-definite, 55	Gaussian, 105-107, 145-146
preemptive resume LCFS queues, 370-371	indicator, 29
principle axes for Gaussian PDFs, 118-120	multiple, 14–16
probability 1 (WP1)	observation, 381-395, 400-401, 438-443
convergence, 48-51, 130-131	typical value of, 28
and SLLN, 217–226	random vectors, see also random variable (rv)
probability density function (PDF)	complex, 144-155
circularly-symmetric Gaussian, 150-154	Gaussian, 107–114, 124–126
definition, 13	random walk, see also martingales
for common continuous rv s, 14	arbitrary, 419, 423-432

Index

535

definition, 417–418	Schwartz inequality, 508
for binary hypotheses, 438–442	score, 516
for sequential decisions, 442-444	secretary problem, 480
G/G/1 queue, 420–422	semi-Markov processes (countable-state), 357-361
integer, 419	sequential decisions, 442-444
Markov modulated, 468–472	simple random walk, 418–419, 435–436
renewal processes as, 419-420	sinc processes (Gaussian), 132-136, 140
simple, 418–419	spectral density, see also Fourier transform
with thresholds, 433–438	definition, 136–139
randomized threshold rule, 402-403	and white noise, 139-142
randomness	squared-cost function, 489-490
definition, 1–2	standard deviation (σ), 23–24
and probability models, 51-57	stationary increments, 77-82, 142
recurrent state (Markov chain)	stationary policy algorithm (Markov), 194-200
definition (countable state), 291–294	stationary processes
definition (finite state), 164, 165	Gaussian, 126–128, 133–134, 139–142
in unichain, 169	unichain (Markov chain), 194-200
null recurrence, 288, 290, 296	Wiener process, 142–144
positive recurrence, 288, 290, 294-296, 299	statistical independence
relative frequency, 5, 39, 52–56	of random variables, 15–16
relative-gain vector (Markov chain), 186	countable state Markov, 300
renewal equation, 250, 269, 278	definition, 10–11
renewal processes, see also arrival process;	of Gaussian random vectors, 110-111, 120-124
independent identically distributed trials (IID);	in Poisson process, 86–89
Poisson process	of real world experiments, 55–56
arithmetic, 253–258	steady state
Bernoulli process as, 19	equilibrium (renewal process), 270
definition, 214–215	Markov chains, 168–176, 296–299
delayed, 266–270	Markov processes, 329–337
Markov chain (countable state), 294–302	steady-state vector (Markov chain)
Markov processes, 330–335	countable state Markov, 296–299
non-arithmetic, 253, 258–266	definition, 168–175
and random walks, 419-420	finite-state Markov, 168–171, 173, 299
number of renewals in (0, t], 249–253	in transient states, 181
rewards, 226–233, 254–266	Stein's lemma, 441
stopping times, 233–249	Stieltjes integral, 23, 60, 260–262
Strong law for renewal processes, 219, 221–226	Stirling bounds, 60
renewal theory, 200	stochastic matrix, 168–175
repeated idealized experiments, 11–12	stochastic process, 16, 16 n.15, 17–19, see also
residual life (renewal processes), 226–228, 231–232	Bernoulli process
reversibility	stopped processes, 450
Markov chain, 303–306	stopping times
Markov processes, 344–350, 360–361	martingales, 450–453, 471
rewards	renewal processes, 233–249
Markov chain, 180–189	stopping trial, see stopping times
renewal processes, 226–233, 254–266	strong law for renewal processes, 217, 221–226
Riemann sum, 21, 44, 62, 262–264	strong law for fenewar processes, 217, 221–226
Ross, S., 271, 318	law of large numbers (WLLN)
round-robin service and processor sharing, 312–317	and convergence WP1, 217–226
Rudin, W., 58	definition, 35–51
rv, see random variable (rv)	and Kolmogorov inequalities, 455–456
2., see tandon variable (11)	relative frequency in, 52
sample average (in laws of large numbers), 36–39	- · · · · · · · · · · · · · · · · · · ·
	subjective probability, 57–58
sample points, 2	submartingale inequality, 453–455
sample space, 3–9	submartingales, 447–449
sampled-time (Markov processes), 328–329, 336	sufficient statistic

536 Index

in binary hypothesis testing, 381	definition, 169
discrete with continuous observations, 394	stationary policies, 194–200
for multiple hypotheses, 407–409	transition matrix, 170
with discrete observations, 391–394	uniformized process (Markov), 341-342
sums of dependent zero-mean rv s, 445	
supermartingales, 447–449	variance
symmetric complex rv estimation, 505–506	random variable, 14, 23, 25
symmetry	WLLN, 36-45
Gaussian matrix, 114–115	vector, 110
as rationale for choosing probabilities, 4	composition, 428-431
	estimation, 500–505, 507–512
theorem	Gaussian, 107-114, 124-126
Berry-Esseen, 41	jointly-Gaussian random, 124-126
Blackwell's, 217, 249, 253, 256, 259, 268,	noise estimation, 500–505
299–300	observations, 518–519
Burke's, 309, 347–350	random, 144–155
central limit, 18, 39-44, 110, 144, 225-226, 519	space estimation, 507–512
elementary renewal, 217, 249, 251-252, 268	
Little's, 242–245, 316	Wald, Abraham, 233
martingale convergence, 456-458	Wald's equality, 217, 236-242, 246, 435
threshold	Wald's identity, 434–437
detection rules, 379-395, 402-403	walk
Markov modulated random walks, 471-472	Markov, 163-164, 468-472
and random walks, 418, 433-438	random, 417–431
tilted probabilities, 425–428	zero-mean random, 417, 435-436, 444-445,
time averages	492–494
Markov processes (countable-state), 328-329,	weak law of large numbers (WLLN), see also strong
331–332, 336	law of large numbers (SLLN)
renewal processes, 226–233	with finite variance, 36–39
transform, see also moment generating functions	with infinite variance, 44–45
definition, 29–31	and tilted probabilities, 427–428
Fourier, 31, 128–134	for renewal processes, 223–224
Laplace, 31, 249–251	white noise, 139–142
Z, 31	wide sense stationary (WSS)
transient state (Markov chain), 164, 165, 291	Gaussian processes, 134–139
transition probabilities (Markov chain)	stochastic process, 128
periodic, 166	Wiener process, 142–144, see also Poisson process
stochastic matrix, 168–175	Wolff, R. W., 271, 318
trapping state (Markov chain), 181-184	WP1, see probability 1 (WP1)
Triple or nothing investments, 460–461	
Tsitsiklis, J., 58	Zeitouni, O., 473
typical values of rv s, 28-29	zero-mean random walk, 417, 435–436, 444–445, 492–494
unichain (Markov chain)	Z-transform, 31