

Long-Range Dependence and Self-Similarity

This modern and comprehensive guide to long-range dependence and self-similarity starts with rigorous coverage of the basics, then moves on to cover more specialized, up-to-date topics central to current research. These topics concern, but are not limited to, physical models that give rise to long-range dependence and self-similarity; central and non-central limit theorems for long-range dependent series, and the limiting Hermite processes; fractional Brownian motion and its stochastic calculus; several celebrated decompositions of fractional Brownian motion; multidimensional models for long-range dependence and self-similarity; and maximum likelihood estimation methods for long-range dependent time series. Designed for graduate students and researchers, each chapter of the book is supplemented by numerous exercises, some designed to test the reader's understanding, while others invite the reader to consider some of the open research problems in the field today.

VLADAS PIPIRAS is Professor of Statistics and Operations Research at the University of North Carolina, Chapel Hill.

MURAD S. TAQQU is Professor of Mathematics and Statistics at Boston University.

CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS

Editorial Board

Z. Ghahramani (Department of Engineering, University of Cambridge)
R. Gill (Mathematical Institute, Leiden University)
F. P. Kelly (Department of Pure Mathematics and Mathematical Statistics,

University of Cambridge)
B. D. Ripley (Department of Statistics, University of Oxford)

S. Ross (Department of Industrial and Systems Engineering, University of Southern California)

M. Stein (Department of Statistics, University of Chicago)

This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

A complete list of books in the series can be found at www.cambridge.org/statistics. Recent titles include the following:

- 19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
- 20. Random Graph Dynamics, by Rick Durrett
- 21. Networks, by Peter Whittle
- 22. Saddlepoint Approximations with Applications, by Ronald W. Butler
- 23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison and N. Reid
- 24. Random Networks for Communication, by Massimo Franceschetti and Ronald Meester
- 25. Design of Comparative Experiments, by R. A. Bailey
- 26. Symmetry Studies, by Marlos A. G. Viana
- 27. Model Selection and Model Averaging, by Gerda Claeskens and Nils Lid Hjort
- 28. Bayesian Nonparametrics, edited by Nils Lid Hjort et al.
- From Finite Sample to Asymptotic Methods in Statistics, by Pranab K. Sen, Julio M. Singer and Antonio C. Pedrosa de Lima
- 30. Brownian Motion, by Peter Mörters and Yuval Peres
- 31. Probability (Fourth Edition), by Rick Durrett
- 33. Stochastic Processes, by Richard F. Bass
- 34. Regression for Categorical Data, by Gerhard Tutz
- 35. Exercises in Probability (Second Edition), by Loïc Chaumont and Marc Yor
- 36. Statistical Principles for the Design of Experiments, by R. Mead, S. G. Gilmour and A. Mead
- 37. Quantum Stochastics, by Mou-Hsiung Chang
- 38. Nonparametric Estimation under Shape Constraints, by Piet Groeneboom and Geurt Jongbloed
- 39. Large Sample Covariance Matrices and High-Dimensional Data Analysis, by Jianfeng Yao, Shurong Zheng and Zhidong Bai
- 40. Mathematical Foundations of Infinite-Dimensional Statistical Models, by Evarist Giné and Richard Nickl
- 41. Confidence, Likelihood, Probability, by Tore Schweder and Nils Lid Hjort
- 42. Probability on Trees and Networks, by Russell Lyons and Yuval Peres
- 43. Random Graphs and Complex Networks (Volume 1), by Remco van der Hofstad
- 44. Fundamentals of Nonparametric Bayesian Inferences, by Subhashis Ghosal and Aad van der Vaart
- 45. Long-Range Dependence and Self-Similarity, by Vladas Pipiras and Murad S. Taqqu

Long-Range Dependence and Self-Similarity

Vladas Pipiras University of North Carolina, Chapel Hill

Murad S. Taqqu

Boston University

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107039469
DOI: 10.1017/9781139600347

© Vladas Pipiras and Murad S. Taqqu 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library.

ISBN 978-1-107-03946-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Natércia and Filipa and to Rachelle, Yael, Jonathan, Noah, Kai and Olivia

Contents

Notation Preface		xvii xxi
1	A Brief Overview of Time Series and Stochastic Processes	1
2	Basics of Long-Range Dependence and Self-Similarity	15
3	Physical Models for Long-Range Dependence and Self-Similarity	113
4	Hermite Processes	229
5	Non-Central and Central Limit Theorems	282
6	Fractional Calculus and Integration of Deterministic Functions with Respect to FBM	345
7	Stochastic Integration with Respect to Fractional Brownian Motion	397
8	Series Representations of Fractional Brownian Motion	437
9	Multidimensional Models	466
10	Maximum Likelihood Estimation Methods	539
A	Auxiliary Notions and Results	575
В	Integrals with Respect to Random Measures	588
C	Basics of Malliavin Calculus	602
D	Other Notes and Topics	610
Bibliog Index	graphy	613 660

Lisi	ij Abbiei	ritions	ΛV	
Nota	tion		xvii	
Prefa	ice		xxi	
1	A Bri	ef Overview of Time Series and Stochastic Processes	1	
1.1	Stoch	astic Processes and Time Series	1	
	1.1.1	Gaussian Stochastic Processes	2	
	1.1.2	Stationarity (of Increments)	3	
	1.1.3	Weak or Second-Order Stationarity (of Increments)	4	
1.2	Time	Domain Perspective	4	
	1.2.1	Representations in the Time Domain	4	
1.3	Specti	ral Domain Perspective	7	
	1.3.1	Spectral Density	7	
	1.3.2	Linear Filtering	8	
	1.3.3	Periodogram	9	
	1.3.4	Spectral Representation	9	
1.4	Integr	al Representations Heuristics	11	
	1.4.1	Representations of a Gaussian Continuous-Time Process	12	
1.5	A Het	ristic Overview of the Next Chapter	14	
1.6	Biblio	graphical Notes	14	
2	Basic	s of Long-Range Dependence and Self-Similarity	15	
2.1	Defini	itions of Long-Range Dependent Series	16	
2.2	Relations Between the Various Definitions of Long-Range			
	Deper	ndence	19	
	2.2.1	Some Useful Properties of Slowly and Regularly Varying Functions	19	
	2.2.2	Comparing Conditions II and III	21	
	2.2.3	Comparing Conditions II and V	21	
	2.2.4	Comparing Conditions I and II	23	
	2.2.5	Comparing Conditions II and IV	25	
	2.2.6	Comparing Conditions I and IV	28	
	2.2.7	Comparing Conditions IV and III	29	
	2.2.8	Comparing Conditions IV and V	29	
2.3		Range Dependent Series and their Several Examples	30	
2.4	Exam	ples of Long-Range Dependent Series: FARIMA Models	35	
	2.4.1	FARIMA(0, d, 0) Series	35	

X

	2.4.2	FARIMA(p, d, q) Series	42
2.5		tion and Basic Properties of Self-Similar Processes	43
2.6		ples of Self-Similar Processes	47
	2.6.1	Fractional Brownian Motion	47
	2.6.2	Bifractional Brownian Motion	53
	2.6.3	The Rosenblatt Process	56
	2.6.4	SαS Lévy Motion	59
	2.6.5	Linear Fractional Stable Motion	59
	2.6.6	Log-Fractional Stable Motion	61
		The Telecom Process	62
	2.6.8	Linear Fractional Lévy Motion	63
2.7		amperti Transformation	65
2.8		ections Between Long-Range Dependent Series and	
	Self-S	imilar Processes	67
2.9	Long-	and Short-Range Dependent Series with Infinite Variance	76
	2.9.1	First Definition of LRD Under Heavy Tails: Condition A	76
	2.9.2	Second Definition of LRD Under Heavy Tails: Condition B	82
	2.9.3	Third Definition of LRD Under Heavy Tails: Codifference	82
2.10		stic Methods of Estimation	84
		The R/S Method	84
		Aggregated Variance Method	88
		Regression in the Spectral Domain	88
2 11		Wavelet-Based Estimation	93
2.11		ation of Gaussian Long- and Short-Range Dependent Series	99 100
		Using Cholesky Decomposition Using Circulant Matrix Embedding	100
2.12	Exerci		106
			108
2.13	DIUIIO	graphical Notes	100
3	Physic	cal Models for Long-Range Dependence and Self-Similarity	113
3.1	Aggre	gation of Short-Range Dependent Series	113
3.2	Mixtu	re of Correlated Random Walks	117
3.3	Infinit	e Source Poisson Model with Heavy Tails	120
	3.3.1	Model Formulation	120
	3.3.2	Workload Process and its Basic Properties	123
		Input Rate Regimes	128
	3.3.4	Limiting Behavior of the Scaled Workload Process	131
3.4		-Law Shot Noise Model	149
3.5	Hierar	rchical Model	154
3.6	Regim	ne Switching	156
3.7	Elastic	c Collision of Particles	162
3.8	Motio	n of a Tagged Particle in a Simple Symmetric Exclusion	
	Model		167
3.9		-Law Pólya's Urn	172
3.10		om Walk in Random Scenery	177
3.11		Dimensional Ising Model	180
		Model Formulation and Result	181

More Information

	3.11.2 Correlations, Dimers and Pfaffians	184
	3.11.3 Computation of the Inverse	198
	3.11.4 The Strong Szegö Limit Theorem	209
	3.11.5 Long-Range Dependence at Critical Temperature	212
3.12	Stochastic Heat Equation	215
3.13	The Weierstrass Function Connection	216
3.14	Exercises	221
3.15	Bibliographical Notes	223
4	Hermite Processes	229
4.1	Hermite Polynomials and Multiple Stochastic Integrals	229
4.2	Integral Representations of Hermite Processes	232
	4.2.1 Integral Representation in the Time Domain	232
	4.2.2 Integral Representation in the Spectral Domain	233
	4.2.3 Integral Representation on an Interval	234
	4.2.4 Summary	239
4.3	Moments, Cumulants and Diagram Formulae for Multiple Integrals	241
	4.3.1 Diagram Formulae	241
	4.3.2 Multigraphs	245
	4.3.3 Relation Between Diagrams and Multigraphs	246
	4.3.4 Diagram and Multigraph Formulae for Hermite Polynomials	251
4.4	Moments and Cumulants of Hermite Processes	254
4.5	Multiple Integrals of Order Two	259
4.6	The Rosenblatt Process	262
4.7	The Rosenblatt Distribution	264
4.8	CDF of the Rosenblatt Distribution	272
4.9	Generalized Hermite and Related Processes	272
4.10	Exercises	279
4.11	Bibliographical Notes	280
5	Non-Central and Central Limit Theorems	282
5.1	Nonlinear Functions of Gaussian Random Variables	282
5.2	Hermite Rank	285
5.3	Non-Central Limit Theorem	288
5.4	Central Limit Theorem	298
5.5	The Fourth Moment Condition	305
5.6	Limit Theorems in the Linear Case	306
5.0	5.6.1 Direct Approach for Entire Functions	306
	5.6.2 Approach Based on Martingale Differences	311
5.7	Multivariate Limit Theorems	316
3.1	5.7.1 The SRD Case	316
	5.7.2 The LRD Case	319
	5.7.3 The Mixed Case	321
	5.7.4 Multivariate Limits of Multilinear Processes	324
5.8	Generation of Non-Gaussian Long- and Short-Range Dependent	·
•	Series	328
	5.8.1 Matching a Marginal Distribution	329

Expanded Contents

хi

xii

	5.8.2 5.8.3	Relationship Between Autocorrelations Price Theorem	331 333
	5.8.4	Matching a Targeted Autocovariance for Series with Prescribed Marginal	336
5.9	Exerc		341
5.10	Biblio	ographical Notes	342
6	Fract	tional Calculus and Integration of Deterministic Functions	
	with	Respect to FBM	345
6.1	Fracti	ional Integrals and Derivatives	345
	6.1.1	Fractional Integrals on an Interval	345
	6.1.2	Riemann–Liouville Fractional Derivatives $\mathcal D$ on an Interval	348
	6.1.3	Fractional Integrals and Derivatives on the Real Line	352
	6.1.4	Marchaud Fractional Derivatives D on the Real Line	354
	6.1.5	The Fourier Transform Perspective	357
6.2	Repre	esentations of Fractional Brownian Motion	359
	6.2.1	Representation of FBM on an Interval	359
	6.2.2	Representations of FBM on the Real Line	368
6.3		ional Wiener Integrals and their Deterministic Integrands	369
	6.3.1	The Gaussian Space Generated by Fractional Wiener Integrals	369
	6.3.2	Classes of Integrands on an Interval	372
	6.3.3	Subspaces of Classes of Integrands	377
	6.3.4	The Fundamental Martingale	381
	6.3.5	The Deconvolution Formula	382
	6.3.6	Classes of Integrands on the Real Line	383
	6.3.7	Connection to the Reproducing Kernel Hilbert Space	384
6.4		cations	386
	6.4.1	Girsanov's Formula for FBM	386
	6.4.2	The Prediction Formula for FBM	388
<i>(5</i>	6.4.3	Elementary Linear Filtering Involving FBM	392
6.5	Exerc		394
6.6	Biblio	ographical Notes	395
7		nastic Integration with Respect to Fractional Brownian	
	Motio	on	397
7.1		astic Integration with Random Integrands	397
	7.1.1	FBM and the Semimartingale Property	397
	7.1.2	Divergence Integral for FBM	399
	7.1.3	Self-Integration of FBM	402
	7.1.4	Itô's Formulas	407
7.2		cations of Stochastic Integration	413
	7.2.1	Stochastic Differential Equations Driven by FBM	413
	7.2.2	Regularity of Laws Related to FBM	414
	7.2.3	Numerical Solutions of SDEs Driven by FBM	418
	7.2.4	Convergence to Normal Law Using Stein's Method	426
	7.2.5	Local Time of FBM	430
7.3	Exerc		434
7.4	Biblio	ographical Notes	435

Expanded Contents xiii

8	Series Representations of Fractional Brownian Motion	437
8.1	Karhunen–Loève Decomposition and FBM	437
	8.1.1 The Case of General Stochastic Processes	437
	8.1.2 The Case of BM	438
	8.1.3 The Case of FBM	439
8.2	Wavelet Expansion of FBM	440
	8.2.1 Orthogonal Wavelet Bases	440
	8.2.2 Fractional Wavelets	445
	8.2.3 Fractional Conjugate Mirror Filters	450
	8.2.4 Wavelet-Based Expansion and Simulation of FBM	452
8.3	Paley–Wiener Representation of FBM	455
	8.3.1 Complex-Valued FBM and its Representations	455
	8.3.2 Space \mathcal{L}_a and its Orthonormal Basis	456
	8.3.3 Expansion of FBM	462
8.4	Exercises	463
8.5	Bibliographical Notes	464
9	Multidimensional Models	466
9.1	Fundamentals of Multidimensional Models	467
	9.1.1 Basics of Matrix Analysis	467
	9.1.2 Vector Setting	469
	9.1.3 Spatial Setting	471
9.2	Operator Self-Similarity	472
9.3	Vector Operator Fractional Brownian Motions	475
	9.3.1 Integral Representations	476
	9.3.2 Time Reversible Vector OFBMs	484
	9.3.3 Vector Fractional Brownian Motions	486
	9.3.4 Identifiability Questions	492
9.4	Vector Long-Range Dependence	495
	9.4.1 Definitions and Basic Properties	495
	9.4.2 Vector FARIMA $(0, D, 0)$ Series	499
	9.4.3 Vector FGN Series	503
	9.4.4 Fractional Cointegration	504
9.5	Operator Fractional Brownian Fields	508
	9.5.1 <i>M</i> –Homogeneous Functions	509
	9.5.2 Integral Representations	513
	9.5.3 Special Subclasses and Examples of OFBFs	523
9.6	Spatial Long-Range Dependence	526
	9.6.1 Definitions and Basic Properties	526
	9.6.2 Examples	529
9.7	Exercises	532
9.8	Bibliographical Notes	535
10	Maximum Likelihood Estimation Methods	539
10.1	Exact Gaussian MLE in the Time Domain	539
10.2	Approximate MLE	542
	10.2.1 Whittle Estimation in the Spectral Domain	542
	10.2.2 Autoregressive Approximation	550

xiv

10.3	Model Selection and Diagnostics	551
10.4	Forecasting	
10.5	R Packages and Case Studies	555
	10.5.1 The ARFIMA Package	555
	10.5.2 The FRACDIFF Package	556
10.6	Local Whittle Estimation	558
	10.6.1 Local Whittle Estimator	558
	10.6.2 Bandwidth Selection	562
	10.6.3 Bias Reduction and Rate Optimality	565
10.7	Broadband Whittle Approach	567
10.8	Exercises	569
10.9	Bibliographical Notes	570
A	Auxiliary Notions and Results	575
A.1	Fourier Series and Fourier Transforms	575
	A.1.1 Fourier Series and Fourier Transform for Sequences	575
	A.1.2 Fourier Transform for Functions	577
A.2	Fourier Series of Regularly Varying Sequences	579
A.3	Weak and Vague Convergence of Measures	583
	A.3.1 The Case of Probability Measures	583
	A.3.2 The Case of Locally Finite Measures	584
A.4	Stable and Heavy-Tailed Random Variables and Series	585
В	Integrals with Respect to Random Measures	588
B.1	Single Integrals with Respect to Random Measures	588
	B.1.1 Integrals with Respect to Random Measures with Orthogonal	
	Increments	589
	B.1.2 Integrals with Respect to Gaussian Measures	590
	B.1.3 Integrals with Respect to Stable Measures	592
	B.1.4 Integrals with Respect to Poisson Measures	593
D 0	B.1.5 Integrals with Respect to Lévy Measures	596
B.2	Multiple Integrals with Respect to Gaussian Measures	597
C	Basics of Malliavin Calculus	602
C.1	Isonormal Gaussian Processes	602
C.2	Derivative Operator	603
C.3	Divergence Integral	607
C.4	Generator of the Ornstein-Uhlenbeck Semigroup	608
D	Other Notes and Topics	610
Biblic	ography	613
Index		660

Abbreviations

ACVF autocovariance function
ACF autocorrelation function
AIC Akaike information criterion

AR autoregressive

ARMA autoregressive moving average BIC Bayesian information criterion biFBM bifractional Brownian motion BLUE best linear unbiased estimator

BM Brownian motion

CDF cumulative distribution function

CMF conjugate mirror filters CRW correlated random walk

FARIMA fractionally integrated autoregressive moving average

FBM fractional Brownian motion **FBF** fractional Brownian field fractional Brownian sheet **FBS FGN** fractional Gaussian noise **FFT** fast Fourier transform **FGN** fractional Gaussian noise linear fractional stable motion **LFSM LFSN** linear fractional stable noise

LRD long-range dependence, long-range dependent

MA moving average

MLE maximum likelihood estimation MRA multi-resolution analysis MSE mean squared error

ODE ordinary differential equation
OFBF operator fractional Brownian field
OFBM operator fractional Brownian motion

OU Ornstein-Uhlenbeck

More Information

xvi List of Abbreviations

PDF probability density function
RKHS reproducing kernel Hilbert space
SDE stochastic differential equation

SPDE stochastic partial differential equation

SRD short-range dependence, short-range dependent

SS self-similar

SSSI self-similar with stationary increments
VFBM vector fractional Brownian motion

WN white noise

Notation

Numbers and sequences

n!

 $\Gamma(\cdot)$ $B(\cdot,\cdot)$

 $H_k(\cdot)$

 $C^k(I)$

 $C_b^k(I)$

 $L^p(\mathbb{R}^q)$

 $||f||_{L^p(\mathbb{R}^q)}$ $L^p(E,m)$

 f^{\leftarrow} , f^{-1}

n factorial

gamma function

Hermite polynomial of order k

with the first k derivatives bounded

beta function

$\mathbb Z$	set of integers $\{\ldots, -1, 0, 1, \ldots\}$
\mathbb{R}_+	half-axis $(0, \infty)$
$ x _2$	Euclidean norm $ x _2 = (\sum_{j=1}^q x_j ^2)^{1/2}$ for $x = (x_1, \dots, x_q)' \in \mathbb{C}^q$
x_{+}, x_{-}	$\max\{x, 0\}, \max\{-x, 0\}, \text{ respectively}$
$\mathfrak{R},\mathfrak{F}$	real and imaginary parts, respectively
\overline{z}	complex conjugate of $z \in \mathbb{C}$
$x \wedge y, x \vee y$	$min\{x, y\}, max\{x, y\},$ respectively
$[x], \lceil x \rceil$	(floor) integer part and (ceiling) integer part of x , respectively
\widehat{a}	Fourier transform of sequence a
a^{\vee}	time reversion of sequence a
a * b	convolution of sequences a and b
\downarrow_2,\uparrow_2	downsampling and upsampling by 2 operations, respectively
$\ell^p(\mathbb{Z})$	space of sequences $\{a_n\}_{n\in\mathbb{Z}}$ such that $\sum_{n=-\infty}^{\infty} a_n ^p < \infty$
Functions	
\widehat{f}	Fourier transform of function f
f * g	convolution of functions f and g
$f \otimes g$	tensor product of functions f and g
$f^{\otimes k}$	kth tensor product of a function f
1_A	indicator function of a set A
\log_2	natural logarithm (base e) and logarithm base 2, respectively
e^{ix}	complex exponential, $e^{ix} = \cos x + i \sin x$

xvii

(generalized) inverse of non-decreasing function f

space of k-times continuously differentiable functions on an interval I

space of k-times continuously differentiable functions on an interval I

space of functions $f: \mathbb{R}^q \to \mathbb{R}$ (or \mathbb{C}) such that $\int_{\mathbb{R}^q} |f(x)|^p dx < \infty$ (semi-)norm $\left(\int_{\mathbb{R}^q} |f(x)|^p dx\right)^{1/p}$

space of functions $f: \mathbb{E} \to \mathbb{R}$ (or \mathbb{C}) such that $\int_E |f(x)|^p m(dx) < \infty$

Cambridge University Press 978-1-107-03946-9 — Long-Range Dependence and Self-Similarity Vladas Pipiras , Murad S. Taqqu

Frontmatter
More Information

xviii Notation

Matrices

 $\mathbb{R}^{p \times p}$, $\mathbb{C}^{p \times p}$ collections of $p \times p$ matrices with entries in \mathbb{R} and \mathbb{C} , respectively

 A', A^T transpose of a matrix A

 A^* Hermitian transpose of a matrix A

det(A)determinant of a matrix APfAPfaffian of a matrix A||A||matrix (operator) norm

 $A \otimes B$ Kronecker product of matrices A and B square root of positive semidefinite matrix A

tr(A) trace of matrix A

Probability

Var, Cov variance, covariance, respectively

 $\stackrel{fdd}{\longrightarrow}$ convergence in the sense of finite-dimensional distributions $\stackrel{d}{\rightarrow}$, $\stackrel{p}{\rightarrow}$ convergence in distribution and in probability, respectively

 $\stackrel{d}{=}$, \sim equality in distribution, as in $Z \sim \mathcal{N}(0, 1)$

 $S\alpha S$ symmetric α -stable

 $\|\xi\|_p$ $(\mathbb{E}|\xi|^p)^{1/p}$ for a random variable ξ

 $\mathcal{N}(\mu, \sigma^2)$ normal (Gaussian) distribution with mean μ and variance σ^2

 $\chi(X_1, \dots, X_p)$ joint cumulant of random variables X_1, \dots, X_p

 $\chi_p(X)$ pth cumulant of a variable X

Time series and stochastic processes

 $\gamma_X(\cdot)$ ACVF of series X

 $f_X(\cdot)$ spectral density of series X $I_X(\cdot)$ periodogram of series X backshift operator

 B_H or B^{κ} FBM, $H = \kappa + 1/2$; vector OFBM

 $Z_H^{(k)}$ Hermite process of order k

 $B_{E.H}$ OFBF

Fractional calculus, Malliavin calculus and FBM

 $I_{a+}^{\alpha}, I_{b-}^{\alpha}$ fractional integrals on interval $D_{a+}^{\alpha}, \mathcal{D}_{b-}^{\alpha}$ fractional derivatives on interval

 I_{\pm}^{α} , $\mathcal{D}_{\pm}^{\alpha}$, $\mathbf{D}_{\pm}^{\alpha}$ fractional integrals and derivatives on real line span, $\overline{\text{span}}$ linar span and closure of linear span, respectively

 $\mathcal{I}_a^{\kappa}(\cdot)$ fractional Wiener integral $\Lambda_a^{\kappa}, |\Lambda|_a^{\kappa}$ spaces of integrands

 $(\cdot,\cdot)_{\mathcal{H}}$ inner product on Hilbert space \mathcal{H}

 $\delta(\cdot)$ divergence integral $(\delta_a^{\kappa}(\cdot))$, in the case of FBM B^{κ} on an

interval [0, a])

D Malliavin derivative

 $\mathbb{D}^{1,p}$, $\mathbb{D}^{k,p}$ domains of the Malliavin derivative $I_n(\cdot)$, $\widehat{I}_n(\cdot)$ multiple integrals of order n

In (), In ()

Notation xix

Miscellaneous

a.e., a.s. almost everywhere, almost surely, respectively

 \sim asymptotic equivalence; that is, $a(x) \sim b(x)$ if $a(x)/b(x) \to 1$

 $o(\cdot), O(\cdot)$ small and big O, respectively $\mathcal{B}(A)$ σ -field of Borel sets of a set A

 $\delta_a(v)$ point mass at v = a

mod modulo

Preface

We focus in this book on long-range dependence and self-similarity. The notion of long-range dependence is associated with time series whose autocovariance function decays slowly like a power function as the lag between two observations increases. Such time series emerged more than half a century ago. They have been studied extensively and have been applied in numerous fields, including hydrology, economics and finance, computer science and elsewhere. What makes them unique is that they stand in sharp contrast to Markovian-like or short-range dependent time series, in that, for example, they often call for special techniques of analysis, they involve different normalizations and they yield new limiting objects.

Long-range dependent time series are closely related to self-similar processes, which by definition are statistically alike at different time scales. Self-similar processes arise as large scale limits of long-range dependent time series, and vice versa; they can give rise to long-range dependent time series through their increments. The celebrated Brownian motion is an example of a self-similar process, but it is commonly associated with independence and, more generally, with short-range dependence. The most studied and well-known self-similar process associated with long-range dependence is fractional Brownian motion, though many other self-similar processes will also be presented in this book. Self-similar processes have become one of the central objects of study in probability theory, and are often of interest in their own right.

This volume is a modern and rigorous introduction to the subjects of long-range dependence and self-similarity, together with a number of more specialized up-to-date topics at the center of this research area. Our goal has been to write a very readable text which will be useful to graduate students as well as to researchers in Probability, Statistics, Physics and other fields. Proofs are presented in detail. A precise reference to the literature is given in cases where a proof is omitted. Chapter 2 is fundamental. It develops the basics of long-range dependence and self-similarity and should be read by everyone, as it allows the reader to gain quickly a basic familiarity with the main themes of the research area. We assume that the reader has a background in basic time series analysis (e.g., at the level of Brockwell and Davis [186]) and stochastic processes. The reader without this background may want to start with Chapter 1, which provides a brief and elementary introduction to time series analysis and stochastic processes.

The rest of the volume, namely Chapters 3–10, introduces the more specialized and advanced topics on long-range dependence and self-similarity. Chapter 3 concerns physical models that give rise to long-range dependence and/or self-similarity. Chapters 4 and 5 focus on central and non-central limit theorems for long-range dependent series, and introduce the

xxii Preface

limiting Hermite processes. Chapters 6 and 7 are on fractional Brownian motion and its stochastic calculus, and their connection to the so-called fractional calculus, the area of real analysis which extends the usual derivatives and integrals to fractional orders. Chapter 8 pursues the discussion on fractional Brownian motion by introducing several of its celebrated decompositions. Chapter 9 concerns multidimensional models, and Chapter 10 reviews the maximum likelihood estimation methods for long-range dependent time series. Chapters 3 through 10 may be read somewhat separately. They are meant to serve both as a learning tool and as a reference. Finally, Appendices A, B and C are used for reference throughout the book.

Each chapter starts with a brief overview and ends with exercises and bibliographical notes. In Appendix D, "Other notes and topics" contains further bibliographical information. The reader will find the notes extremely useful as they provide further perspectives on the subject as well as suggestions for future research.

A number of new books on long-range dependence and self-similarity, listed in Appendix D, have been published in the last ten years or so. Many features set this book apart. First, a number of topics are not treated elsewhere, including most of Chapter 8 (on decompositions) and Chapter 9 (on multidimensional models). Second, other topics provide a more systematic treatment of the area than is otherwise presently available; for example, in Chapter 3 (on physical models). Third, some specialized topics, such as in Chapters 6 and 7 (on stochastic analysis for fractional Brownian motion), reflect our perspective. Fourth, most specialized topics are up to date; for example, the classical results of Chapters 4 and 5 (on Hermite processes and non-central limit theorems) have been supplemented by recent work in the area. Finally, the book contains a substantial number of early and up-to-date references. Though even with this large number of references (more than a thousand), we had to be quite selective and could not include every single work that was relevant.

We would like to conclude this preface with acknowledgments and a tribute. A number of our former and present students have read carefully and commented on excerpts of this book, including Changryong Baek, Stefanos Kechagias and Sandeep Sarangi at the University of North Carolina, Shuyang Bai, Long Tao and Mark Veillette at Boston University, Yong Bum Cho, Heng Liu, Xuan Yang, Pengfei Zhang, Yu Gu, Junyi Zhang, Emilio Seijo and Oliver Pfaffel at Columbia University. Various parts of this volume have already been used in teaching by the authors at these institutions. As the book was taking its final shape, a number of researchers read carefully individual chapters and provided invaluable feedback. We thus express our gratitude to Solesne Bourguin, Gustavo Didier, Liudas Giraitis, Kostas Spiliopoulos, Stilian Stoev, Yizao Wang. We are grateful to Diana Gillooly at Cambridge University Press for her support and encouragement throughout the process of writing the book. We also thank the National Science Foundation and the National Security Agency for their support. We are responsible for the remaining errors and typos, and would be grateful to the readers for a quick email to either author if such are found.

Finally, we would like to pay tribute to Benoit B. Mandelbrot, a pioneer in the study of long-range dependence and self-similarity, among his many other interests. He was the

¹ A fascinating account of Benoit B. Mandelbrot's life can be found in [681].

Preface xxiii

first to greatly popularize and draw attention to these subjects in the 1970s. It was Benoit B. Mandelbrot who introduced one of the authors (M.S.T.) to this area, who in turn passed on his interests and passion to the other author (V.P.). This volume, including the presented specialized topics, are direct fruits of the work started by Benoit B. Mandelbrot. With his passing in 2010, the scientific community lost one of its truly bright stars.