Long-Range Dependence and Self-Similarity

This modern and comprehensive guide to long-range dependence and self-similarity starts with rigorous coverage of the basics, then moves on to cover more specialized, up-to-date topics central to current research. These topics concern, but are not limited to, physical models that give rise to long-range dependence and self-similarity; central and non-central limit theorems for long-range dependent series, and the limiting Hermite processes; fractional Brownian motion and its stochastic calculus; several celebrated decompositions of fractional Brownian motion; multidimensional models for long-range dependence and self-similarity; and maximum likelihood estimation methods for long-range dependent time series. Designed for graduate students and researchers, each chapter of the book is supplemented by numerous exercises, some designed to test the reader’s understanding, while others invite the reader to consider some of the open research problems in the field today.

VLADAS PIPIRAS is Professor of Statistics and Operations Research at the University of North Carolina, Chapel Hill.

MURAD S. TAQQU is Professor of Mathematics and Statistics at Boston University.
This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

A complete list of books in the series can be found at www.cambridge.org/statistics. Recent titles include the following:

19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
20. Random Graph Dynamics, by Rick Durrett
21. Networks, by Peter Whittle
22. Saddlepoint Approximations with Applications, by Ronald W. Butler
23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison and N. Reid
24. Random Networks for Communication, by Massimo Franceschetti and Ronald Meester
25. Design of Comparative Experiments, by R. A. Bailey
26. Symmetry Studies, by Marlos A. G. Viana
27. Model Selection and Model Averaging, by Gerda Claeskens and Nils Lid Hjort
30. Brownian Motion, by Peter Mörters and Yuval Peres
31. Probability (Fourth Edition), by Rick Durrett
33. Stochastic Processes, by Richard F. Bass
34. Regression for Categorical Data, by Gerhard Tutz
35. Exercises in Probability (Second Edition), by Loïc Chaumont and Marc Yor
37. Quantum Stochastics, by Mou-Hsiung Chang
38. Nonparametric Estimation under Shape Constraints, by Piet Groeneboom and Geurt Jongbloed
39. Large Sample Covariance Matrices and High-Dimensional Data Analysis, by Jianfeng Yao, Shurong Zheng and Zhidong Bai
40. Mathematical Foundations of Infinite-Dimensional Statistical Models, by Evarist Giné and Richard Nickl
41. Confidence, Likelihood, Probability, by Tore Schweder and Nils Lid Hjort
42. Probability on Trees and Networks, by Russell Lyons and Yuval Peres
43. Random Graphs and Complex Networks (Volume 1), by Remco van der Hofstad
44. Fundamentals of Nonparametric Bayesian Inferences, by Subhashis Ghosal and Aad van der Vaart
45. Long-Range Dependence and Self-Similarity, by Vladas Pipiras and Murad S. Taqqu
Long-Range Dependence and Self-Similarity

Vladas Pipiras
University of North Carolina, Chapel Hill

Murad S. Taqqu
Boston University
To Natércia and Filipa
and
to Rachelle, Yael, Jonathan, Noah, Kai and Olivia
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Abbreviations</td>
<td>xv</td>
</tr>
<tr>
<td>Notation</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>1 A Brief Overview of Time Series and Stochastic Processes</td>
<td>1</td>
</tr>
<tr>
<td>2 Basics of Long-Range Dependence and Self-Similarity</td>
<td>15</td>
</tr>
<tr>
<td>3 Physical Models for Long-Range Dependence and Self-Similarity</td>
<td>113</td>
</tr>
<tr>
<td>4 Hermite Processes</td>
<td>229</td>
</tr>
<tr>
<td>5 Non-Central and Central Limit Theorems</td>
<td>282</td>
</tr>
<tr>
<td>6 Fractional Calculus and Integration of Deterministic Functions with</td>
<td>345</td>
</tr>
<tr>
<td>Respect to FBM</td>
<td></td>
</tr>
<tr>
<td>7 Stochastic Integration with Respect to Fractional Brownian Motion</td>
<td>397</td>
</tr>
<tr>
<td>8 Series Representations of Fractional Brownian Motion</td>
<td>437</td>
</tr>
<tr>
<td>9 Multidimensional Models</td>
<td>466</td>
</tr>
<tr>
<td>10 Maximum Likelihood Estimation Methods</td>
<td>539</td>
</tr>
<tr>
<td>A Auxiliary Notions and Results</td>
<td>575</td>
</tr>
<tr>
<td>B Integrals with Respect to Random Measures</td>
<td>588</td>
</tr>
<tr>
<td>C Basics of Malliavin Calculus</td>
<td>602</td>
</tr>
<tr>
<td>D Other Notes and Topics</td>
<td>610</td>
</tr>
<tr>
<td>Bibliography</td>
<td>613</td>
</tr>
<tr>
<td>Index</td>
<td>660</td>
</tr>
</tbody>
</table>

vii
Expanded Contents

List of Abbreviations xv
Notation xvii
Preface xxi

1. **A Brief Overview of Time Series and Stochastic Processes** 1
 1.1 Stochastic Processes and Time Series 1
 1.1.1 Gaussian Stochastic Processes 2
 1.1.2 Stationarity (of Increments) 3
 1.1.3 Weak or Second-Order Stationarity (of Increments) 4
 1.2 Time Domain Perspective 4
 1.2.1 Representations in the Time Domain 4
 1.3 Spectral Domain Perspective 7
 1.3.1 Spectral Density 7
 1.3.2 Linear Filtering 8
 1.3.3 Periodogram 9
 1.3.4 Spectral Representation 9
 1.4 Integral Representations Heuristics 11
 1.4.1 Representations of a Gaussian Continuous-Time Process 12
 1.5 A Heuristic Overview of the Next Chapter 14
 1.6 Bibliographical Notes 14

2. **Basics of Long-Range Dependence and Self-Similarity** 15
 2.1 Definitions of Long-Range Dependent Series 16
 2.2 Relations Between the Various Definitions of Long-Range Dependence 19
 2.2.1 Some Useful Properties of Slowly and Regularly Varying Functions 19
 2.2.2 Comparing Conditions II and III 21
 2.2.3 Comparing Conditions II and V 21
 2.2.4 Comparing Conditions I and II 23
 2.2.5 Comparing Conditions II and IV 25
 2.2.6 Comparing Conditions I and IV 28
 2.2.7 Comparing Conditions IV and III 29
 2.2.8 Comparing Conditions IV and V 29
 2.3 Short-Range Dependent Series and their Several Examples 30
 2.4 Examples of Long-Range Dependent Series: FARIMA Models 35
 2.4.1 FARIMA(0, d, 0) Series 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 FARIMA((p, d, q)) Series</td>
<td>42</td>
</tr>
<tr>
<td>2.5 Definition and Basic Properties of Self-Similar Processes</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Examples of Self-Similar Processes</td>
<td>47</td>
</tr>
<tr>
<td>2.6.1 Fractional Brownian Motion</td>
<td>47</td>
</tr>
<tr>
<td>2.6.2 Bifractional Brownian Motion</td>
<td>53</td>
</tr>
<tr>
<td>2.6.3 The Rosenblatt Process</td>
<td>56</td>
</tr>
<tr>
<td>2.6.4 (\alpha)-(\alpha) Lévy Motion</td>
<td>59</td>
</tr>
<tr>
<td>2.6.5 Linear Fractional Stable Motion</td>
<td>59</td>
</tr>
<tr>
<td>2.6.6 Log-Fractional Stable Motion</td>
<td>61</td>
</tr>
<tr>
<td>2.6.7 The Telecom Process</td>
<td>62</td>
</tr>
<tr>
<td>2.6.8 Linear Fractional Lévy Motion</td>
<td>63</td>
</tr>
<tr>
<td>2.7 The Lamperti Transformation</td>
<td>65</td>
</tr>
<tr>
<td>2.8 Connections Between Long-Range Dependent Series and Self-Similar Processes</td>
<td>67</td>
</tr>
<tr>
<td>2.9 Long- and Short-Range Dependent Series with Infinite Variance</td>
<td>76</td>
</tr>
<tr>
<td>2.9.1 First Definition of LRD Under Heavy Tails: Condition A</td>
<td>76</td>
</tr>
<tr>
<td>2.9.2 Second Definition of LRD Under Heavy Tails: Condition B</td>
<td>82</td>
</tr>
<tr>
<td>2.9.3 Third Definition of LRD Under Heavy Tails: Codifference</td>
<td>82</td>
</tr>
<tr>
<td>2.10 Heuristic Methods of Estimation</td>
<td>84</td>
</tr>
<tr>
<td>2.10.1 The R/S Method</td>
<td>84</td>
</tr>
<tr>
<td>2.10.2 Aggregated Variance Method</td>
<td>88</td>
</tr>
<tr>
<td>2.10.3 Regression in the Spectral Domain</td>
<td>88</td>
</tr>
<tr>
<td>2.10.4 Wavelet-Based Estimation</td>
<td>93</td>
</tr>
<tr>
<td>2.11 Generation of Gaussian Long- and Short-Range Dependent Series</td>
<td>99</td>
</tr>
<tr>
<td>2.11.1 Using Cholesky Decomposition</td>
<td>100</td>
</tr>
<tr>
<td>2.11.2 Using Circulant Matrix Embedding</td>
<td>100</td>
</tr>
<tr>
<td>2.12 Exercises</td>
<td>106</td>
</tr>
<tr>
<td>2.13 Bibliographical Notes</td>
<td>108</td>
</tr>
<tr>
<td>3 Physical Models for Long-Range Dependence and Self-Similarity</td>
<td>113</td>
</tr>
<tr>
<td>3.1 Aggregation of Short-Range Dependent Series</td>
<td>113</td>
</tr>
<tr>
<td>3.2 Mixture of Correlated Random Walks</td>
<td>117</td>
</tr>
<tr>
<td>3.3 Infinite Source Poisson Model with Heavy Tails</td>
<td>120</td>
</tr>
<tr>
<td>3.3.1 Model Formulation</td>
<td>120</td>
</tr>
<tr>
<td>3.3.2 Workload Process and its Basic Properties</td>
<td>123</td>
</tr>
<tr>
<td>3.3.3 Input Rate Regimes</td>
<td>128</td>
</tr>
<tr>
<td>3.3.4 Limiting Behavior of the Scaled Workload Process</td>
<td>131</td>
</tr>
<tr>
<td>3.4 Power-Law Shot Noise Model</td>
<td>149</td>
</tr>
<tr>
<td>3.5 Hierarchical Model</td>
<td>154</td>
</tr>
<tr>
<td>3.6 Regime Switching</td>
<td>156</td>
</tr>
<tr>
<td>3.7 Elastic Collision of Particles</td>
<td>162</td>
</tr>
<tr>
<td>3.8 Motion of a Tagged Particle in a Simple Symmetric Exclusion Model</td>
<td>167</td>
</tr>
<tr>
<td>3.9 Power-Law Pólya’s Urn</td>
<td>172</td>
</tr>
<tr>
<td>3.10 Random Walk in Random Scenery</td>
<td>177</td>
</tr>
<tr>
<td>3.11 Two-Dimensional Ising Model</td>
<td>180</td>
</tr>
<tr>
<td>3.11.1 Model Formulation and Result</td>
<td>181</td>
</tr>
</tbody>
</table>
3.11.2 Correlations, Dimers and Pfaffians 184
3.11.3 Computation of the Inverse 198
3.11.4 The Strong Szegö Limit Theorem 209
3.11.5 Long-Range Dependence at Critical Temperature 212
3.12 Stochastic Heat Equation 215
3.13 The Weierstrass Function Connection 216
3.14 Exercises 221
3.15 Bibliographical Notes 223

4 Hermite Processes 229
4.1 Hermite Polynomials and Multiple Stochastic Integrals 229
4.2 Integral Representations of Hermite Processes 232
 4.2.1 Integral Representation in the Time Domain 232
 4.2.2 Integral Representation in the Spectral Domain 233
 4.2.3 Integral Representation on an Interval 234
 4.2.4 Summary 239
4.3 Moments, Cumulants and Diagram Formulae for Multiple Integrals 241
 4.3.1 Diagram Formulae 241
 4.3.2 Multigraphs 245
 4.3.3 Relation Between Diagrams and Multigraphs 246
 4.3.4 Diagram and Multigraph Formulae for Hermite Polynomials 251
4.4 Moments and Cumulants of Hermite Processes 254
4.5 Multiple Integrals of Order Two 259
4.6 The Rosenblatt Process 262
4.7 The Rosenblatt Distribution 264
4.8 CDF of the Rosenblatt Distribution 272
4.9 Generalized Hermite and Related Processes 272
4.10 Exercises 279
4.11 Bibliographical Notes 280

5 Non-Central and Central Limit Theorems 282
5.1 Nonlinear Functions of Gaussian Random Variables 282
5.2 Hermite Rank 285
5.3 Non-Central Limit Theorem 288
5.4 Central Limit Theorem 298
5.5 The Fourth Moment Condition 305
5.6 Limit Theorems in the Linear Case 306
 5.6.1 Direct Approach for Entire Functions 306
 5.6.2 Approach Based on Martingale Differences 311
5.7 Multivariate Limit Theorems 316
 5.7.1 The SRD Case 316
 5.7.2 The LRD Case 319
 5.7.3 The Mixed Case 321
 5.7.4 Multivariate Limits of Multilinear Processes 324
5.8 Generation of Non-Gaussian Long- and Short-Range Dependent Series 328
 5.8.1 Matching a Marginal Distribution 329
xii

5.8.2 Relationship Between Autocorrelations 331
5.8.3 Price Theorem 333
5.8.4 Matching a Targeted Autocovariance for Series with Prescribed Marginal 336
5.9 Exercises 341
5.10 Bibliographical Notes 342

6 Fractional Calculus and Integration of Deterministic Functions with Respect to FBM 345
6.1 Fractional Integrals and Derivatives 345
6.1.1 Fractional Integrals on an Interval 345
6.1.2 Riemann–Liouville Fractional Derivatives \(D \) on an Interval 348
6.1.3 Fractional Integrals and Derivatives on the Real Line 352
6.1.4 Marchaud Fractional Derivatives \(D \) on the Real Line 354
6.1.5 The Fourier Transform Perspective 357
6.2 Representations of Fractional Brownian Motion 359
6.2.1 Representation of FBM on an Interval 359
6.2.2 Representations of FBM on the Real Line 368
6.3 Fractional Wiener Integrals and their Deterministic Integrands 369
6.3.1 The Gaussian Space Generated by Fractional Wiener Integrals 369
6.3.2 Classes of Integrands on an Interval 372
6.3.3 Subspaces of Classes of Integrands 377
6.3.4 The Fundamental Martingale 381
6.3.5 The Deconvolution Formula 382
6.3.6 Classes of Integrands on the Real Line 383
6.3.7 Connection to the Reproducing Kernel Hilbert Space 384
6.4 Applications 386
6.4.1 Girsanov’s Formula for FBM 386
6.4.2 The Prediction Formula for FBM 388
6.4.3 Elementary Linear Filtering Involving FBM 392
6.5 Exercises 394
6.6 Bibliographical Notes 395

7 Stochastic Integration with Respect to Fractional Brownian Motion 397
7.1 Stochastic Integration with Random Integrands 397
7.1.1 FBM and the Semimartingale Property 397
7.1.2 Divergence Integral for FBM 399
7.1.3 Self-Integration of FBM 402
7.1.4 Itô’s Formulas 407
7.2 Applications of Stochastic Integration 413
7.2.1 Stochastic Differential Equations Driven by FBM 413
7.2.2 Regularity of Laws Related to FBM 414
7.2.3 Numerical Solutions of SDEs Driven by FBM 418
7.2.4 Convergence to Normal Law Using Stein’s Method 426
7.2.5 Local Time of FBM 430
7.3 Exercises 434
7.4 Bibliographical Notes 435
Expanded Contents

<table>
<thead>
<tr>
<th>8</th>
<th>Series Representations of Fractional Brownian Motion</th>
<th>437</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Karhunen–Loève Decomposition and FBM</td>
<td>437</td>
</tr>
<tr>
<td>8.1.1</td>
<td>The Case of General Stochastic Processes</td>
<td>437</td>
</tr>
<tr>
<td>8.1.2</td>
<td>The Case of BM</td>
<td>438</td>
</tr>
<tr>
<td>8.1.3</td>
<td>The Case of FBM</td>
<td>439</td>
</tr>
<tr>
<td>8.2</td>
<td>Wavelet Expansion of FBM</td>
<td>440</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Orthogonal Wavelet Bases</td>
<td>440</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Fractional Wavelets</td>
<td>445</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Fractional Conjugate Mirror Filters</td>
<td>450</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Wavelet-Based Expansion and Simulation of FBM</td>
<td>452</td>
</tr>
<tr>
<td>8.3</td>
<td>Paley–Wiener Representation of FBM</td>
<td>455</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Complex-Valued FBM and its Representations</td>
<td>455</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Space L_a and its Orthonormal Basis</td>
<td>456</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Expansion of FBM</td>
<td>462</td>
</tr>
<tr>
<td>8.4</td>
<td>Exercises</td>
<td>463</td>
</tr>
<tr>
<td>8.5</td>
<td>Bibliographical Notes</td>
<td>464</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Multidimensional Models</th>
<th>466</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Fundamentals of Multidimensional Models</td>
<td>467</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Basics of Matrix Analysis</td>
<td>467</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Vector Setting</td>
<td>469</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Spatial Setting</td>
<td>471</td>
</tr>
<tr>
<td>9.2</td>
<td>Operator Self-Similarity</td>
<td>472</td>
</tr>
<tr>
<td>9.3</td>
<td>Vector Operator Fractional Brownian Motions</td>
<td>475</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Integral Representations</td>
<td>476</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Time Reversible Vector OFBMs</td>
<td>484</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Vector Fractional Brownian Motions</td>
<td>486</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Identifiability Questions</td>
<td>492</td>
</tr>
<tr>
<td>9.4</td>
<td>Vector Long-Range Dependence</td>
<td>495</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Definitions and Basic Properties</td>
<td>495</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Vector FARIMA(0, D, 0) Series</td>
<td>499</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Vector FGN Series</td>
<td>503</td>
</tr>
<tr>
<td>9.4.4</td>
<td>Fractional Cointegration</td>
<td>504</td>
</tr>
<tr>
<td>9.5</td>
<td>Operator Fractional Brownian Fields</td>
<td>508</td>
</tr>
<tr>
<td>9.5.1</td>
<td>M–Homogeneous Functions</td>
<td>509</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Integral Representations</td>
<td>513</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Special Subclasses and Examples of OFBFs</td>
<td>523</td>
</tr>
<tr>
<td>9.6</td>
<td>Spatial Long-Range Dependence</td>
<td>526</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Definitions and Basic Properties</td>
<td>526</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Examples</td>
<td>529</td>
</tr>
<tr>
<td>9.7</td>
<td>Exercises</td>
<td>532</td>
</tr>
<tr>
<td>9.8</td>
<td>Bibliographical Notes</td>
<td>535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Maximum Likelihood Estimation Methods</th>
<th>539</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Exact Gaussian MLE in the Time Domain</td>
<td>539</td>
</tr>
<tr>
<td>10.2</td>
<td>Approximate MLE</td>
<td>542</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Whittle Estimation in the Spectral Domain</td>
<td>542</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Autoregressive Approximation</td>
<td>550</td>
</tr>
</tbody>
</table>
Expanded Contents

10.3 Model Selection and Diagnostics 551
10.4 Forecasting 554
10.5 R Packages and Case Studies 555
 10.5.1 The ARFIMA Package 555
 10.5.2 The FRACDIFF Package 556
10.6 Local Whittle Estimation 558
 10.6.1 Local Whittle Estimator 558
 10.6.2 Bandwidth Selection 562
 10.6.3 Bias Reduction and Rate Optimality 565
10.7 Broadband Whittle Approach 567
10.8 Exercises 569
10.9 Bibliographical Notes 570

A Auxiliary Notions and Results 575
 A.1 Fourier Series and Fourier Transforms 575
 A.1.1 Fourier Series and Fourier Transform for Sequences 575
 A.1.2 Fourier Transform for Functions 577
 A.2 Fourier Series of Regularly Varying Sequences 579
 A.3 Weak and Vague Convergence of Measures 583
 A.3.1 The Case of Probability Measures 583
 A.3.2 The Case of Locally Finite Measures 584
 A.4 Stable and Heavy-Tailed Random Variables and Series 585

B Integrals with Respect to Random Measures 588
 B.1 Single Integrals with Respect to Random Measures 588
 B.1.1 Integrals with Respect to Random Measures with Orthogonal
 Increments 589
 B.1.2 Integrals with Respect to Gaussian Measures 590
 B.1.3 Integrals with Respect to Stable Measures 592
 B.1.4 Integrals with Respect to Poisson Measures 593
 B.1.5 Integrals with Respect to Lévy Measures 596
 B.2 Multiple Integrals with Respect to Gaussian Measures 597

C Basics of Malliavin Calculus 602
 C.1 Isornormal Gaussian Processes 602
 C.2 Derivative Operator 603
 C.3 Divergence Integral 607
 C.4 Generator of the Ornstein–Uhlenbeck Semigroup 608

D Other Notes and Topics 610

Bibliography 613
Index 660
Abbreviations

ACVF autocovariance function
ACF autocorrelation function
AIC Akaike information criterion
AR autoregressive
ARMA autoregressive moving average
BIC Bayesian information criterion
biFBM bifractional Brownian motion
BLUE best linear unbiased estimator
BM Brownian motion
CDF cumulative distribution function
CMF conjugate mirror filters
CRW correlated random walk
FARIMA fractionally integrated autoregressive moving average
FBM fractional Brownian motion
FBF fractional Brownian field
FBS fractional Brownian sheet
FGN fractional Gaussian noise
FFT fast Fourier transform
FGN fractional Gaussian noise
LFSM linear fractional stable motion
LFSN linear fractional stable noise
LRD long-range dependence, long-range dependent
MA moving average
MLE maximum likelihood estimation
MRA multi-resolution analysis
MSE mean squared error
ODE ordinary differential equation
OFBF operator fractional Brownian field
OFBM operator fractional Brownian motion
OU Ornstein–Uhlenbeck
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF</td>
<td>probability density function</td>
</tr>
<tr>
<td>RKHS</td>
<td>reproducing kernel Hilbert space</td>
</tr>
<tr>
<td>SDE</td>
<td>stochastic differential equation</td>
</tr>
<tr>
<td>SPDE</td>
<td>stochastic partial differential equation</td>
</tr>
<tr>
<td>SRD</td>
<td>short-range dependence, short-range dependent</td>
</tr>
<tr>
<td>SS</td>
<td>self-similar</td>
</tr>
<tr>
<td>SSSI</td>
<td>self-similar with stationary increments</td>
</tr>
<tr>
<td>VFBM</td>
<td>vector fractional Brownian motion</td>
</tr>
<tr>
<td>WN</td>
<td>white noise</td>
</tr>
</tbody>
</table>
Notation

Numbers and sequences

\(n! \)
\(n \) factorial

\(\mathbb{Z} \)
set of integers \(\{ \ldots, -1, 0, 1, \ldots \} \)

\(\mathbb{R}_+ \)
half-axis \((0, \infty) \)

\(\|x\|_2 \)
Euclidean norm \(\|x\|_2 = (\sum_{j=1}^{q} |x_j|^2)^{1/2} \) for \(x = (x_1, \ldots, x_q)' \in \mathbb{C}^q \)

\(x^+, x_- \)
\(\max\{x, 0\}, \max\{-x, 0\} \), respectively

\(\Re, \Im \)
real and imaginary parts, respectively

\(z^* \)
complex conjugate of \(z \in \mathbb{C} \)

\(\lfloor x \rfloor, \lceil x \rceil \)
(floor) integer part and (ceiling) integer part of \(x \), respectively

\(\hat{a} \)
Fourier transform of sequence \(a \)

\(a^\dagger \)
time reversion of sequence \(a \)

\(\downarrow_2, \uparrow_2 \)
downsampling and upsampling by 2 operations, respectively

\(\ell^p(\mathbb{Z}) \)
space of sequences \(\{a_n\}_{n \in \mathbb{Z}} \) such that \(\sum_{n=-\infty}^{\infty} |a_n|^p < \infty \)

Functions

\(\hat{f} \)
Fourier transform of function \(f \)

\(f^* g \)
convolution of functions \(f \) and \(g \)

\(f \otimes g \)
tensor product of functions \(f \) and \(g \)

\(f^\otimes k \)
kth tensor product of a function \(f \)

\(1_A \)
indicator function of a set \(A \)

\(\log, \log_2 \)
natural logarithm (base \(e \)) and logarithm base 2, respectively

\(e^{ix} \)
complex exponential, \(e^{ix} = \cos x + i \sin x \)

\(\Gamma(\cdot) \)
gamma function

\(B(\cdot, \cdot) \)
beta function

\(H_k(\cdot) \)
Hermite polynomial of order \(k \)

\(C^k(I) \)
space of \(k \)-times continuously differentiable functions on an interval \(I \)

\(C^k_b(I) \)
space of \(k \)-times continuously differentiable functions on an interval \(I \) with the first \(k \) derivatives bounded

\(L^p(\mathbb{R}^q) \)
space of functions \(f : \mathbb{R}^q \to \mathbb{R} \) (or \(\mathbb{C} \)) such that \(\int_{\mathbb{R}^q} |f(x)|^p \, dx < \infty \)

\(\|f\|_{L^p(\mathbb{R}^q)} \)
(semi-)norm \(\left(\int_{\mathbb{R}^q} |f(x)|^p \, dx \right)^{1/p} \)

\(L^p(E, m) \)
space of functions \(f : E \to \mathbb{R} \) (or \(\mathbb{C} \)) such that \(\int_E |f(x)|^p m(dx) < \infty \)

\(f^{-\\ast}, f^{-1} \)
(generalized) inverse of non-decreasing function \(f \)
Notation
Matrices
\[\mathbb{R}^{p \times p}, \mathbb{C}^{p \times p} \] collections of \(p \times p \) matrices with entries in \(\mathbb{R} \) and \(\mathbb{C} \), respectively
\(A', A^T \) transpose of a matrix \(A \)
\(A^* \) Hermitian transpose of a matrix \(A \)
det(\(A \)) determinant of a matrix \(A \)
PF\(A \) Pfaffian of a matrix \(A \)
\(\| A \| \) matrix (operator) norm
\(A \otimes B \) Kronecker product of matrices \(A \) and \(B \)
\(A^{1/2} \) square root of positive semidefinite matrix \(A \)
tr(\(A \)) trace of matrix \(A \)

Probability
Var, Cov variance, covariance, respectively
\(\overset{\mathcal{D}, d}{\longrightarrow} \) convergence in the sense of finite-dimensional distributions
\(\overset{\mathcal{D}, d, p}{\longrightarrow} \) convergence in distribution and in probability, respectively
\(\overset{\mathcal{D}, d, \sim}{\longrightarrow} \) equality in distribution, as in \(Z \sim \mathcal{N}(0, 1) \)
\(\mathcal{N}(\mu, \sigma^2) \) symmetric \(\alpha \)-stable
\(\mathcal{N}(\mu, \sigma^2) \) normal (Gaussian) distribution with mean \(\mu \) and variance \(\sigma^2 \)
\(\chi(X_1, \ldots, X_p) \) joint cumulant of random variables \(X_1, \ldots, X_p \)
\(\chi_p(X) \) \(p \)th cumulant of a variable \(X \)

Time series and stochastic processes
\(\gamma_X(\cdot) \) ACVF of series \(X \)
\(I_{X}(\cdot) \) spectral density of series \(X \)
\(I_{X}(\cdot) \) periodogram of series \(X \)
\(B \) backshift operator
\(B_H \) or \(B^{\kappa} \) FBM, \(H = \kappa + 1/2 \); vector OFBM
\(\mathcal{H}_H^{(k)} \) Hermite process of order \(k \)
\(\mathcal{B}_{E, H} \) OFBF

Fractional calculus, Malliavin calculus and FBM
\(I_{a^+}^x, I_{b^-}^y \) fractional integrals on interval
\(D_{a^+}, D_{b^-}^y \) fractional derivatives on interval
\(I_{a^+}^x, D_{a^+}, D_{a^-}^y \) fractional integrals and derivatives on real line
\(\text{span}, \text{span}^\perp \) linear span and closure of linear span, respectively
\(T_{a^+}^y(\cdot) \) fractional Wiener integral
\(\mathcal{A}_a^y, \mathcal{A}_a^y \) spaces of integrands
\(\langle \cdot, \cdot \rangle_{\mathcal{H}} \) inner product on Hilbert space \(\mathcal{H} \)
\(\delta(\cdot) \) divergence integral \(\delta_{a}(\cdot) \), in the case of FBM \(B^\kappa \) on an interval \([0, a]\)
\(D \) Malliavin derivative
\(\mathbb{D}^{1, p}, \mathbb{D}^{k, p} \) domains of the Malliavin derivative
\(I_n(\cdot), \mathcal{I}_n(\cdot) \) multiple integrals of order \(n \)
Notation

Miscellaneous

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.e., a.s.</td>
<td>almost everywhere, almost surely, respectively</td>
</tr>
<tr>
<td>(\sim)</td>
<td>asymptotic equivalence; that is, (a(x) \sim b(x)) if (a(x)/b(x) \to 1)</td>
</tr>
<tr>
<td>(o(\cdot), O(\cdot))</td>
<td>small and big O, respectively</td>
</tr>
<tr>
<td>(\mathcal{B}(A))</td>
<td>(\sigma)-field of Borel sets of a set (A)</td>
</tr>
<tr>
<td>(\delta_a(v))</td>
<td>point mass at (v = a)</td>
</tr>
<tr>
<td>mod</td>
<td>modulo</td>
</tr>
</tbody>
</table>
Preface

We focus in this book on long-range dependence and self-similarity. The notion of long-range dependence is associated with time series whose autocovariance function decays slowly like a power function as the lag between two observations increases. Such time series emerged more than half a century ago. They have been studied extensively and have been applied in numerous fields, including hydrology, economics and finance, computer science and elsewhere. What makes them unique is that they stand in sharp contrast to Markovian-like or short-range dependent time series, in that, for example, they often call for special techniques of analysis, they involve different normalizations and they yield new limiting objects.

Long-range dependent time series are closely related to self-similar processes, which by definition are statistically alike at different time scales. Self-similar processes arise as large scale limits of long-range dependent time series, and vice versa; they can give rise to long-range dependent time series through their increments. The celebrated Brownian motion is an example of a self-similar process, but it is commonly associated with independence and, more generally, with short-range dependence. The most studied and well-known self-similar process associated with long-range dependence is fractional Brownian motion, though many other self-similar processes will also be presented in this book. Self-similar processes have become one of the central objects of study in probability theory, and are often of interest in their own right.

This volume is a modern and rigorous introduction to the subjects of long-range dependence and self-similarity, together with a number of more specialized up-to-date topics at the center of this research area. Our goal has been to write a very readable text which will be useful to graduate students as well as to researchers in Probability, Statistics, Physics and other fields. Proofs are presented in detail. A precise reference to the literature is given in cases where a proof is omitted. Chapter 2 is fundamental. It develops the basics of long-range dependence and self-similarity and should be read by everyone, as it allows the reader to gain quickly a basic familiarity with the main themes of the research area. We assume that the reader has a background in basic time series analysis (e.g., at the level of Brockwell and Davis [186]) and stochastic processes. The reader without this background may want to start with Chapter 1, which provides a brief and elementary introduction to time series analysis and stochastic processes.

The rest of the volume, namely Chapters 3–10, introduces the more specialized and advanced topics on long-range dependence and self-similarity. Chapter 3 concerns physical models that give rise to long-range dependence and/or self-similarity. Chapters 4 and 5 focus on central and non-central limit theorems for long-range dependent series, and introduce the
Preface

limiting Hermite processes. Chapters 6 and 7 are on fractional Brownian motion and its stochastic calculus, and their connection to the so-called fractional calculus, the area of real analysis which extends the usual derivatives and integrals to fractional orders. Chapter 8 pursues the discussion on fractional Brownian motion by introducing several of its celebrated decompositions. Chapter 9 concerns multidimensional models, and Chapter 10 reviews the maximum likelihood estimation methods for long-range dependent time series. Chapters 3 through 10 may be read somewhat separately. They are meant to serve both as a learning tool and as a reference. Finally, Appendices A, B and C are used for reference throughout the book.

Each chapter starts with a brief overview and ends with exercises and bibliographical notes. In Appendix D, “Other notes and topics” contains further bibliographical information. The reader will find the notes extremely useful as they provide further perspectives on the subject as well as suggestions for future research.

A number of new books on long-range dependence and self-similarity, listed in Appendix D, have been published in the last ten years or so. Many features set this book apart. First, a number of topics are not treated elsewhere, including most of Chapter 8 (on decompositions) and Chapter 9 (on multidimensional models). Second, other topics provide a more systematic treatment of the area than is otherwise presently available; for example, in Chapter 3 (on physical models). Third, some specialized topics, such as in Chapters 6 and 7 (on stochastic analysis for fractional Brownian motion), reflect our perspective. Fourth, most specialized topics are up to date; for example, the classical results of Chapters 4 and 5 (on Hermite processes and non-central limit theorems) have been supplemented by recent work in the area. Finally, the book contains a substantial number of early and up-to-date references. Though even with this large number of references (more than a thousand), we had to be quite selective and could not include every single work that was relevant.

We would like to conclude this preface with acknowledgments and a tribute. A number of our former and present students have read carefully and commented on excerpts of this book, including Changryong Baek, Stefanos Kechagias and Sandeep Sarangi at the University of North Carolina, Shuyang Bai, Long Tao and Mark Veillette at Boston University, Yong Bum Cho, Heng Liu, Xuan Yang, Pengfei Zhang, Yu Gu, Junyi Zhang, Emilio Seijo and Oliver Pfaffel at Columbia University. Various parts of this volume have already been used in teaching by the authors at these institutions. As the book was taking its final shape, a number of researchers read carefully individual chapters and provided invaluable feedback. We thus express our gratitude to Solesne Bourguin, Gustavo Didier, Liudas Giraitis, Kostas Spiliopoulos, Stilian Stoev, Yizao Wang. We are grateful to Diana Gillooly at Cambridge University Press for her support and encouragement throughout the process of writing the book. We also thank the National Science Foundation and the National Security Agency for their support. We are responsible for the remaining errors and typos, and would be grateful to the readers for a quick email to either author if such are found.

Finally, we would like to pay tribute to Benoit B. Mandelbrot, a pioneer in the study of long-range dependence and self-similarity, among his many other interests. He was the

1 A fascinating account of Benoit B. Mandelbrot’s life can be found in [681].
Preface

first to greatly popularize and draw attention to these subjects in the 1970s. It was Benoit B. Mandelbrot who introduced one of the authors (M.S.T.) to this area, who in turn passed on his interests and passion to the other author (V.P.). This volume, including the presented specialized topics, are direct fruits of the work started by Benoit B. Mandelbrot. With his passing in 2010, the scientific community lost one of its truly bright stars.