What Logics Mean

What do the rules of logic say about the meanings of the symbols they govern? In this book, James W. Garson examines the inferential roles of logical connectives (such as 'and', 'or', 'not', and 'if ... then'), whose behavior is defined by strict rules, and proves definitive results concerning exactly what those rules express about connective truth conditions. He explores the ways in which, depending on circumstances, a system of rules may provide no interpretation of a connective at all, or the interpretation we ordinarily expect for it, or an unfamiliar or novel interpretation. He also shows how the novel interpretations thus generated may be used to help analyze philosophical problems such as vagueness and the open future. His book will be valuable for graduates and specialists in logic, philosophy of logic, and philosophy of language.

JAMES W. GARSON is Professor of Philosophy at the University of Houston. He is the author of *Modal Logic for Philosophers*, 2nd edition (Cambridge, 2013). Cambridge University Press 978-1-107-03910-0 - What Logics Mean: From Proof Theory to Model-Theoretic Semantics James W. Garson Frontmatter <u>More information</u>

What Logics Mean

From Proof Theory to Model-Theoretic Semantics

JAMES W. GARSON

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107039100

© James W. Garson, 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United Kingdom by Clays, St Ives plc

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

ISBN 978-1-107-03910-0 Hardback ISBN 978-1-107-61196-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Connie - a valiant friend

Cambridge University Press 978-1-107-03910-0 - What Logics Mean: From Proof Theory to Model-Theoretic Semantics James W. Garson Frontmatter <u>More information</u>

Contents

Preface	
Acknowledgements	XV
1 Introduction to model-theoretic inferentialism	1
1.1 The broader picture	1
1.2 Proof-theoretic and model-theoretic inferentialism	3
1.3 Three rule formats	7
1.4 Expressive power and models of rules	10
1.5 Deductive models	12
1.6 Global models	15
1.7 Local models	18
1.8 Three definitions of expressive power compared	19
1.9 What counts as a logical connective?	24
2 Deductive expression	25
2.1 Deductive expression defined	25
2.2 Negative results for deductive expression	26
2.3 Semantic holism	31
3 Local expression	34
3.1 Natural deduction rules	35
3.2 ND rules and sequent calculi for the conditional	37
3.3 The Local Expression Theorem	37
3.4 Local expressive power and completeness	40
3.5 Local expression evaluated	42
4 Global expression	46
4.1 Global expression and preservation of validity	47
4.2 Natural semantics	49

viii Contents

	4.3 The canonical model	52
	4.4 Negative results for global expression	54
5	Intuitionistic semantics	57
	5.1 Kripke semantics for intuitionistic logic	57
	5.2 Intuitionistic models	59
	5.3 Complaints against intuitionistic models	61
	5.4 The Isomorphism Theorem	62
	5.5 Intuitionistic models and functional semantics	65
	5.6 Forcing and intuitionistic models of set theory (an aside)	68
6	Conditionals	71
	6.1 Intuitionistic truth conditions for the conditional	71
	6.2 Peirce's Law and Peirce's Rule	74
	6.3 Intuitionistic natural semantics for equivalence	78
	6.4 Summary: natural semantics for intuitionistic logic	79
7	Disjunction	81
	7.1 Beth's intuitionistic truth condition for disjunction	81
	7.2 What disjunction rules express	83
	7.3 Do the disjunction rules express a semantics?	84
	7.4 Path semantics for disjunction	86
	7.5 Isomorphism for path models	88
	7.6 The failure of functionality and compositionality	89
	7.7 Converting natural into classical models	90
	7.8 Proofs of theorems in Chapter 7	93
8	Negation	105
	8.1 Negation and intuitionistic semantics	106
	8.2 Intuitionistic truth conditions for classical negation	108
	8.3 LL : what double negation expresses	109
	8.4 Using LL to generate classical models	110
	8.5 A structural version of LL	112
	8.6 Why classical negation has no functional semantics	115
	8.7 Disjunction with classical negation	116
	8.8 Possibilities semantics for classical propositional logic	121
	8.9 Does classical logic have a natural semantics?	124
	8.10 The primacy of natural semantics	129
	8.11 Proofs of some results in Section 8.7	131

Cambridge University Press
978-1-107-03910-0 - What Logics Mean: From Proof Theory to Model-Theoretic Semantics
James W. Garson
Frontmatter
More information

	Contents
9 Supervaluations and natural semantics	134
9.1 Supervaluation semantics	134
9.2 Supervaluations and the canonical model for PL	136
9.3 Partial truth tables	137
9.4 The failure of supervaluations to preserve validity	139
9.5 Is supervaluation semantics a semantics?	141
9.6 Proofs for theorems in Chapter 9	142
10 Natural semantics for an open future	147
10.1 The open future	147
10.2 Determination in natural semantics for PL	148
10.3 The Lindenbaum Condition revisited	150
10.4 Disjunction, choice, and Excluded Middle	151
10.5 Defeating fatalism	153
10.6 The No Past Branching condition	156
11 The expressive power of sequent calculi	162
11.1 Sequent calculi express classical truth conditions	163
11.2 The meaning of the restriction on the right-hand side	167
11.3 Sequent systems are essentially extensional	169
11.4 What counts as a logic?	171
11.5 Proofs of theorems in Section 11.2	174
12 Soundness and completeness for natural semantics	177
12.1 A general completeness theorem for natural semantic	s 177
12.2 Sample adequacy proofs using natural semantics	179
12.3 Natural systems and modular completeness	181
12.4 Completeness of sequent calculi using natural semant	ics 183
13 Connections with proof-theoretic semantics	187
13.1 Conservation and connective definition	187
13.2 Strong conservation	190
13.3 Semantical independence	193
13.4 Uniqueness	195
13.5 Harmony in the proof-theoretic tradition	197
13.6 Unity: a model-theoretic version of harmony	200
13.7 Unity and harmony compared	203
13.8 A proof-theoretic natural semantics	208

ix

x Contents

14 Quantifiers	211
14.1 Syntax and natural deduction rules for the quantifiers	211
14.2 The objectual and substitution interpretations	213
14.3 Negative results for what quantifier rules express	216
14.4 The sentential interpretation	217
14.5 Showing the sentential interpretation is a semantics	220
14.6 Quantification in a classical setting	223
14.7 The prospects for referential semantics	226
14.8 The existential quantifier	229
14.9 The omega rule and the substitution interpretation	232
14.10 Hacking's program and the omega rule	235
14.11 Proofs of theorems in Chapter 14	237
15 The natural semantics of vagueness (with Joshua D. K. Brown)	244
15.1 Formal preliminaries	245
15.2 How vagueness is handled in natural semantics	247
15.3 How Williamson's objections are resolved	247
15.4 Why vagueness runs deep	254
16 Modal logic	255
16.1 Natural semantics for the modal logic K	255
16.2 Natural semantics for extensions of K	260
16.3 The possibility operator	263
16.4 The natural semantics of quantified modal logic	264
16.5 Variations on the definition of validity	268
Summary	271
References	275
Index	280

Preface

Syntax all by itself doesn't determine semantics

D. Dennett (1984, p. 28)

Where does meaning come from? There is no more compelling question in the philosophy of language. Referentialists seek an answer in a correspondence between word and object, statement and reality. Inferentialists look to an expression's deductive role, its contribution to the web of relations that determine what follows from what. Logic is the perfect test bed for assessing the merits of inferentialism. The deductive role of the connectives for a given system is defined precisely by its rules. Whether the meanings of the connectives are determined by those roles is now a question with a rigorous answer. This book proves what some of those answers are, revealing both strengths and weaknesses in an inferentialist program for logic. The results reported here are only the tip of an iceberg, but they illustrate the important contribution that metalogic can play in resolving central puzzles in the philosophy of language.

To make headway on this project, we need to explore the options in syntax, in semantics, and in ways to plausibly bridge the two. On the syntactic side, we are faced with a rich variety in the systems of logic. This book examines only intuitionistic and classical rules for propositional logic, and then briefly, rules for quantified and modal systems. So this is just a start. A second important source of syntactic variation is rule format. The details about the way the rules of a logical system are formulated affect whether that system allows unintended interpretations of its connectives. In the same way that moving from first-order to second-order languages strengthens the expressive power of the logic, so does the move from axiomatic formulations, to natural deduction systems, and to sequent calculi with multiple conclusions. Answers to questions about what logics Cambridge University Press 978-1-107-03910-0 - What Logics Mean: From Proof Theory to Model-Theoretic Semantics James W. Garson Frontmatter <u>More information</u>

xii Preface

mean depend crucially on which format is chosen. The moral is that inferentialists who claim that inferential roles fix meaning are duty bound to specify what *kind* of rules undergird those roles.

On the semantics side, we are faced with a decision concerning conceptual foundations. Exactly what vocabulary is to be used in formulating the meaning of a connective? There are two main choices: proof-theoretic semantics and model-theoretic semantics. The latter tradition follows Tarski in presuming that a semantics is a recursive definition of truth on a model. That definition allows one to delineate a corresponding notion of validity.

On the other hand, proof-theoretic semantics eschews "referential" notions such as denotation and truth. It proposes to define meaning using only syntactic concepts such as proof. It is natural for inferentialists who view the referential/inferential divide as a battleground, to opt for prooftheoretic (PT) semantics, for referential notions are perceived as the devices of their enemy. The stance of this book, however, is pluralistic. There is nothing wrong with PT semantics, but we choose to investigate modeltheoretic (MT) semantics instead, for there is ample room for a modeltheoretic inferentialism. Such a view holds that meaning is determined by inferential role, but that the use of model-theoretic notions in characterizing the meaning so fixed is compatible with the inferentialist project, and even useful to PT inferentialists who think of semantics entirely in prooftheoretic terms. A main concern of this book is to demonstrate by example that MT inferentialism is both interesting and viable. So henceforth by 'semantics' we will mean model-theoretic semantics, without intending to indicate a prejudice against the proof-theoretic tradition.

A last source of variation must be mentioned. Definitive answers to questions about the meanings rules express are not possible until a firm bridge between syntax and semantics is in place. We need a mathematically precise account of what a rule expresses. At least three different standards for expressive power are found in the literature, so our job is to canvass their strengths and weaknesses, and select the one that is best.

The idea of the expressive power of a rule is a generalization of an idea that will be familiar from model theory. In the language of predicate logic, there are well-formed formulas that express a variety of conditions on the domain of quantification. For example, $\exists x \exists y \sim x=y$ expresses that there are at least two objects in the domain. That means that a model satisfies that

Cambridge University Press 978-1-107-03910-0 - What Logics Mean: From Proof Theory to Model-Theoretic Semantics James W. Garson Frontmatter More information

Preface xiii

formula iff its domain meets that condition. By analogy, a rule R should express a condition C on models exactly when a model satisfies R iff it obeys C. But what does it mean to say that a model satisfies a rule? A model satisfies a sentence iff it makes the sentence true. What is the corresponding honorific in the case of rules? This book argues that the correct choice is preservation of validity, and that alternative choices face serious problems.

What are the outcomes given the options chosen here? Given the very negative conclusions of the work of Quine (1960, Section 12) and Davidson (Lepore and Ludwig, 2005, Chapter 15) on underdetermination of meaning in natural languages, and Dennett's summary pronouncement that "syntax all by itself doesn't determine semantics" (Dennett, 1984, p. 28), one might expect that functional role radically underdetermines meaning in logic, and that rules never determine a semantics. This appraisal appears to be supported by a well-known collection of negative results for propositional logic (Carnap, 1943, pp. 81ff.; McCawley, 1993, pp. 107ff.; Shoesmith and Smiley, 1978, p. 3; Belnap and Massey, 1990). So it looks bad for model-theoretic inferentialism. However, it is argued here that this wholesale underdetermination is the result of poor choices in rule format and in the definition of what rules express. A more optimistic assessment plays out in the chapters of this book.

Chapter 1 lays out the whole project more intelligibly than this preface can manage. Chapters 2 and 3 examine and dismiss two alternative accounts of what rules express. Chapter 4 develops the notion of expression based on preservation of validity in detail, and defines natural semantics as the semantics so expressed. Since Kripke's intuitionistic semantics plays a central role in this book, Chapter 5 presents that semantics and illustrates how to define an isomorphism to a natural semantics. The next few chapters report results on natural semantics for conditionals (6), disjunction (7), and negation (8). We learn here that the rules for the conditional and for intuitionistic negation express exactly their readings in Kripke semantics. These results will hearten inferentialists of an intuitionistic persuasion. However, an unfamiliar condition is expressed by the rules for disjunction and worries about its legitimacy are explored in detail. Furthermore, there are concerns about classical negation to face as well, although in the classical setting some of the problems with disjunction are resolved. It is then argued that the classical natural deduction rules for propositional logic express a variant of an intuitionist semantics ||PL|| that is entirely acceptable.

Cambridge University Press 978-1-107-03910-0 - What Logics Mean: From Proof Theory to Model-Theoretic Semantics James W. Garson Frontmatter More information

xiv Preface

The odd outcome, however, is that the classical rules for negation express an intuitionistic reading. Supervaluations and ||PL|| show interesting similarities and differences, which are explored in Chapter 9. Chapter 10 is a philosophical interlude, showing how ||PL|| may be deployed as a logic for an open future. Chapter 11 lays out results for logics in sequent format with multiple conclusions where classical rather than intuitionist semantics is expressed. Chapter 12 shows how completeness results may be obtained for systems with respect to their natural semantics. Chapter 13 demonstrates that natural semantics can be helpful in vindicating notions of harmony found in the proof-theoretic tradition. It also shows that natural semantics can be transformed into a useful proof-theoretic version. Chapter 14 describes the natural semantics for the quantifiers, which is essentially intensional, and differs from both the objectual and substitution interpretations. Furthermore, it fails to support the presumption that terms of the language denote objects. Chapter 15 applies natural semantics for standard predicate logic to the problem of vagueness. The final chapter provides a brief account of some results in modal logic. The book ends with a summary of what has been accomplished, and offers a defense of model-theoretic inferentialism in the face of some objections.

Acknowledgements

Even if I could remember what I have forgotten about their contributions, it would not be possible to acknowledge everyone who contributed to this book. But some people deserve special thanks as sources of inspiration:

to my wife, who supports me through thick and thin, and to whom the book is dedicated,

to my teacher Nuel Belnap, who showed me by example how much fun logic can be,

to Joshua D. K. Brown, whose kindness, support, and intellectual energy have brought me to life,

to Will Langley and Brandon Tinklenberg, who talked me into giving them a course on this book, which I profited from and thoroughly enjoyed,

to Jack Woods, who made many valuable suggestions and who always gets me thinking,

to Lloyd Humberstone, who read most of a first draft, headed off many errors, and made valuable suggestions,

to Thomas Wright, who spotted errors in a draft of Chapter 15,

to Hilary Gaskin at Cambridge University Press, who helped get this project on its way, and to anonymous readers who offered kind support and excellent suggestions for improvement.