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1 Problem solving

In this introductory chapter, we begin with a derivation of the Reynolds transport

theorem, which is central to conservation principles applied to control volumes.

Then, we turn to the issue of how to approach problem solving.

1.1 The Reynolds transport theorem

Quantities, such as mass, momentum, energy and even entropy and money, are

conserved in the sense that the following principle can be applied to a system.

Input + Generation = Output + Accumulation

The system normally considered in transport phenomena for application of this

principle is a control volume. The equation makes intuitive sense and is simple to

apply in many cases. However, whenmoving control volumes and reference frames

are examined, or when transport of quantities that have direction (such as momen-

tum) is considered, intuition is less reliable. We here derive a rigorous version of

this conservation principle and, in the process, discover the wide applicability of the

Reynolds transport theorem. We note that more intuitive formulations of this

principle can be found in other texts (e.g. Fluid Mechanics by Potter and Foss).

We consider a generalization of Leibniz’s rule for the differentiation of integrals.

Consider a given function1 f (x) and the definite integral (M) of this function

between x = a and x = b. Let both this function and the limits of integration be

functions of time (t) (see the figure):

1 Note that f could be either a scalar- or a vector-valued function. We write it here as a scalar (unbolded).

f(x, t) f(x, t  = t0)

b(t)a(t) x
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M ¼

ðb tð Þ

a tð Þ

f x; tð Þdx

Using the chain rule, we can find how the value of this integral changes with

time:

dM

dt
¼

@M

@t
þ
@M

@a

da

dt
þ
@M

@b

db

dt

or

dM

dt
¼

ðb tð Þ

a tð Þ

@f x; tð Þ

@t
dt þ f b tð Þ; t½ �

db

dt
� f a tð Þ; t½ �

da

dt

This is Leibniz’s rule, which is well known from calculus.M changes with time not

only due to temporal changes in f, but also because the boundaries of integration

move. Note that the temporal derivative was taken inside the integral, since a and b

are held constant in the partial derivative. This will be important when we consider

moving control volumes.

We now look to apply a similar principle but in three dimensions, relating the

time rate of change of a moving system to that of a stationary system. This is

particularly important in transport phenomena, not simply because our systems are

frequently moving, but, more importantly, because our laws of physics are derived

for material volumes, not control volumes.

A material volume is a fixed, identifiable set of matter.2 A control volume is a

region of space, fixed or moving, that we choose to analyze. Our laws of physics

apply directly to matter, not to control volumes. For example, physics tells us that

(for non-relativistic systems) mass is conserved. Thus, the mass of a given material

volume is always constant. But the mass in a control volume can change.

Solving a problem by tracking the moving material volume is known as a

Langrangian approach. It is typically quite difficult to solve problems in this way

since material volumes change their location and shape due to their motion.

Analysis is facilitated by use of a control volume whose shape and motion can be

specified; such an approach is known as Eulerian. However, to use an Eulerian

approach, we require the Reynolds transport theorem, which allows us to relate

physical laws that are derived for material volumes to a principle that applies to

2 Also referred to by some authors as a “control mass.” Note that the use of the term “fixed” in the above
definition does not imply that the material volume is not moving; rather, it means that its constituent parts
are neither destroyed nor created, although they can be transformed into other components through e.g.
chemical reactions.
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control volumes. In other words, the Reynolds transport theorem acts as a “bridge”

between material volumes, where the physical laws are defined, and control

volumes, which are more convenient for analysis.

Consider a moving material volume as shown in the figure above. This material

volume is moving such that it occupies the region surrounded by the dashed line at

time t and the solid line at a later time τ. Note that the points within the material

volume are not all necessarily moving with the same velocity (e.g. a fluid or a

deforming solid).

Pick a control volume that coincides with the material volume at time t. We

define M as the integral of a function f (x, t) over the material volume,

M ¼

ð

MV

f x; tð Þdx

where x = (x, y, z). We will relateM to the integral of the same function, f (x, t), over

the control volume.

We use an analogous approach to that leading to Leibniz’s equation. We consider

the integral of a function f (x, t) over the material volume.M changes with time due

both to temporal changes in f (x, t) and to the motion of the boundary of the domain

of integration. Noting that the final two terms in Leibniz’s equation arise due to the

flux of f at the boundary carried by the material’s velocity out of the control volume

(and thus normal to the control surface), we find that the three-dimensional

equivalent of Leibniz’s equation becomes

dM

dt
¼

ð

CV0

@f x; tð Þ

@t
dxþ

ð

CS0

f x; tð Þ V
!

MV
� n̂

� �

dS

z

y

x

material volume (MV)

at time t and fixed

control volume (CV0)

material volume

(MV) at time τ

3 1.1 The Reynolds transport theorem
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where CS0 is the surface surrounding the control volume CV0, V
!

MV is the velocity

of the material volume, and n̂ is the outward pointing unit normal.

This is the Reynolds transport theorem for a stationary control volume. It relates

the time rate of change of an intensive function, f (a parameter per unit volume),

integrated over a material volume to the integral of that intensive function inte-

grated over a control volume. The second integral over the control surface involves

the flux of material entering or leaving the control volume. Note that no material

enters or leaves a material volume (by definition).

It is frequently convenient when solving transport problems to consider moving

control volumes. To generalize the Reynolds transport theorem, consider both a

stationary control volume CV0 and a control volume CV moving at velocity V
!

CV,

and their respective surfaces, CS0 and CS (see the figure below).

Now, to find the generalized Reynolds transport theorem for the moving control

volume, we use the Reynolds transport theorem twice: the first time relating the

moving material volume to the stationary control volume, and the second time

relating the moving control volume to the stationary control volume:

d

dt

ð

MV

f x; tð Þdx ¼

ð

CV0

@f x; tð Þ

@t
dxþ

ð

CS0

f x; tð Þ V
!

MV
� n̂

� �

dS

d

dt

ð

CV

f x; tð Þdx ¼

ð

CV0

@f x; tð Þ

@t
dxþ

ð

CS0

f x; tð Þ V
!

CV
� n̂

� �

dS

On subtracting the second equation from the first, rearranging, and evaluating at

time t when the two control volumes are coincident (so that CS and CS0 are

identical), we find

z

y

x

material volume (MV)

at time t and fixed

control volume (CV0)

material volume

(MV) at time τ moving control

volume (CV) at time τ
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d

dt

ð

MV

f x; tð Þdx ¼
d

dt

ð

CV

f x; tð Þdxþ

ð

CS

f x; tð Þ V
!

rel
� n̂

� �

dS

where V
!

rel is the velocity of the material volume relative to the moving control

volume. This is the general form of the Reynolds transport theorem, and it is valid

for stationary and moving control volumes.

The physical interpretation of this equation is useful. This is a conservation law

for any conserved quantity f, in which f is an intensive variable (expressed per unit

volume). The term on the left-hand side of the equation is the rate at which f is

generated. The first term on the right-hand side of the equation is the accumulation

term: the rate at which f accumulates in the control volume. The final term is the flux

term, characterizing the balance of the flux of f out of and into the control volume

due to flow. Thus, the Reynolds transport theorem recovers our initial conservation

principle, namely

Generation = Accumulation + Output – Input

1.2 Application of the Reynolds transport theorem

By applying the laws of physics to the left-hand side of this equation, conservation

laws that apply to control volumes can be generated. For example, when consid-

ering mass conservation, the function f becomes the fluid density ρ (mass per unit

volume, an intensive variable). Then the left-hand side of the equation is simply the

time rate of change of the mass of the material volume. Since this mass is constant

(mass is not generated), we find that

0 ¼
d

dt

ð

CV

�ðx; tÞdxþ

ð

CS

�ðx; tÞ V
!

rel
� n̂

� �

dS

This is the mass-conservation equation, which is valid for all non-relativistic

control volumes, indicating that accumulation in a control volume results from an

imbalance between the influx and outflow of mass from a control volume.

For species conservation, we let f =Ci (moles of species i per unit volume). There

are two important differences from the law of mass conservation. First, there is the

possibility of generation or destruction of species i due to chemical reactions. We

will let the net generation rate of species i be Ψi, i.e. the production rate minus the

destruction rate. Second, in addition to the flow carrying species i (CiV
!

rel), the

diffusion of this species needs to be accounted for.

The diffusional flux of species i is given by Fick’s law of diffusion3:

j
!
i ¼ �Di rCi, where Di is the diffusion coefficient of species i. Taking the dot

3 For isothermal, isobaric conditions.

5 1.2 Application of the Reynolds transport theorem
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product of this vector with the unit outward normal to the control surface and

integrating over the control surface gives the total net diffusional transport out of

the control volume. We then use the Reynolds transport theorem to find the species

conservation equation:

ð

CV

Ψiðx; tÞdx ¼
d

dt

ð

CV

Ciðx; tÞdxþ

ð

CS

Ciðx; tÞ V
!

rel
� n̂

� �

dS

þ

ð

CS

ð J
!
i ðx; tÞ � n̂ÞdS

Likewise, if we allow that f ¼ �V
!

(momentum per unit volume, a vector), then the

left-hand side of the Reynolds transport theorem is the time rate of change of the

momentum of the material volume. This we know from Newton’s second law must

be the sum of the forces acting on the material volume. Thus, the momentum

equation is derived:

X

F
!

¼
d

dt

ð

CV

�V
!
ðx; tÞdxþ

ð

CS

�V
!
ðx; tÞ V

!
rel

� n̂
� �

dS

This is a vector equation that describes a momentum balance in each of the

coordinate directions.

Note that we have imposed no restrictions on the motion of our control volume

when deriving the momentum-conservation equation. It can even be accelerating.

However, the reference frame (which is not the same as the control volume) cannot

be accelerating because Newton’s second law does not hold (without modification)

for non-inertial reference frames.

Note also that the second integral in the above equation contains two velocities

that are not necessarily the same. One is the velocity of the material volume (the

fluid), while the other is the relative velocity between the fluid and the control

volume. The velocities can even be in different directions (e.g. transferring x-

momentum in the y-direction such as might occur when one skater passes another

and throws a book in a perpendicular direction that is caught by the slower skater).

The relative velocity in the last term of the momentum equation is present as the

dot product with the outward normal, so only the component of V
!

rel that carries

material across the control surface contributes to the integral. The sign of a term can

be confusing to determine: the sign of any component of V
!

is established by the

coordinate direction, e.g. a positive Vx is one that points in the same direction as the

x-axis. However, the sign of the term V
!

rel
� n̂ is determined only by whether fluid is

entering or leaving the control volume, being negative or positive, respectively.

Students must pay attention to this tricky point!

6 Problem solving
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Application of the Reynolds transport theorem for other parameters can yield

equations of angular-momentum conservation or energy conservation. Some of the

problems in this book are best tackled using the conservation principles applied to

judiciously chosen control volumes.

Unfortunately, many errors are made in applying these principles. Students

frequently have difficulties applying the various forms of the Reynolds transport

theorem to moving control volumes, especially when vector quantities are

involved. The relative velocity that appears in the Reynolds transport theorem is

frequently a source of confusion, as noted above.

Students generally have difficulty in approaching transport problems. This is

in no small part due to difficulty in thinking in terms of an Eulerian analysis,

since much of the physics that students first learn is necessarily taught from a

Lagrangian point of view. We now turn to the more general topic of problem

solving.

1.3 Approaching transport problems

It is our experience that many students have difficulty with problem solving

because they start “in the middle,” i.e. write down a conservation law and begin

to use it without first deciding what they want to conserve and how they should

approach the problem. As is the case in so many things in life, it pays to invest some

effort in deciding how you want to tackle the problem before diving in. We provide

here a set of steps designed to help you make this investment.

1. Draw a GOOD figure. Include all relevant aspects of the problem – the more

detailed the figure, the better. Include the physical dimensions of the system

and the physical properties of the materials which are given in the problem

statement. Decide on sign conventions and a datum (if needed). For example,

which direction will be positive and which negative? Where is the origin? (This

will be required for use of linear- or angular-momentum conservation. Write the

positive directions on your diagram.) Note that, once you have established a

positive direction, you have to be consistent: you can’t have the x-component of

velocity be considered positive rightward but the x-component of force be

positive leftward!

Use physical insights to help you characterize the process (e.g. draw streamlines

on the figure). List your assumptions. Take some time to do step 1 well, because it is

important!

2. Decide what physical law(s) and equation(s) you might want to apply.

7 1.3 Approaching transport problems
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� Mass conservation (and, in problems with more than one species, each obeys a

conservation principle)

� Linear-momentum conservation and in which direction. Note that linear-

momentum conservation cannot be applied in the radial direction (why?).

� Angular-momentum conservation

� Energy conservation

� Bernoulli’s equation

� Fick’s law of diffusion

� The Navier–Stokes equations

� The convection–diffusion equation

If unsure where to begin, start with application of the simplest law (mass conserva-

tion) and progress from there. Students often ask “how do I know what laws

to use?” You will learn this by doing problems and gathering experience.

Unfortunately, there is no short-cut that substitutes for experience in this case.

3. Pick an object to apply the physical law to. This is a crucial step. This can be a

control volume, a free-body diagram, or a streamline (and, if one is applying a

differential equation such as the Navier–Stokes equation, a domain must be chosen).

Draw this on your figure (don’t just visualize it in your head). In the case of a control

volume, youmust give careful consideration to where the boundaries of the volume

will lie. You should pick these boundaries according to the “know or want to know”

principle: the boundaries should lie either at locations at which your variables are

specified or at locations at which you wish to determine the value of a variable. Also,

for the application of momentum conservation, avoid cutting any objects with the

control surface, since this introduces an unknown force or stress at this location

(unless this is the desired result).

If you are going to use a streamline with Bernoulli’s equation, you need to choose

the location of the starting and ending points of the streamline and draw them onto

your diagram. It is difficult to talk about the pressure, velocity, and elevation at

point 1 without knowing exactly where point 1 is!

Note that judicious choice of the object you intend to apply a particular physical

law to can make problems much easier to solve. However, there is often more than

one choice that will lead you to the solution! Some choices might not give you the

information you want, or may make it more difficult to solve the problem, but they

are not actually wrong. (For example, you could end up proving that x = x, which is

not useful but at least is not incorrect.) It is better to pick an object and get started,

rather than to sit and debate what the best object or principle to use is.

Finally, regarding control volumes, it is necessary to explicitly decide whether

the control volume is moving or stationary, and whether it retains the same shape or

is deforming with time. Note that the control volume can even be accelerating,

8 Problem solving
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although the reference framemust be inertial (not accelerating) in order to allow use

of the momentum theorem (unless an altered form of momentum conservation that

introduces the inertial accelerations as pseudo-forces is used).

4. Apply equations to your objects. Note that different physical laws can be

applied to different objects. Or, the same law can be applied to different objects.

Note the total number of equations.

5. Determine the number of unknowns, remembering that some of your

unknowns can be vectors that represent two or three unknown values (in two and

three dimensions, respectively). Luckily, in such cases the governing equations are

also vector-valued. If you have more unknowns than equations, go back to step 2

and pick another principle and another object to apply this principle to.

6. When the number of equations equals the number of unknowns, solve the

equations. Identify any boundary conditions and initial conditions that may be

needed to solve the equations, and indicate these on your diagram. Make sure that

you have a sufficient number of these given the number of equations and the order

of any differential equations.

7. When you obtain your solution, check to make sure that it satisfies your

assumptions (e.g. that the Reynolds number is within the assumed range, your

assumed streamline is a streamline, etc.).

8. Check the units of your answer. If the units are wrong, go backwards one step at

a time to find where the units error occurred. This is an extremely important step that

many students miss (regardless of how many times they are told). We refer those

readers who believe that units are not important, or that they can be “filled in at the

end,” to the story of the Gimli Glider (see e.g. en.wikipedia.org/wiki/Gimli_Glider)

or the Mars Climate Orbiter (en.wikipedia.org/wiki/Mars_Climate_Orbiter).

In this vein, it is also better to leave all equations in symbolic form and not to plug

in numbers until the very last step. This not only makes unit checking easier, but

also makes your work easier to follow.

9. Check to make sure your answer makes physical sense (e.g. motion in the

correct direction, order of magnitude reasonable, boundary conditions satisfied,

common-sense check). It’s important not to skip this step! It provides closure to the

problem, and allows you to understand in physical terms what your solution implies.

1.4 An example

Now, this all seems straightforward enough. Let’s see how we use these principles

to solve a problem.

Consider the figure shown overleaf: water (density ρ) enters the box from below

through a flexible set of bellows at a flow rateQ, passes through the box and then, at

9 1.4 An example
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the exit, is directed to the right (at an angle θ) by the slots in the top of the box. We

want to find the horizontal force (H) necessary to hold this system stationary under

steady-state conditions.We suggest that, before proceeding, you try to work out this

problem for yourself.

1. Draw a good figure. We begin by re-drawing the figure given in the problem

description (do not skip this step), and adding a coordinate system to the figure

along with the velocity of the fluid exiting the box. Note that, by observing that we

are expressing the velocity of the fluid at the exit as a vector, we now realize that

there are two unknowns here.

2.We now decidewhat physical laws to apply. It seems that, if we are to find the

forceH, then wemust apply momentum conservation. However, it is always a good

idea to start with mass conservation. This will constrain any answer that we may

find, and may give additional insights into the problem.

3. Pick a control volume. We know the flow rate Q entering the system at the

bottom, so it is useful to have a control surface at this location. Since it will be

useful to know the velocity of the fluid leaving the system at the top, it will also be

useful to have a control surface at the top of the chamber where the flow leaves the

H

Q

g

A1

A0

θ
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