

Index

Figure, table, and reaction locations are indicated in bold typeface

```
Bhattacharyya, S. M., 88, 130, 265
acetone
  as amphiphilic binary mixture, 252
                                                          bifurcated hydrogen bond, 67-68
  molecular structure, 244
                                                          billiard ball model (of liquids), 324-325
acidosis, 75
                                                          biological water. See also bulk water
Adam-Gibbs relation, 157-158, 158, 293-294, 295
                                                            DNA. 83
adenylate kinase (ADK) (enzyme), 101, 101
                                                            functions in, 97-113, 99, 100, 101, 103, 104, 105,
Alzheimer's disease, 109-110, 123
                                                               106, 108, 113
amphiphilic effects, 207-209, 243-258, 244, 247, 249,
                                                            inside a carbon nanotube, 277-283, 278, 279, 281,
     251, 255, 257, 342. See also surficants,
                                                              282
     hydrophobic effects, hydrophilic effects
                                                            molecular characteristics of, 83-84
Angel, C. A., 308
                                                            molecular differences with bulk water, 81-83, 82
anomalies. See also Widom line
                                                            natural selection in biomolecules, 187-192, 189
  amphiphilic binary mixtures, 245-253, 247, 249, 251
                                                            protein hydration layer, 82, 83, 88-90, 89
                                                            and protein synthesis, 192-197, 195
  bulk water, 13-21, 14, 16, 17, 19, 20, 21, 22
  explained by computer simulation for hydration
                                                            theoretical studies of, 84-88, 91-95, 91
     layer, 144
  glass transition, 88-90, 89
                                                            lipid bilayers in, 178, 178
                                                            pH, 75–76
  ice formation, 306, 308
  large number of in water, 323-326
                                                          Boltzmann law, 288, 291, 298, 303
  structural. See local order
                                                          Bondi, A., 227
  of supercooled water, 310
                                                          bound water molecule (biological water). See also free
  of supercooling, 324
                                                               water molecules (biological water)
  thermodynamic. See specific heat. See temperature of
                                                            definition, 84
     maximum density (TMD), isothermal
                                                            in dynamic exchange model, 86-88
     compressibility (Kt), coefficient of thermal
                                                            in lipid surface, 180
                                                            in micelles, 266-268, 267
     expansion (/flar/f0)
  and two-stage water model, 22-23
                                                          bovine serum albumin (BSA), 128-129
                                                          Brown, Robert, 27
aqueous salt solutions. See electrolytes
                                                          Brownian motion, 27-28, 29, 37, 51, 52
Arrhenius equation, 17-18
                                                          bulk water. See also heavy water, biological water
association
  hydrophobic, 227
                                                            anomalies, 13-21, 14, 16, 19, 20, 21, 22
  residence time of water molecules in proteins, 109
                                                            characteristics of, 3, 7-9, 8
                                                            computer simulations of, 6-7
                                                            freezing of, 305-315, 310, 312, 313
Bagchi, B., 86, 130
Barron, L. D., 196
                                                            inherent structures in, 61-70, 63, 64, 65, 66
Bell, L., 342
                                                            modeling, 9-10
Ben-Amotz, D., 227
                                                            molecular differences with biological water,
bending mode (hydrogen bond), 39, 69
                                                              81-83.82
Bernal, J. D., 324
                                                            molecular structure of, 4-7, 4, 5, 324
Berne, B., 56, 57
                                                            pH, 71-75, 73
```


carbamide. See urea	dielectric constant
cell theory, 298–299, 299	being useful in chemical processes, 8
chaotropes. See ionization	and light scattering, 55–57
chromatography, 202	in lipid bilayer, 184
clathrate hydration molecular structure, 124, 132–133	polarization increases, 9
clusters. See also percolating network	dielectric relaxation (DR). See also relaxation time,
amphiphilic effects and, 253–254, 255	electrolytes
DMSO, 246–249, 249	computer simulation, 143
hydrogen bond, 67, 330	DNA, 83
coefficient of thermal expansion (ar), 16–17, 17	hydrogen bond breaking kinetics, 40–41
collapse, 229	and protein hydration layer, 83, 120, 124–125,
computer simulation. See also spectroscopy, nuclear	125
magnetic resonance experiments (NMR), inherent	in reverse micelles, 268–269
structures (IS), experiments	diffusion. See also viscosity, relaxation time
and protein hydration layer thickness, 121, 124	Adam–Gibbs relation, 157–158, 158 , 293–294, 295
dielectric relaxation, 143	along DNA 174, 175
DMSO, 245–249, 247 , 249	and inherent structure not containing
DNA hydration, 158, 171	information on, 70
to explain water anomalies, 144	of ions in bulk water, 45–46, 46
hydration layer, 140–142, 141 , 142 , 146, 146	of ions in methanol, 250
of ice formation, 308, 310–314, 312 , 313	in lipid surface, 182–184
lipid bilayer, 180–181, 181	Rosenfeld relation, 291–293, 295
of molecular motion, 31, 136–138	single file, 277, 280, 281
molecular motion in hydration layer, 139	Dill, K. A., 342
of polarizable water molecules, 41	dioxane
of protein glass transition phase, 144–145, 145	as amphiphilic binary mixture, 252–253
solvation dynamics (SD), 142–143	molecular structure, 244
in surficants, 266, 269	DMSO
of water confined between silica surfaces, 204–205,	as amphiphilic binary mixture, 245-249, 247, 249
204, 205, 206	biological applications of, 256–258, 257
of water density, 15	clustering in, 253–254, 255
water glass transition, 89, 144-145, 145	molecular structure, 244
concentration	DNA. See also protein synthesis
dependence in DMSO, 245–249, 247	and drug recognition, 107–109, 108
dependence of conductivity in electrolytes, 211	effects of nanoconfinement in, 161
dependence of ions solutions and water dynamics,	entropy and diffusion in, 156-159, 158
203–204	groove structure in, 153–155, 154
conductivity. See polarization	hydration of constituents in, 152–153, 163–164, 164
continuum model (of collective orientational	intercalaion of drugs into, 101-105, 101 , 103 ,
relaxation), 54	104, 105
core-shell model, 270-273, 270, 271, 272	and protein hydration layer dynamics, 167–175, 171
covalent bonds. See also hydrogen bonds	175
rarity of breaking in bulk water, 97–98	replication sequencing, 188, 196
transfer of electron density in, 8, 8	solvation dynamics in, 155–156, 156
of water creating V shape, 4, 4	spine of hydration in, 159–160
Crick, F. H. C., 152	stabilizing effect of water in, 151–152
crystallographic experiments, 167–169	drinking water. See bulk water
	dynamic equilibrium
da Vinci, Leonardo, 97	of bound and free biological water
D'Angelo, M., 268	molecules, 86, 136
Darwin, Charles, 187	in dynamic exchange model, 91–95, 91
Dawkins, Richard, 187	dynamic exchange model, 85, 85, 86–88, 91–95, 91
Debye–Huckel–Onsager law, 45, 46 , 210–211	
Debye–Waller coefficient, 203	Einstein, Albert, 28
density fluctuations. See also temperature of maximum	Einstein relation law, 45
density (TMD)	electrolytes. See also polarization, ionization, dielectric
of protein hydration layer, 137	relaxation (DR)
in supercritical water, 318–319, 319	conductivity in, 209–211
of water on silica surface, 204–205, 205 , 206	electron transfer in, 46 , 47–49, 48
density maximum. See temperature of maximum	ionic conductivity in, 45–46, 46
density (TMD)	in lipid surface, 184

Index 351

polarization, 30 force constant matrix, 69 viscosity in, 211-212 force law (hydrophobic), 234 electrons. See molecular structure Frank, H. S., 217, 219 ellipsoid in a sea of spheres model (EISS), 51-52 free energy barriers, 146, 146, 180, 182-184, 185 Elsaesser, T., 40 change in DNA hydration, 157 energy entropy balance, 290 surficants and, 266-268, 267, 268 free water molecules (biological water). See also bound microscopic states of, 15 similarities between water density at different water molecule (biological water) temperatures, 18 definition, 84 water molecules can form many structures, 9 in dynamic exchange model, 86-88, 91-95 enthalpy (H). See also thermodynamics, entropy in lipid surface, 180 in bulk water, 23-24 in micelles, 266-268, 268 of DNA protein hydration, 168 freezing 307 in hydrophobic effects, 215, 217, 221 biological water, 310, 314-315 bulk water, 305-309, 310, 310, 312, 313 stability of bound water molecule, 84 of water molecules near ions, 203 Fuoss, R. M., 212 entropy. See also thermodynamics, enthalpy (H) Geissler, L., 74 Gibbs, J., 325, 327 calculation of, 295-300, 299 definition of, 287-290 and diffusion, 291-294, 295 glass transition phase (water), 144-145, 145 of DNA hydration interaction, 156-157 grooves (DNA) entropy in, 299-300 of DNA protein hydration, 168 during incalation, 104-105, 105 molecular motion in, 154-155 in hydrophobic effects, 215, 217, 221 structure, 153-155, 154, 159 in ice formation, 305 Grote, R. E., 48 Grote-Hynes theory, 48-49 in inherent structures, 61 in lipid surface, 180 Grüneisen, E., 211 guanidinium hydrochloride, 209 in micelles, 267, 268, 268 and molecular configurations, 15, 23-24 Guoy-Chapman layer 262, 263 and vibrational molecular motion, 289-290, 296, 302 of water molecules near ions, 203 Halle, B., 127 enzyme catalysis Hamming matrix, 332-333 in aqueous urea solution, 208-209 Hang-Jun, L., 279 covalent bond in, 97-98 Hansen, E., 51 role of water in, 99-101, 99, 100, 101 heavy water. See also bulk water. See also biological enzyme kinetics. See enzyme catalysis water effect of temperature on, 33-35, 34, 35 as amphiphilic binary mixtures, 250, 251 freezing of, 309 clustering in, 253-254, 255 supercooling, 33-35 molecular structure, 244 and vibrational spectroscopy, 128-129 Evans, D. J., 217, 219 Henchman, R. H., 298 Herschbach, D. R., 227 experiments. See also spectroscopy, nuclear magnetic resonance experiments (NMR), computer heterogeneous surface topology in DNA protein 170, 171 simulation crystallographic, 167-169 of protein hydration layer, 135 light scattering, 55-57 in proteins, 122 NALMA, 128 NMR, 57–58, 126–127, 170 in RNA, 161–162 Hopfield, J. J., 188 QENS, 127-128 Hopfield-Ninio scheme, 190-192 extended network. See percolating network hydration layer. See also Stern layer, protein hydration Fayer, M. D., 33, 274 Fersht, A. R., 188, 192–194 computer simulations of, 136-138, 139 surface topology, 124 fibril growth, 111-112 hydrodynamic friction, 121 Fleming, G. R., 129, 325 Flory, Paul, 227, 228, 330 hydrogen bond breaking breaking in hydration layer, 139 Flory-Huggins theory, 228-230, 229 in hydration layer, 137-138 fluctuation. See nucleation kinetics, 36-49, 38, 39, 40, 44, 46, 48 fluorescence up-conversion technique, 170 hydrogen bond defects. See orientational order food, 76 molecular structure

352 Index

hydrogen bond lifetime in nanotubes, 280 and anharmonic coupling, 39-40 and pair hydrophobicity, 221-227, 223, 224, 225, geometric definition, 36, 38 on protein surface, 122, 123, 132-133, 133 in micelles, 266 quantification, 50, 58-59, 324 Hynes, J. T., 31-32, 40, 48 and time correlation functions, 36–39, 38, 39 hydrogen bond network ice. See also supercooling, nucleation being percolating, 6-7 density of, 14 fluctuations in, 324, 330-334 formation, 305-306, 308, 309, 310, 312, 313 impossibility near large hydrophobic object, formation in carbon nanotubes, 310, 314-315 234–235, **235** from micro-droplets, 308 low energy excitations in liquid water, 69 phase diagram of water into, 306-307, 307 on mica surface, 207 polymorphs in, 9 micelle disruption, 263 tetrahedral molecular of, 6 not sustained in biological water in three dimensions, iceberg model hydrophobic effects, 217, 219 protein, 124 of protein hydration layer, 118, 119, 124 in supercritical water, 318, 321 inherent structures (IS). See also hydrogen bonds, hydrogen bond types computer simulation in biology, 67-68, 81-83 bond transition in, 67-68 in DNA, 163-164, 164 temperature and, 62-66, 63, 64, 65, 66 in micelles, 266-268, 267, 268 intercalation, 101-105, 101, 103, 104, 105 RNA interactions, 105-107, 106 interfacial water. See protein hydration layer of silica surfaces, 204, 205 inverted hydration molecular structure, 124, 132-133 strength difference in protein backbone and side ionization. See also electrolytes chain atoms, 121-123, 122 auto, 71-72, 74 conductivity, 45–46, **46** and water, 47–49, **48**, 202–204, **203** in urea water, 209 hydrogen bonds. See also inherent structures (IS), Ising model, 273-274, 275, 294 covalent bonds bifurcated, 5, 6 isobaric specific heat (Cp). See specific heat (Cp) and difficulty in ice creation, 310 isoenergetic structural arrangements. See polymorphs isothermal compressibility (Kt), 15-16, 16, 23-24 diversity of in water, 8 fluctuating molecular networks in water, 9 lifetime of, 7, 140-142, 141, 142 Jimenez, R., 43 long-lasting, 311-314, 312, 313 Jones-Dole coefficient, 203-204 orientational order in, 50 Jones-Dole equation, 212 potential energy, 324, 331-333 jump motion. See rotational molecular motion tetrahedral structure, 5, 50, 71-72 hydrolases (enzyme), 99-101, 99, 100 Kauzmann, Walter, 215 hydrolysis, 187-196, 189, 195 kinetic proofreading (KPR), 187-196, 189, 195 hydropathy scale, 220-221, 222 Kohlrausch's law, 210 hydrophilic effects. See also hydrophobic effects, kosmotropes. See ionization amphiphilic effects Kubo, R. J., 203 on electrolytes, 209-212 Kubo-Oxtoby theory of frequency modulation, 40 in ion solvation, 203 on mica surface, 207 Laage, Damien, 31-32 on parallel silica surfaces, 204-205, 205 Laage-Hynes mechanism, 339 on protein surface, 122, 123, 124, 132–133, **133** hydrophobic effects. *See also* hydrophilic effects, Landau theory, 325-326 Lang, M. J., 45 amphiphilic effects Laria, D., 321 collapse, 227-230, 229 Levitt, M., 105 at different length scales, 234-235, 235 light scattering experiments, 55-57 environment in lipid bilayer, 184 linear molecular motion. See translational molecular force law, 234 motion history of, 215-217 lipid bilayer. See also protein hydration layer and hydrophobic hydration, 217-220, 220, hydration of constituents in, 179 221 222 molecular structure of, 177-179, 178 in iceberg model, 217, 219 molecular transport in, 182-184 ice-like water structures on silica, 205, 206 potential energy in, 180, 184 of ions due to enthalpy and solvation energy, 203 solvation dynamics (SD), 181, 182 molecular interactions in, 230-233, 236-241 water dynamics in, 180-181, 181

lipid bilayer diffusion series (LPD), 182–184	Moras, D., 106
local density. See density fluctuations	myoglobin, 124–125, 125 , 136
local order, 19–21, 19 , 20 , 21	
low temperature. See supercooling	N-acetyl-leucine-methylamide experiments
lubricant	(NALMA), 128
flickering phenomena, 196–197	Naim, Ben, 342
water as, 179, 185	Nandi, N., 45, 86
Lynden-Bell, R. M., 46	nanotubes (carbon), 18
lysozyme (enzyme), 100–101, 101 , 128, 129, 130 , 137,	entropy in, 299–300
256–258, 25 7	freezing of water in, 310, 314–315
230 230, 231	molecular structure of, 278
magnetic relaxation dispersion (NMRD), 127	molecular structure of water in, 278–279, 278 , 279
•	
Maniwa, Y., 283 Marcus theory (of electron transfer), 47–49, 48	relaxation time, 17–18
	rotational molecular motion of water in, 280–282,
Marcus, R. A., 130, 342	282
Matsumoto, M., 310	translational molecular motion of water in, 279–280,
mean square displacement (lipid bilayer), 180, 181	281
Mendeleev, D., 250	types of, 277, 278, 282
Mercedes Benz model, 342	natural selection (in biomolecules), 187–192, 189
metastable state, 310–311, 310 , 341	Nee, T., 54
methanol	Nernst's law of electrochemistry, 45
as amphiphilic binary mixture, 250	Nibbering, T. J., 40
molecular structure, 244	nuclear magnetic resonance experiments (NMR). See
mica, 207	also spectroscopy, experiments, computer
micelles, 261–263, 263 , 342 See also reverse micelles	simulation
microemulsion. See reverse micelles	of DNA hydration interaction, 170
model	and protein hydration layer dynamics, 126-127
billiard ball, 324–325	and relaxation time, 57–58
continuum, 54	nuclear overheusser effect (NOE), 126–127
core–shell, 270–273, 270 , 271 , 272	nucleation, 16–17, 309, 310 , 311–314, 312 , 313 , 342
dynamic exchange, 85, 86–88, 91–95, 91	See also ice
EISS, 51–52	See also lee
iceberg, 119 , 217, 219	Ohmine, I., 67, 310, 325
Ising, 273–274, 275 , 294	oligomerization, 110–111
reaction—diffusion model, 86	Onsager, L., 43, 212
two-stage water, 22–23, 310, 325, 335–341, 335 , 338	Onuchic, J. N., 209
Weeks-Chandler-Andersen, 236, 338	orientational order molecular structure 6
molecular motion	causing five-sided shape, 5, 6
Brownian, 27–28, 29 , 37 , 51, 52	dependence in hydrophobic effects, 224–227, 225 ,
of bulk water, 27–35, 29 , 31 , 33 , 34 , 35 , 36 , 49–50	226
rotational, 27, 28–32, 31 , 32 , 51–53, 54, 85, 86–88,	hydrogen bonds, 50
93–95, 154–155, 180–181, 181 , 265, 280–282,	on mica surface, 206–207, 207
282 , 303	promoting diffusion, 67–68
surficants, 265	relaxation in, 53–54
translational, 27, 28, 35, 36, 85, 85, 88, 137, 154,	reverse micelles, 269–273, 270 , 271 , 272
180–181, 181 , 265, 279–280, 281	Ostwald's dilution law, 211
vibrational, 39–40, 40, 128–129, 289–290, 296, 302,	*
320–321	pair correlation function g(r), 19-21, 19, 20, 21
molecular structure. See also polymorphs	pair hydrophobicity, 221–227, 223 , 224 , 225 , 226 , 233
amphiphilic binary mixtures, 243–245, 244	Patey, G. N., 340
of DNA, 151–152, 153–155, 154 , 159	Pauling, Linus, 4
and entropy of liquid water, 296–297	Pecora, R., 56, 57
in hydrophobic effects, 230–233	percolating network. See also clusters
lipid bilayer, 177–179, 178 , 182–184	allowing many dynamic processes, 9
and local order, 19–21, 19 , 20 , 21	development of, 325
and potential energy, 62–66, 63 , 65 , 66	history of, 327–330
of protein hydration layer, 121–124, 122 , 132–133,	as reason for many anomalies, 6–7
133	Percus–Yevick equation, 288
of RNA, 152	pH
surficants, 261–263, 263 , 264	blood pH, 75–76
of water around ions, 203	of bulk water, 71–75, 73

354

Cambridge University Press & Assessment 978-1-107-03729-8 — Water in Biological and Chemical Processes Biman Bagchi Index More Information

> pH (cont.) quasi elastic neutron scattering experiments (QENS), seawater, 77 127-128 phase. See also supercritical water, supercooling quenched normal mode, 69 diagram (water-ice), 306-307, 307 glass transition, 88-90, 89, 144-145, 145, 307 Radhakrishnan, R., 314 metastable state, 310-311, **310**, 341 radical distribution function. See pair correlation phospholipids, 177-179, 178, 179 function g(r) photosynthesis, 112-113, 113 Rahman, A., 6, 330 polar perturbations. See solvation dynamics (SD) Raoult's law, 245 Rasaiah, J. C., 46, 278, 279 polarization. See also electrolytes of DNA, 151-152, 163-164, 164 rate of decay, 36-38, 38, 39 speed of, 44, 45 rate of dissociation, 72 and water molecule arrangement, 9, 10 Rayleigh-Brillouin light spectrum, 55 polymorphs, 202, 206, 342. See also molecular reaction-diffusion model, 86 recognition (DNA), 152, 168-169 structure relaxation time. See also diffusion, dielectric potential energy 63 bond transition in inherent structures, 67-68 relaxation (DR) in DNA, 161 being collective at low temperatures, 49-50 of hydrogen bonds, 324, 331 in DNA protein, 170 and molecular structures, 62-66, 63, 64, 65, 66 in inherent structures, 62-63, 64 potential energy minima. See inherent structures (IS) nanopores, 17-18 potential of mean force (PMF), 221–227, 223, 224, 225, non-exponential in biological water, 84, 87 and nuclear magnetic resonance, 57-58 226 Pratt-Chandler theory (PC), 232, 233, 236-241 surficants, 264, 268-269, 273-274, 274, 275 protein folding of water between mica surfaces, 206 flickering phenomena, 196-197 residence time (in proteins), 109, 136, 170 hydrophobic effects, 220, 224-227, 225, 226 reverse micelles. See also micelles water dynamics in, 109 dielectric relaxation, 268-269 protein hydration layer. See also surface topology, entropy in, 299-300 hydration layer molecular structure of, 263 association in, 90 orientational order molecular structure, 269-273, binding sites, 107-109, 108 270, 271, 272 and DNA, 167-175, 172, 175 relaxation time, 273-274, 274, 275 glass transition and, 88-90, 89 solvation dynamics (SD), 269 molecular structure, 119, 122, 125, 130, Rey, M., 40, 321 131 133 ribonuclease-A, 136 and water residence time, 109, 136, 170 RNA protein surface trapped water molecules in, 105-107, 106 inverted molecular structure, 124, 132-133 water dynamics around, 161-162 Rog, T., 180-181 topology, 8, 10 Rosenfeld relation, 291-293, 295 water behavior in, 51 protein synthesis. See also DNA rotational molecular motion 27 in bulk water, 27, 28-32, 31, 33 ADK, 101, 101 enzyme catalysis, 97-101, 99, 100, 101, in DNA grooves, 154-155 in dynamic exchange model, 85, **85**, 86–88, 93–95 208-209 evolution of, 187-192, 189 entropy for, 303 kinetic proofreading, 187-196, 189, 195 and jumping, 30-32, 31, 32, 51 in lipid bilayer, 180-181, 181 proteins amphiphilic effects on, 245 in surficants, 265 data bank, 224-227, 225, 226 and time correlation functions, 30, 51-53, 52, 54 denaturization, 208 of water inside a carbon nanotube, 280-282, effects of DMSO on, 256-258, 257 282 pH of amino acids, 75-76 rugged landscape, 174, 180 pump-probe spectroscopy, 269, 270 Sackur-Tetrode equation, 288, 299, 300, 301 quantification of spatial order (to), 20-21, 20, 21, Saito, S., 310 24-25 scaled particle theory (of hydrophobic hydration), quantum nature 6 231-232 of hydrogen bonds, 8, 71-72 seawater (pH), 77 of temperature dependence in water bonds, 74 single file diffusion, 280, 281 of water creating V shape, 6, 71-72 Skinner, J. L., 40

solvation dynamics (SD)	and protein hydration layer, 88-90, 89
of bulk water, 13, 42–45, 44	and specific heat, 15
computer simulation, 142–143	and translational diffusion, 35
in DNA, 155–156, 156	and two-stage model, 325-326
lipid bilayer, 181, 182	supercritical water. See also supercooling, phase
and protein hydration layer, 129-131, 130, 131	definition of, 307
of reverse micelles, 269	density fluctuations in, 318–319, 319
of supercritical water, 321–322	properties of, 317–318
solvents	spectroscopic studies, 320–321
acetone, 244 , 252	vibrational molecular motion, 320–321
dioxane, 244 , 252–253	Widom line in, 320
DMSO, 244 , 253–254, 255 , 256–258, 257	surface topology. See also protein surface, protein
ethanol, 244 , 250, 251 , 253–254, 255	hydration layer
methanol, 244 , 250	heterogeneous, 122, 135, 161–162, 170, 171
tertiary butyl alcohol (TBA), 244 , 250–252,	and influence on water structure, 206–207, 207
253–254, 255	lipid, 180, 182–184
Song, X., 130	mica, 206–207, 207
specific heat, 15, 16 , 23–24, 289–290, 320, 327	protein, 122, 123, 124, 132–133, 133
spectroscopy. See also nuclear magnetic resonance	in rugged landscape, 90, 174
experiments (NMR). See also experiments. See	silica, 204–205
also computer simulation.	surficants. See also amphiphilic effects
to detect local collective motion, 333–334, 334	free energy landscape, 266–268, 267 , 268
fluorescence up-conversion technique, 170	molecular motion, 265
light scattering, 55–57	molecular structure of, 261–263, 263 , 264 , 269–273,
and protein hydration layer dynamics, 128–129	270, 271, 272
pump-probe, 269, 270	relaxation time of, 265, 268–269, 273–274, 274 , 275
Rayleigh–Brillouin light spectrum, 55	solvation dynamics, 265, 269
of supercritical water, 320–321	
	Sykes, M. T., 105
terahertz, 121	Tenford Charles 215 220
difference between biological and bulk water	Tanford, Charles, 215, 220
dynamics, 84	temperature
•	and Brownian motion, 28
in DNA groove water, 155	and coefficient of thermal expansion, 16–17, 17
of electron transfer, 47	dependence in hydrophobic effects, 215, 219–220,
of perturbation, 9	220, 221
of polarization response, 44, 45	dependence on amphiphilic effects, 250–252
of rotational motion, 28–32	and inherent structures, 62–66, 63 , 64 , 65 , 66
of translational motion, 28	and isothermal compressibility, 15–16, 16
of water hydration dynamics, 127–128, 131	and maximum density, 13–15, 14
of water inside a carbon nanotube, 279–280	and pH, 73–74, 73
of water molecules with increasing pressure, 35, 36	and water motion, 34, 35
Speedy, J., 308	temperature of maximum density (TMD). See also
spine of hydration (DNA), 157, 159–160	density fluctuations
standard ambient temperature and pressure (SATP), 72,	and coefficient of thermal expansion, 17
74	reason for, 327, 329
Stanley, H. E., 325, 328	temperature, 13–15, 14
statistical mechanics, 288, 290, 301, 308	terahertz spectroscopy, 121
Stern layer, 262, 263 , 265, 342. <i>See also</i> hydration layer	tertiary butyl alcohol (TBA), 244
Stillinger, F. H., 6, 62, 231, 233, 236, 325, 330	as amphiphilic binary mixture, 250–252
Stokes–Einstein relation	clustering in, 253–254, 255
in DNA, 159	molecular structure, 244
in lipid surface, 185	tetrahedral molecular structure
subtilisin Carlsberg (protein), 130, 131	distorted, 5, 5 , 20–21, 21
supercooling. See also supercritical water, phase, ice	in DNA, 153–160, 158 , 159
anomalies in, 334–341, 335 , 336 , 338 , 339	hydrogen bonds 4, 71–72
and coefficient of thermal expansion, 16–18, 17	ice, 6
and hydrogen bond of heavy water, 33–35	when cooling, 67, 331–332
and inherent structures, 61, 69	theory
and local order, 20–21, 20 , 21	Cell, 298–299, 299
motion becoming collective during, 49-50	Flory-Huggins, 228-230, 229
in NALMA experiments, 128	Grote-Hynes, 48-49

> 356 Index theory (cont.) urea, 208-209 Kubo-Oxtoby, 40 Landau, 325-326 vibrational molecular motion Marcus, 47-49, 48 of bulk water, 27, 39-40, 40 Pratt-Chandler, 232, 233, 236-241 and entropy, 289-290, 296, 302 scaled particle, 231-232, 233 and protein hydration layer dynamics, thermal motion. See Brownian motion 128-129 thermodynamics. See also entropy, enthalpy (H) in supercritical water, 320-321 bifurcated hydrogen bonds helping, 5 viscosity. See also diffusion in hydrophobic hydration, 218-219 DMSO, 246 of protein-hydration interactions, 170-173, 172 in electrolytes, 211-212 at supercooled temperatures, 13 volume third law of, 288-289 expansion upon freezing, 306 thickness (protein hydration layer), 118-121, 124 fluctuations in, 337-338, 339 time correlation functions. See rotational molecular and isothermal compressibility, 15-16, 16 motion time trajectory, 31-32, 31 Walter, N. G., 105 time-dependent fluorescence Stokes shift (TDFSS), 44, water pool, 263, 269 water-fearing. See hydrophobic effects Watson, J. D., 152 translational molecular motion in bulk water, 27, 28, 35, 36 Weber, T. A., 62 in computer simulations, 137 Weeks-Chandler-Andersen model (WCA), 236 Widom line 317, 320, 336-337, 336, 342 See also in DNA grooves, 154 in dynamic exchange model, 85, 85, 88 anomalies in lipid bilayer, 180-181, 181 Wolynes, P. G., 209 in surficants, 265 of water inside a carbon nanotube, 279-280, 281 Xiao-Yan, Z., 279 triple point. See phase Xia-Wolynes treatment, 294 Trout, B. L., 314 two-stage water model, 22-23, 118, 119, 310, Zewail, A. H., 88, 107, 130, 170

Zwanzig, R., 54, 62

325-326, 335-341, 335, 338