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Systematic Program Design

From Clarity to Efficiency

A systematic program design method can help developers ensure the correctness and per-

formance of programs while minimizing the development cost. This book describes a

method that starts with a clear specification of a computation and derives an efficient im-

plementation by step-wise program analysis and transformations. The method applies to

problems specified in imperative, database, functional, logic, and object-oriented program-

ming languages with different data, control, and module abstractions.

Designed for courses or self-study, this book includes numerous exercises and examples

that require minimal computer science background, making it accessible to novices. Expe-

rienced practitioners and researchers will appreciate the detailed examples in a wide range

of application areas including hardware design, image processing, access control, query

optimization, and program analysis. The last section of the book points out directions for

future studies.
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Preface

Design may refer to both the process of creating a plan, a scheme, or generally

an organization of elements, for accomplishing a goal, and the result of that pro-

cess. Wikipedia states that design is usually considered in the context of applied

arts, engineering, architecture, and other creative endeavors, and normally requires

considering aesthetic, functional, and many other aspects of an object or a pro-

cess [319]. In the context of this book in the computing world, design refers to the

creation of computer programs, including algorithmic steps and data representa-

tions, that satisfy given requirements.

Design can be exciting because it is linked to problem solving, creation, accom-

plishments, and so on. It may also be frustrating because it is also linked to details,

restrictions, retries, and the like. In the computing world, the creation of a com-

puter program to accomplish a computation task clearly requires problem solving;

the sense of excitement in it is easy to perceive by anyone who ever did it. At the

same time, one needs to mind computation details and obey given restrictions in

often repeated trials; the sense of frustration in the process is also hard to miss.

Systematic design refers to step-by-step processes to go from problem descrip-

tions to desired results, in contrast to ad hoc techniques. For program design, it

refers to step-wise procedures to go from specifications prescribing what to com-

pute to implementations realizing how to compute. The systematic nature is im-

portant for reproducing, automating, and enhancing the creation or development

processes. Clarity of the specifications is important for understanding, deploying,

and evolving the programs. Efficiency of the implementations is important for

their acceptance, usage, and survival.

Overall, a systematic program design method that takes clear specifications into

efficient implementations helps ensure the correctness and performance of the pro-

grams developed and at the same time minimize the development cost. In terms of

human adventure and discovery, it allows us to be free of tedious and error-prone

aspects of design, avoid repeatedly reinventing the wheel, and devote ourselves to

ix
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x Preface

truly creative endeavors. It is with these motivations in mind that this book was

written, to give a unified account of a systematic method that was developed based

on significant prior work by many researchers.

The systematic program design method described in this book applies to large

classes of problems of many different kinds; it does not yet do the magic of gener-

ating efficient implementations from clear specifications for all computation prob-

lems, if such a magic method will ever exist. For example, the method can derive

dynamic programming algorithms from recursive functions, produce appropriate

indexing for efficient evaluation of relational database queries, and generate effi-

cient algorithms and implementations from Datalog rules; however, it cannot yet

derive a linear-time algorithm for computing strongly connected components of

graphs. It is, of course, not the only method for program design.

The method described in this book consists of step-wise analysis and transfor-

mations based on the languages and cost models for specifying the problems. The

key steps are to (1) make computation proceed iteratively on small input incre-

ments to arrive at the desired output, (2) compute values incrementally in each it-

eration, and (3) represent the values for efficient access on the underlying machine.

These steps are called Step Iterate, Step Incrementalize, and Step Implement, re-

spectively. The central step, Step Incrementalize, is the core of the method. You

might find it interesting that making computations iterative and incremental is the

analogue of integration and differentiation in calculus. Steps Iterate and Incre-

mentalize are essentially algorithm design, and Step Implement is essentially data

representation design.

Overview

This book has seven chapters, including an introduction and a conclusion. The five

middle chapters cover the design method for problems specified using loop com-

mands, set expressions, recursive functions, logic rules, and objects, respectively.

Loops are essential in giving commands to computers, sets provide data abstrac-

tion, recursion provides control abstraction, rules provide both data and control

abstractions, and objects provide module abstraction.

Chapter 1 motivates the need for a general and systematic design method in

computer programming, algorithm design, and problem solving in general; in-

troduces an incrementalization-based method that consists of three steps: Iterate,

Incrementalize, and Implement; explains languages, cost models, as well as ter-

minology and notations used throughout the book; and provides historical and

bibliographical notes about the method.

Chapter 2 explains the core step of the method, Step Incrementalize, as it is

applied to optimizing expensive primitive and array computations in loops. The

basic ideas are about maintaining invariants incrementally with respect to loop in-

crement. Because loops are already iterative, and primitives and arrays are easily
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Preface xi

implemented on machines, there is little to do for Step Iterate and Step Imple-

ment. The method is further illustrated on two examples, in hardware design and

image processing. Finally, the need for higher-level data and control abstractions

is discussed.

Chapter 3 presents Step Incrementalize followed by Step Implement, as they

are used to obtain efficient implementations of set expressions. If a set expression

involves a fixed-point operation, Step Iterate easily transforms the operation into a

loop. We focus on composing incremental maintenance code in Step Incremental-

ize and designing linked data structures for sets in Step Implement. The method is

applied to two additional examples, in access control and query optimization. The

chapter ends by discussing the need for control abstraction in the form of recursive

functions, which are optimized in Chapter 4.

Chapter 4 studies Step Incrementalize preceded by Step Iterate, as they are

applied in optimization of recursive functions. We concentrate on determining

minimum increments and transforming recursion to iteration in Step Iterate, and

deriving incremental functions and achieving dynamic programming in Step In-

crementalize. Step Implement easily selects the use of recursive versus indexed

data structures when necessary. Additional examples are described, in combinato-

rial optimization and in math and puzzles. We end by discussing the need for data

abstraction in the form of sets, which are handled in Chapter 3.

Chapter 5 describes Step Incrementalize preceded by Step Iterate and followed

by Step Implement, as they are used together to generate efficient implementa-

tions from logic rules. Step Iterate transforms fixed-point semantics of rules into

loops. Step Incrementalize maintains auxiliary maps extensively for incremen-

tal computation over sets and relations. Step Implement designs a combination

of linked and indexed data structures for implementing sets and relations. The

method gives time and space complexity guarantees for the generated implemen-

tation. We present two example applications, in program analysis and trust man-

agement. Finally, we discuss the need for module abstraction in building large

applications.

Chapter 6 studies incrementalization across module abstraction, as the method

is applied to programs that use objects and classes. Object abstraction allows spec-

ification and implementation of scaled-up applications. We discuss how it also

makes obvious the conflict between clarity and efficiency. We describe a language

for specifying incrementalization declaratively, as incrementalization rules, and

a framework for applying these rules automatically. We also describe two exam-

ple applications, in electronic health records and in game programming. At the

end, we show how to use incrementalization rules for invariant-driven transforma-

tions in general, and we present a powerful language for querying complex object

graphs that is easier to use than set expressions, recursive functions, and logic

rules for a large class of common queries.
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xii Preface

Chapter 7 takes a deeper look at incrementalization, illustrates the ideas on

three sorting examples, describes how program design requires both building up

and breaking through abstractions, discusses issues with implementations and ex-

periments for the method, and points out limitations of the method and directions

for future studies.

How to use this book

This book can be used for both self-study and course study. It is a dense book, but

it is intended for both readers with a minimal computer science background and

experienced computer science researchers and practitioners. For course study, the

book is intended to suit upper-level undergraduate students and beginning gradu-

ate students, but selected parts with simpler examples can be taught to lower-level

undergraduate students, and full coverage with all examples can be taught to ad-

vanced graduate students.

Each of the five middle chapters is relatively independent of the others, except

for some of the language constructs introduced in earlier chapters. Nevertheless,

studying the materials in order will help one better understand the design method

through preview and review of each chapter.

Each of the middle chapters is organized as follows. First, it introduces the

problem and a running example and describes the language constructs handled

in that chapter. Then, it presents the ideas and steps of the method as applied

to the language constructs handled and illustrates them on the running example

and other smaller examples. Next, it gives two or more examples to show either

additional aspects or certain interesting consequences of the method. Finally, it

puts the chapter in the context of the book to motivate the subsequent chapter.

Each chapter ends with bibliographic notes.

Exercises are given at the end of each section, to help readers learn the method

discussed. Each exercise is given one of two levels of difficulty: purely for prac-

ticing or partly for discovery. Exercises of level one are simple examples for pro-

gramming or for following the method presented in that section. Exercises of level

two can lead to discovery of aspects of programming or of the method not dis-

cussed in that section. Exercises of level two are indicated with an asterisk (*).

An index at the end of the book lists the terminology and names used in the

book. A boldface number following a term denotes the page where the term is

defined, and other numbers indicate the pages where the term is used.
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