
Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Systematic Program Design

From Clarity to Efficiency

A systematic program design method can help developers ensure the correctness and per-

formance of programs while minimizing the development cost. This book describes a

method that starts with a clear specification of a computation and derives an efficient im-

plementation by step-wise program analysis and transformations. The method applies to

problems specified in imperative, database, functional, logic, and object-oriented program-

ming languages with different data, control, and module abstractions.

Designed for courses or self-study, this book includes numerous exercises and examples

that require minimal computer science background, making it accessible to novices. Expe-

rienced practitioners and researchers will appreciate the detailed examples in a wide range

of application areas including hardware design, image processing, access control, query

optimization, and program analysis. The last section of the book points out directions for

future studies.

Yanhong Annie Liu is a Professor of Computer Science at Stony Brook University. She

received her BS from Peking University, MEng from Tsinghua University, and PhD from

Cornell University. Her primary research has focused on general and systematic methods

for program development, algorithm design, and problem solving. She has published in

many top journals and conferences, served more than fifty conference chair or committee

roles, and been awarded more than twenty research grants in her areas of expertise. She

has taught more than twenty different courses in a wide range of Computer Science areas

and presented close to a hundred research talks and invited talks at international confer-

ences, universities, and research institutes. She received a State University of New York

Chancellor’s Award for Excellence in Scholarship and Creative Activities in 2010.

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

SYSTEMATIC PROGRAM DESIGN

From Clarity to Efficiency

Yanhong Annie Liu

Stony Brook University, State University of New York

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107036604

© Yanhong Annie Liu 2013

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Liu, Yanhong Annie, 1965–

Systematic program design : from clarity to efficiency / Yanhong Annie Liu, Stony Brook

University, State University of New York.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03660-4 (hardback) – ISBN 978-1-107-61079-8 (paperback)

1. Computer programming. 2. System design. I. Title.

QA76.6.L578 2013

005.1–dc23 2012047527

ISBN 978-1-107-03660-4 Hardback

ISBN 978-1-107-61079-8 Paperback

Cambridge University Press has no responsibility for the persistence or

accuracy of URLs for external or third-party internet websites referred to in

this publication, and does not guarantee that any content on such websites is,

or will remain, accurate or appropriate.

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

To all my loving teachers,

especially my parents,

my Scott, Sylvi, and Serene,

and many of my colleagues and students.

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Preface page ix

1 Introduction 1

1.1 From clarity to efficiency: systematic program design 1

1.2 Iterate, incrementalize, and implement 5

1.3 Languages and cost models 11

1.4 History of this work 17

2 Loops: incrementalize 22

2.1 Loops with primitives and arrays 23

2.2 Incrementalize: maintain invariants 26

2.3 Iterate and implement: little to do 34

2.4 Example: hardware design 36

2.5 Example: image processing 41

2.6 Need for higher-level abstraction 49

3 Sets: incrementalize and implement 53

3.1 Set expressions—data abstraction 55

3.2 Iterate: compute fixed points 59

3.3 Incrementalize: compose incremental maintenance 61

3.4 Implement: design linked data structures 66

3.5 Example: access control 71

3.6 Example: query optimization 76

3.7 Need for control abstraction 80

4 Recursion: iterate and incrementalize 83

4.1 Recursive functions—control abstraction 85

4.2 Iterate: determine minimum increments, transform

recursion into iteration 88

4.3 Incrementalize: derive incremental functions, achieve

dynamic programming 93

vii

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

4.4 Implement: use linked and indexed data structures 97

4.5 Example: combinatorial optimization 99

4.6 Example: math and puzzles 103

4.7 Need for data abstraction 113

5 Rules: iterate, incrementalize, and implement 117

5.1 Logic rules—data abstraction and control abstraction 119

5.2 Iterate: transform to fixed points 123

5.3 Incrementalize: exploit high-level auxiliary maps 124

5.4 Implement: design linked and indexed data structures 130

5.5 Time and space complexity guarantees 136

5.6 Example: program analysis 141

5.7 Example: trust management 144

5.8 Need for module abstraction 147

6 Objects: incrementalize across module abstraction 151

6.1 Objects with fields and methods—module abstraction 153

6.2 Queries and updates: clarity versus efficiency 157

6.3 Incrementalize: develop and apply incrementalization rules 161

6.4 Example: health records 172

6.5 Example: robot games 175

6.6 Invariant-driven transformations: incrementalization rules

as invariant rules 178

6.7 Querying complex object graphs 183

7 Conclusion 187

7.1 A deeper look at incrementalization 188

7.2 Example: sorting 196

7.3 Building up and breaking through abstractions 200

7.4 Implementations and experiments 203

7.5 Limitations and future work 206

References 213

Index 235

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

Design may refer to both the process of creating a plan, a scheme, or generally

an organization of elements, for accomplishing a goal, and the result of that pro-

cess. Wikipedia states that design is usually considered in the context of applied

arts, engineering, architecture, and other creative endeavors, and normally requires

considering aesthetic, functional, and many other aspects of an object or a pro-

cess [319]. In the context of this book in the computing world, design refers to the

creation of computer programs, including algorithmic steps and data representa-

tions, that satisfy given requirements.

Design can be exciting because it is linked to problem solving, creation, accom-

plishments, and so on. It may also be frustrating because it is also linked to details,

restrictions, retries, and the like. In the computing world, the creation of a com-

puter program to accomplish a computation task clearly requires problem solving;

the sense of excitement in it is easy to perceive by anyone who ever did it. At the

same time, one needs to mind computation details and obey given restrictions in

often repeated trials; the sense of frustration in the process is also hard to miss.

Systematic design refers to step-by-step processes to go from problem descrip-

tions to desired results, in contrast to ad hoc techniques. For program design, it

refers to step-wise procedures to go from specifications prescribing what to com-

pute to implementations realizing how to compute. The systematic nature is im-

portant for reproducing, automating, and enhancing the creation or development

processes. Clarity of the specifications is important for understanding, deploying,

and evolving the programs. Efficiency of the implementations is important for

their acceptance, usage, and survival.

Overall, a systematic program design method that takes clear specifications into

efficient implementations helps ensure the correctness and performance of the pro-

grams developed and at the same time minimize the development cost. In terms of

human adventure and discovery, it allows us to be free of tedious and error-prone

aspects of design, avoid repeatedly reinventing the wheel, and devote ourselves to

ix

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

x Preface

truly creative endeavors. It is with these motivations in mind that this book was

written, to give a unified account of a systematic method that was developed based

on significant prior work by many researchers.

The systematic program design method described in this book applies to large

classes of problems of many different kinds; it does not yet do the magic of gener-

ating efficient implementations from clear specifications for all computation prob-

lems, if such a magic method will ever exist. For example, the method can derive

dynamic programming algorithms from recursive functions, produce appropriate

indexing for efficient evaluation of relational database queries, and generate effi-

cient algorithms and implementations from Datalog rules; however, it cannot yet

derive a linear-time algorithm for computing strongly connected components of

graphs. It is, of course, not the only method for program design.

The method described in this book consists of step-wise analysis and transfor-

mations based on the languages and cost models for specifying the problems. The

key steps are to (1) make computation proceed iteratively on small input incre-

ments to arrive at the desired output, (2) compute values incrementally in each it-

eration, and (3) represent the values for efficient access on the underlying machine.

These steps are called Step Iterate, Step Incrementalize, and Step Implement, re-

spectively. The central step, Step Incrementalize, is the core of the method. You

might find it interesting that making computations iterative and incremental is the

analogue of integration and differentiation in calculus. Steps Iterate and Incre-

mentalize are essentially algorithm design, and Step Implement is essentially data

representation design.

Overview

This book has seven chapters, including an introduction and a conclusion. The five

middle chapters cover the design method for problems specified using loop com-

mands, set expressions, recursive functions, logic rules, and objects, respectively.

Loops are essential in giving commands to computers, sets provide data abstrac-

tion, recursion provides control abstraction, rules provide both data and control

abstractions, and objects provide module abstraction.

Chapter 1 motivates the need for a general and systematic design method in

computer programming, algorithm design, and problem solving in general; in-

troduces an incrementalization-based method that consists of three steps: Iterate,

Incrementalize, and Implement; explains languages, cost models, as well as ter-

minology and notations used throughout the book; and provides historical and

bibliographical notes about the method.

Chapter 2 explains the core step of the method, Step Incrementalize, as it is

applied to optimizing expensive primitive and array computations in loops. The

basic ideas are about maintaining invariants incrementally with respect to loop in-

crement. Because loops are already iterative, and primitives and arrays are easily

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xi

implemented on machines, there is little to do for Step Iterate and Step Imple-

ment. The method is further illustrated on two examples, in hardware design and

image processing. Finally, the need for higher-level data and control abstractions

is discussed.

Chapter 3 presents Step Incrementalize followed by Step Implement, as they

are used to obtain efficient implementations of set expressions. If a set expression

involves a fixed-point operation, Step Iterate easily transforms the operation into a

loop. We focus on composing incremental maintenance code in Step Incremental-

ize and designing linked data structures for sets in Step Implement. The method is

applied to two additional examples, in access control and query optimization. The

chapter ends by discussing the need for control abstraction in the form of recursive

functions, which are optimized in Chapter 4.

Chapter 4 studies Step Incrementalize preceded by Step Iterate, as they are

applied in optimization of recursive functions. We concentrate on determining

minimum increments and transforming recursion to iteration in Step Iterate, and

deriving incremental functions and achieving dynamic programming in Step In-

crementalize. Step Implement easily selects the use of recursive versus indexed

data structures when necessary. Additional examples are described, in combinato-

rial optimization and in math and puzzles. We end by discussing the need for data

abstraction in the form of sets, which are handled in Chapter 3.

Chapter 5 describes Step Incrementalize preceded by Step Iterate and followed

by Step Implement, as they are used together to generate efficient implementa-

tions from logic rules. Step Iterate transforms fixed-point semantics of rules into

loops. Step Incrementalize maintains auxiliary maps extensively for incremen-

tal computation over sets and relations. Step Implement designs a combination

of linked and indexed data structures for implementing sets and relations. The

method gives time and space complexity guarantees for the generated implemen-

tation. We present two example applications, in program analysis and trust man-

agement. Finally, we discuss the need for module abstraction in building large

applications.

Chapter 6 studies incrementalization across module abstraction, as the method

is applied to programs that use objects and classes. Object abstraction allows spec-

ification and implementation of scaled-up applications. We discuss how it also

makes obvious the conflict between clarity and efficiency. We describe a language

for specifying incrementalization declaratively, as incrementalization rules, and

a framework for applying these rules automatically. We also describe two exam-

ple applications, in electronic health records and in game programming. At the

end, we show how to use incrementalization rules for invariant-driven transforma-

tions in general, and we present a powerful language for querying complex object

graphs that is easier to use than set expressions, recursive functions, and logic

rules for a large class of common queries.

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xii Preface

Chapter 7 takes a deeper look at incrementalization, illustrates the ideas on

three sorting examples, describes how program design requires both building up

and breaking through abstractions, discusses issues with implementations and ex-

periments for the method, and points out limitations of the method and directions

for future studies.

How to use this book

This book can be used for both self-study and course study. It is a dense book, but

it is intended for both readers with a minimal computer science background and

experienced computer science researchers and practitioners. For course study, the

book is intended to suit upper-level undergraduate students and beginning gradu-

ate students, but selected parts with simpler examples can be taught to lower-level

undergraduate students, and full coverage with all examples can be taught to ad-

vanced graduate students.

Each of the five middle chapters is relatively independent of the others, except

for some of the language constructs introduced in earlier chapters. Nevertheless,

studying the materials in order will help one better understand the design method

through preview and review of each chapter.

Each of the middle chapters is organized as follows. First, it introduces the

problem and a running example and describes the language constructs handled

in that chapter. Then, it presents the ideas and steps of the method as applied

to the language constructs handled and illustrates them on the running example

and other smaller examples. Next, it gives two or more examples to show either

additional aspects or certain interesting consequences of the method. Finally, it

puts the chapter in the context of the book to motivate the subsequent chapter.

Each chapter ends with bibliographic notes.

Exercises are given at the end of each section, to help readers learn the method

discussed. Each exercise is given one of two levels of difficulty: purely for prac-

ticing or partly for discovery. Exercises of level one are simple examples for pro-

gramming or for following the method presented in that section. Exercises of level

two can lead to discovery of aspects of programming or of the method not dis-

cussed in that section. Exercises of level two are indicated with an asterisk (*).

An index at the end of the book lists the terminology and names used in the

book. A boldface number following a term denotes the page where the term is

defined, and other numbers indicate the pages where the term is used.

Acknowledgments

It is impossible to thank everyone, in an appropriate order, who helped me work

on things that contributed to this book, but I will try.

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xiii

First of all, I would like to thank Anil Nerode. His enlightening comments and

encouragement, ever since my years at Cornell University, with his deep insight

from mathematics and logic, open mind on hard practical problems, as well as rich

experience working with people, are invaluable for the work that led to this book

and beyond. All of these, poured on me during the long hours at each of my visits

to him, and unfailingly shown through his instant response to each of my email

inquiries and visit requests, makes him to me like a master to a disciple seeking

some ultimate truth, not to mention that it was while taking his logic class that I

met a classmate to be my love in life.

It was with extreme luck that I went to Cornell University for my PhD, took

stimulating classes not only from Anil, but also Dexter Kozen, Bard Bloom, Ke-

shav Pingali, Keith Marzullo, and others, and did my dissertation work with Tim

Teitelbaum. Tim challenged me to find general principles underlying incremental

computation. He provided me with generous advice and knowledge, especially on

how to value the importance of research in terms of both principles and practices.

Bob Constable showed great enthusiasm for my work and gave excellent sugges-

tions. David Gries gracefully helped polish my dissertation and offered marvelous

humor as an outstanding educator.

Since my dissertation work, I have received many helpful comments and great

encouragement at the meetings of IFIP WG 2.1—International Federation for In-

formation Processing, Working Group on Algorithmic Languages and Calculi.

Bob Paige and Doug Smith, whose papers I had read with great interest before

then, were instrumental in discussing their work in detail with me. How I wish

that Bob lived to continue his marvelous work. Michel Sintzoff, Cordell Green,

Lambert Meertens, Robert Dewar, Richard Bird, Alberto Pettorossi, Peter Pepper,

Dave Wile, Martin Feather, Charles Simonyi, Jeremy Gibbons, Rick Hehner, Oege

de Moor, Ernie Cohen, Roland Backhouse, and many others showed me a diverse

range of other exciting work. Michel’s work on designing optimal control systems

and games provides, I believe, a direction for studying extensions to our method

to handle concurrent systems.

Many colleagues at Stony Brook University and before that at Indiana Uni-

versity were a precious source of support and encouragement. At Stony Brook,

Michael Kifer taught me tremendously, not only about deductive and object-

oriented database and semantic web, but also other things to strive for excellence

in research; David Warren enthusiastically gave stimulating answers to my many

questions on tabled logic programming; Leo Bachmair, Tzi-cker Chiueh, Rance

Cleaveland, Radu Grosu, Ari Kaufman, Ker-I Ko, C.R. Ramakrishnan, I.V. Ra-

makrishnan, R. Sekar, Steve Skiena, Scott Smolka, Yuanyuan Yang, Erez Zadok,

and others helped and collaborated in many ways. At Indiana, Jon Barwise exem-

plified an amazing advisor and person as my mentor; Steve Johnson enthusiasti-

cally applied incrementalization to hardware design; Randy Bramley, Mike Dunn,

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xiv Preface

Kent Dybvig, Dan Friedmen, Dennis Gannon, Daniel Leivant, Larry Moss, Paul

Purdom, David Wise, and others helped in many ways.

I also benefited greatly from interactions with many other colleagues, includ-

ing many who visited me or hosted my visits and acquainted me with fascinat-

ing works and results: Bob Balzer, Allen Brown, Gord Cormack, Patrick Cousot,

Olivier Danvy, John Field, Deepak Goyal, Rick Hehner, Nevin Heintze, Connie

Heitmeyer, Fritz Henglein, Daniel Jackson, Neil Jones, Ming Li, Huimin Lin,

Zuoquan Lin, David McAllester, Torben Mogensen, Chet Murthy, Bill Pugh,

Zongyan Qiu, G. Ramalingam, John Reppy, Tom Reps, Jack Schwartz, Mary Lou

Soffa, Sreedhar Vugranam, Thomas Weigert, Reinhard Wilhelm, Andy Yao, Bo

Zhang, and others. Neil’s work on partial evaluation initially motivated me to

do derivation of incremental programs via program transformation. Many other

friends in Stony Brook and old friends in Beijing, Ithaca, and Bloomington have

helped make life more colorful.

I especially thank colleagues who have given me helpful comments on drafts

of the book: Deepak Goyal, David Gries, Rick Hehner, Neil Jones, Ming Li,

Alberto Pettorossi, Zongyan Qiu, Jack Schwartz, Michel Sintzoff, Steve Skiena,

Scott Stoller, Reinhard Wilhelm, and others who I might have forgotten. Jack

Schwartz’s comments and encouragement left me with overwhelming shock and

sadness upon learning that he passed away soon after we last spoke on the phone.

Anil Nerode wrote an enlightening note from which I took the quote for the most

important future research direction at the end of the book.

Many graduate and undergraduate students who took my classes helped im-

prove the presentation and the materials: Ning Li, Gustavo Gomez, Leena Unikr-

ishnann, Todd Veldhuizen, Yu Ma, Joshua Goldberg, Tom Rothamel, Gayathri

Priyalakshmi, Katia Hristova, Michael Gorbovitski, Chen Wang, Jing Zhang, Tun-

cay Tekle, Andrew Gaun, Jon Brandvein, Bo Lin, and others. I especially thank

Tom for picking the name III for the method out of a combination of choices I

had, accepting nothing without being thoroughly convinced, and making excel-

lent contributions to incrementalization of queries in object-oriented programs.

Students in my Spring 2008 Advanced Programming Languages class marked up

the first draft of this book: Simona Boboila, Ahmad Esmaili, Andrew Gaun, Navid

Azimi, Sangwoo Im, George Iordache, Yury Puzis, Anu Singh, Tuncay Tekle, and

Kristov Widak.

Scott Stoller deserves special thanks, as a colleague, before that a classmate

and then an officemate, and as my husband. He has usually been the first person

to hear what I have been working on. He has given me immense help in making

my ideas more precise and my writing more succinct, and he has answered count-

less questions I had while writing this book. He has been a wonderful collaborator

and a fabulous consultant. Finally, I thank my parents for designing me, prepar-

ing me for both high points and low points in my endeavors, and, perhaps, for

www.cambridge.org/9781107036604
www.cambridge.org

Cambridge University Press
978-1-107-03660-4 — Systematic Program Design
Yanhong Annie Liu
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xv

unyieldingly persuading me to go to Peking University to study computer science.

I thank my two daughters for being so lovely, helping me better understand the

need for clear specifications and efficient implementations, and, perhaps, for fight-

ing with my designs from time to time. I especially thank my daughter Sylvi for

reading the last draft of this book and giving me excellent suggestions. I thank my

daughter Serene for her infinite creativity in keeping herself busy while waiting

for me.

Much research that led to this book was supported by the Office of Naval Re-

search under grants N00014-92-J-1973, N00014-99-1-0132, N00014-01-1-0109,

N00014-04-1-0722, and N00014-09-1-0651; the National Science Foundation un-

der grants CCR-9711253, CCR-0204280, CCR-0306399, CCR-0311512, CNS-

0509230, CCF-0613913, and CCF-0964196; industry grants and gifts; and other

sources. Many thanks to my editor at Cambridge University Press, Lauren Cowles,

for her wonderful support and advice during the publication process of this first

book of mine.

www.cambridge.org/9781107036604
www.cambridge.org

