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1 Transmission lines and scattering
parameters
Roger Pollard and Mohamed Sayed

1.1 Introduction

This chapter introduces the reader to the topics presented in the rest of the book,
and serves as a quick guide to the basic concepts of wave propagation and scattering
parameters.

Understanding these concepts becomes very important when dealing with RF and
microwave frequencies, as is shown in Section 1.2, where a simplified formulation for
the transmission line theory is given.

Section 1.3 provides the definition of the scattering matrix or S-matrix, the key element
to describe networks at RF, microwaves, and higher frequencies.

Section 1.4 deals with the most important component in microwave measurements,
the directional coupler, while Section 1.5 revises a common way to represent quantities
in the RF domain, the Smith Chart.

Finally, in Appendix A signal flow graphs, a typical way to represent simple linear
algebra operations, are presented, while Appendix B summarizes the various types of
transmission lines cited in this book.

1.2 Fundamentals of transmission lines, models and equations

1.2.1 Introduction

Electromagnetic waves travel at about the speed of light (c = 299 792 458 m/s) in air.
Using the relationship

ν = f λ, (1.1)

where ν is velocity (= c in air), f is frequency and λ is wavelength, the wavelength of
a 100 GHz wave is about 3 mm. If a simple connection on a circuit is of the order of
magnitude of a wavelength, it is then necessary to consider its behavior as distributed
and regard it as a transmission line. In fact, propagation phenomena already appear for
lengths of 1/10th of a wavelength.

Let’s clarify this concept by a simple example. When a source of electrical power is
connected to a load, as shown in Figure 1.1, the voltage appears at the load instantaneously
over a short distance.
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4 Roger Pollard and Mohamed Sayed

Fig. 1.1 Connection of a light bulb close to the source of electrical power.

150 million kilometers

Fig. 1.2 Connection of a light bulb at 150 million km from the source of electrical power.
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Fig. 1.3 Two-wire line.

However, if the connection wiring is very long, as shown in Figure 1.2, it takes time
for the signal to propagate to the load. In this example, using the approximate distance
from the sun, the bulb would light some 8 minutes after the switch is closed.

This means that the connection cannot be modeled with a short circuit anymore, since
the voltage and current (or electric and magnetic fields) are now functions of both time
and position.

Let us consider a two-wire line, as shown in Figure 1.3.
Here both the voltage and current are functions of position and time. Now, if we model

the line as an infinite number of very short sections, each element can be considered as a
series inductance and shunt capacitance with associated losses, as shown in Figure 1.4.
This model can actually be applied to any kind of transmission line (waveguide, coaxial,
microstrip, etc.; see Appendix B for a brief description of the most common types of
transmission lines referred to in this book).

1.2.2 Propagation and characteristic impedance

In a two-conductor line, the model may be explained physically. The wire properties
and skin effect generate the inductance, the two conductors the capacitance, and leakage
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Transmission lines and scattering parameters 5
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Fig. 1.4 Lumped-element model of a section of the two-wire line of Fig. 1.3.

and losses produce the parasitic resistances. These model elements are also functions of
frequency.

Solving the model circuit for the voltage and current, yields

�V (z, t) = (R�z+ jωL�z)I (z, t) (1.2)

and

�I (z, t) = (G�z+ jωC�z)V (z, t). (1.3)

Taking �z as infinitely short, the partial derivatives of voltage and current with respect
to the z coordinate appear as:

∂V (z, t)

∂z
= −(R + jωL)I (z, t) (1.4)

∂I (z, t)

∂z
= −(G+ jωC)V (z, t). (1.5)

Then, by differentiating (1.4) again with respect to z and substituting (1.5) in the obtained
equation (and vice versa) one gets:

∂2V (z, t)

dz2 = γ 2V (z, t) and
∂2I (z, t)

dz2 = γ 2(z, t)I (z, t), (1.6)

where γ = √
(R + jωL)(G+ jωC) = α + jβ is the propagation constant.

The equations have exponential solutions of the form

V = V1e
−jγ z +V2e

+jγ z, (1.7)

where the first part of the solution (V + = V1e
−jγ z) is referred to as an incident wave,

and the second part (V − = V2e
+jγ z) as a reflected wave.

In the same way, one can write the solution for the current as

I = I1e
−jγ z + I2e

+jγ z. (1.8)

By substituting (1.7) and (1.8) inside (1.4) and (1.5) one can find the relationship between
I1-V1 and I2-V2, which are:

V1 = Z0I1 (1.9)
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6 Roger Pollard and Mohamed Sayed

and

V2 = −Z0I2 (1.10)

with

Z0 =
√

R + jωL√
G+ jωC

, (1.11)

where Z0 is referred to as the characteristic impedance of the transmission line. Note that
the wave number β can be expressed as a function of vp, the so-called phase velocity,
or of the wavelength (λ):

β = ω

vp

= 2π

λ
. (1.12)

The time dependence of the voltage and current can be made explicit in this way

V (z, t) = V (z)ejωt I (z, t) = I (z)ejωt (1.13)

and the circuit equations rewritten as

∂V

∂z
= −
(

RI +L
∂I

∂t

)
and

∂I

∂z
= −
(

GV +C
∂V

∂t

)
. (1.14)

Again, differentiating gives

∂2V

∂z2 = R

(
GV +C

∂V

∂t

)
+L

(
G

∂V

∂t
+C

∂2V

∂t2

)
(1.15)

or
∂2V

dz2 = −(RC +LG)
∂V

∂t
−LC

∂2V

dt2 −RGV = 0. (1.16)

Note that the current I satisfies an identical equation.
In the case of lossless transmissions lines with R = G = 0, the propagation constant

and the characteristic impedance simplify to the trivial

γ = jβ = jω
√

LC and Z0 =
√

L

C
. (1.17)

For most practical purposes, however, especially in a hollow pipe waveguide, the low-loss
case (R = ωL, G = ωC) provides accurate values:

γ ≈ α + jβ = jω
√

LC + 1

2

√
LC

(
R

L
+ G

C

)
(1.18)

with

α = 1

2

√
LC

(
R

L
+ G

C

)
= 1

2
(RY0 +GZ0) (1.19)
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Transmission lines and scattering parameters 7

1.2.3 Terminations, reflection coefficient, SWR, return loss

We have seen how the total voltage on a transmission line is the vector sum of the
incident and reflected voltages and the phase relationship between the waves depends on
the position along the line. The nature of a discontinuity determines the phase relationship
of the incident and reflected waves at that point on the line and that phase relationship is
repeated at points that are multiples of a half-wavelength (180◦).

The classical example is when the line is terminated with a load impedance ZL that is
not the characteristic impedance. Some of the incident energy may be absorbed by the
load and the rest is reflected. The maximum and minimum values of the standing wave
voltage and the positions of these maxima and minima are related to ZL. The maximum
occurs where the incident and reflected voltages are in phase, the minimum where they
are 180◦ out of phase.

Emax = |Vincident |+
∣∣Vreflected

∣∣ and Emin = |Vincident |−
∣∣Vreflected

∣∣ (1.20)

with Vincident a constant and Vreflected a function of ZL, Emax
Emin

is the Voltage Standing
Wave Ratio, abbreviated VSWR or SWR and is a way of describing the discontinuity at
the plane of the load. The SWR is 1 when the load termination is equal to the characteristic
impedance of the line, since Vreflected = 0, and infinite when a lossless reflective termina-
tion (short circuit, open circuit, capacitance, etc.) is connected, since Vreflected = Vincident

in that case. SWR is commonly used as a specification for components, most commonly
loads and attenuators.

For a finite ZL, the magnitude and phase of the reflected signal depends on the ratio of
ZL/Z0. Since the total voltage (and current) across ZL is the vector sum of the incident
and reflected voltages (and currents) we have

ZL = VL

IL

= Vincident +Vreflected

Iincident + Ireflected
. (1.21)

The voltage and current in each of the waves on the transmission line are related by the
characteristic impedance, as already shown in (1.9) and (1.10)

Vincident

Iincident
= Z0 and

Vreflected

Ireflected
= −Z0 (1.22)

so

ZL = Vincident +Vreflected

Vincident
Z0

− Vref elected

Z0

= Z0
1 + Vreflected

Vincident

1 − Vreflected
Vincident

= Z0
1 +�

1 −�
(1.23)

where � is the reflection coefficient, a complex value with magnitude and phase. The
magnitude of � is usually denoted by the symbol ρ and its phase by θ . The values of ρ

vary from zero to one. It is common practice to refer to the magnitude of the reflection
coefficient as the return loss (20log10ρ).
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8 Roger Pollard and Mohamed Sayed

Note that ρ, the magnitude of �, remains constant as the observation point is moved
along a lossless transmission line. In this case, the phase θ changes and thus the complex
value of � rotates around a circle on a polar plot. Since, at the plane of the load

� = ZL −Z0

ZL +Z0
(1.24)

the value of the impedance seen looking into the transmission line at any point is readily
calculated by rotating � by the electrical length (a function of the signal frequency,
360◦ = λ/2) between the plane of the load and the point of observation. Thus, for
example, at a quarter-wavelength distance (180◦ electrical length) from the plane of a
short circuit, the impedance appears as an open circuit. The same impedance repeats at
multiples of a half-wavelength.

1.2.4 Power transfer to load

The maximum power transfer from sources with source impedance of Rs to load
impedance of RL occurs at the value of Rs equal to RL. For complex impedances,
the maximum power transfer occurs when ZL = RL + jXL, Zs = Rs − jXs and Rs = RL,
and XL = Xs , otherwise there will be a mismatch and standing wave ratio.

1.3 Scattering parameters

A key assumption when making measurements is that networks can be completely charac-
terized by quantities measured at the network terminals (ports) regardless of the contents
of the networks. Once the parameters of a (linear) n-port network have been determined,
its behavior in any external environment can be predicted.

At low frequencies, typical choices of network parameters to be measured and handled
are Z-parameters orY-parameters, i.e. the impedance or admittance matrix, respectively.
In microwave design, S-parameters are the natural choice because they are easier to
measure and work with at high frequencies than other kinds of parameters. They are
conceptually simple, analytically convenient, and capable of providing a great insight
into a measurement or design problem.

Similarly to when light interacts with a lens, and a part of the light incident is
reflected while the rest is transmitted, scattering parameters are measures of reflection
and transmission of voltage waves through an electrical network.

Let us now focus on the generic n-port network, shown in Figure 1.5
To characterize the performance of such a network, as we said, any of several para-

meter sets can be used, each of which has certain advantages. Each parameter set is
related to a set of 2n variables associated with the n-port model. Of these variables,
n represents the excitation of the network (independent variables), and the remaining
n represents the response of the network to the excitation (dependent variables). The
network of Figure 1.5, assuming it has a linear behavior, can be represented by its
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Transmission lines and scattering parameters 9

Ii

Vi
V1

V2

I2

I1

Vn

In

Fig. 1.5 Generic n-port network.

Z-matrix (impedance matrix):⎡⎢⎢⎢⎣
V1

V2
...

Vn

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
...

. . .
...

Zn1 Zn2 · · · Znn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

I1

I2
...

In

⎤⎥⎥⎥⎦ , (1.25)

where V1-Vn are the node voltages and I1-In are the node currents. Alternatively, one
can use the dual representation:⎡⎢⎢⎢⎣

I1

I2
...

In

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
...

. . .
...

Yn1 Yn2 · · · Ynn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

V1

V2
...

Vn

⎤⎥⎥⎥⎦ . (1.26)

Here, port voltages are the independent variables and port currents are the depen-
dent variables; the relating parameters are the short-circuit admittance parameters, or
Y-parameters. In the absence of additional information, n2 measurements are required to
determine the n2 Y-parameter. Each measurement is made with one port of the network
excited by a voltage source while all the other ports are short-circuited. For example,
Y21, the forward trans-admittance, is the ratio of the current at port 2 to the voltage at
port 1, when all other ports are short-circuited:

Y21 = I2

V1

∣∣∣∣
V2=...=Vn=0

. (1.27)

If other independent and dependent variables had been chosen, the network would have
been described, as before, by n linear equations similar to (1.24), except that the vari-
ables and the parameters describing their relationships would be different. However, all
parameter sets contain the same information about a network, and it is always possible
to calculate any set in terms of any other set [1,2].

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03641-3 - Modern RF and Microwave Measurement Techniques
Edited by Valeria Teppati, Andrea Ferrero and Mohamed Sayed
Excerpt
More information

http://www.cambridge.org/9781107036413
http://www.cambridge.org
http://www.cambridge.org


10 Roger Pollard and Mohamed Sayed

“Scattering parameters,” which are commonly referred to as S-parameters, are a param-
eter set that relates to the traveling waves that are scattered or reflected when an n-port
network is inserted into a transmission line.

Scattering parameters were first defined by Kurokawa [3], where the assumption was
to have real and positive reference impedances Zi . For complex reference impedances,
Marks and Williams [4] addressed the general case in 1992 and gave a comprehensive
solution to it. They describe the interrelationships of a new set of variables, the pseudo-
waves ai , bi , which are the normalized complex voltage waves incident on and reflected
from the ith port of the network, defined as:

ai = α
√�{Zi}Vi +ZiIi

2|Zi | .

bi = α
√�{Zi}Vi −ZiIi

2|Zi | . (1.28)

where voltage Vi and Ii are the terminal voltages and currents, Zi are arbitrary (complex)
reference impedances and α is a free parameter whose only constraint is to have unitary
modulus, from now on assumed to be 1.

The linear equations describing the n-port network are therefore:⎡⎢⎢⎢⎣
b1

b2
...

bn

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
S11 S12 · · · S1n

S21 S22 · · · S2n

...
...

. . .
...

Sn1 Sn2 · · · Snn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1

a2
...

an

⎤⎥⎥⎥⎦ (1.29)

where by definition

Sij = bj

ai

∣∣∣∣
a2=...=an=0

. (1.30)

Note that in principle each port can use a different reference Zi , and they need not be
related to any physical characteristic impedance.

The ease with which scattering parameters can be measured makes them especially
well suited for describing transistors and other active devices. Measuring most other
parameters calls for the input and output of the device to be successively opened and short-
circuited. This can be hard to do, especially at RF frequencies where lead inductance and
capacitance make short and open circuits difficult to obtain. At higher frequencies these
measurements typically require tuning stubs, separately adjusted at each measurement
frequency, to reflect short or open circuit conditions to the device terminals. Not only is
this inconvenient and tedious, but a tuning stub shunting the input or output may cause
a transistor to oscillate, making the measurement invalid.

S-parameters, on the other hand, are usually measured with the device embedded
between a matched load and source, and there is very little chance for oscillations to
occur. Another important advantage of S-parameters stems from the fact that traveling
waves, unlike terminal voltages and currents, do not vary in magnitude at points along
a lossless transmission line. This means that scattering parameters can be measured on
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