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A communication network is an interconnection of devices designed to carry information

from various sources to their respective destinations. To execute this task of carrying infor-

mation, a number of protocols (algorithms) have to be developed to convert the information

to bits and transport these bits reliably over the network. The first part of this book deals

with the development of mathematical models which will be used to design the protocols

used by communication networks. To understand the scope of the book, it is useful first to

understand the architecture of a communication network.

The sources (also called end hosts) that generate information (also called data) first

convert the data into bits (0s and 1s) which are then collected into groups called packets. We

will not discuss the process of converting data into packets in this book, but simply assume

that the data are generated in the form of packets. Let us consider the problem of sending a

stream of packets from a source S to destination D, and assume for the moment that there

are no other entities (such as other sources or destinations or intermediate nodes) in the

network. The source and destination must be connected by some communication medium,

such as a coaxial cable, telephone wire, or optical fiber, or they have to communicate

in a wireless fashion. In either case, we can imagine that S and D are connected by a

communication link, although the link is virtual in the case of wireless communication.

The protocols that ensure reliable transfer of data over such a single link are called the link

layer protocols or simply the link layer. The link layer includes algorithms for converting

groups of bits within a packet into waveforms that are appropriate for transmission over the

communication medium, adding error correction to the bits to ensure that data are received

reliably at the destination, and dividing the bits into groups called frames (which may be

smaller or larger than packets) before converting them to waveforms for transmission. The

process of converting groups of bits into waveforms is called modulation, and the process

of recovering the original bits from the waveform is called demodulation. The protocols

used for modulation, demodulation, and error correction are often grouped together and

called the physical layer set of protocols. In this book, we assume that the physical layer

and link layer protocols are given, and that they transfer data over a single link reliably.

Once the link layer has been designed, the next task is one of interconnecting links to

form a network. To transfer data over a network, the entities in the network must be given

addresses, and protocols must be designed to route packets from each source to their des-

tination via intermediate nodes using the addresses of the destination and the intermediate

nodes. This task is performed by a set of protocols called the network layer. In the Inter-

net, the network layer is called the Internet Protocol (IP) layer. Note that the network layer

protocols can be designed independently of the link layer, once we make the assumption

that the link layer protocols have been designed to ensure reliable data transfer over each

link. This concept of independence among the design of protocols at each layer is called
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layering and is fundamental to the design of large communication networks. This allows

engineers who develop protocols at one layer to abstract the functionalities of the protocols

at other layers and concentrate on designing efficient protocols at just one layer.

Next, we assume that the network layer has been well designed and that it somehow

generates routes for packets from each possible source to each possible destination in the

network. Recall that the network is just an interconnection of links. Each link in the net-

work has a limited capacity, i.e., the rate at which it can transfer data as measured in bits per

second (bps). Since the communication network is composed of links, the sources produc-

ing data cannot send packets at arbitrarily high rates since the end-to-end data transfer rate

between a source and its destination is limited by the capacities of the links on the route

between the source and the destination. Further, when multiple source-destination (S-D)

pairs transfer data over a network, the network capacity has to be shared by these S-D pairs.

Thus, a set of protocols has to be designed to ensure fair sharing of resources between the

various S-D pairs. The set of protocols that ensures such fair sharing of resources is called

the transport layer. Transport layer protocols ensure that, most of the time, the total rate

at which packets enter a link is less than or equal to the link capacity. However, occasion-

ally the packet arrival rate at a link may exceed the link capacity since perfectly efficient

transport layer protocol design is impossible in a large communication network. During

such instances, packets may be dropped by a link and such packet losses will be detected

by the destinations. The destinations then inform the sources of these packet losses, and

the transport layer protocols may retransmit packets if necessary. Thus, in addition to fair

resource sharing and congestion control functionalities, transport layer protocols may also

have end-to-end (source-destination) error recovery functionalities as well.

The final set of protocols used to communicate information over a network is called the

application layer. Application layer protocols are specific to applications that use the net-

work. Examples of applications include file transfer, real-time video transmission, video

or voice calls, stored-video transmission, fetching and displaying web pages, etc. The

application layer calls upon transport protocols that are appropriate for their respective

applications. For example, for interactive communication, occasional packet losses may be

tolerated, whereas a file transfer requires that all packets reach the destination. Thus, the

former may use a transport protocol that does not use retransmissions to guarantee reliable

delivery of every packet to the destination, while the latter will use a transport protocol that

ensures end-to-end reliable transmission of every packet.

In addition to the protocol layers mentioned above, in the case of wireless communi-

cations, signal propagation over one link may cause interference at another link. Thus, a

special set of protocols called Medium Access Control (MAC) protocols are designed to

arbitrate the contention between the links for access to the wireless medium. The MAC

layer can be viewed as a sublayer of the link layer that further ensures reliable operation of

the wireless “links" so that the network layer continues to see the links as reliable carriers

of data. A schematic of the layered architecture of a communication network is provided

in Figure 1.1. To ensure proper operation of a communication network, a packet generated

by an application will not only contain data, but also contain other information called the

header. The header may contain information such as the transport protocol to be used and

the address of the destination for routing purposes.

The above description of the layered architecture of a communication network is an

abstraction. In real communication networks, layering may not be as strict as defined
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Physical layer: bits over wire/wireless channels.

Link layer: reliable transmission of frames (collections of bits).

MAC sublayer: multiple links over a shared medium.
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Network layer: data transmitted in the form of packets. Each packet has source and destination addresses, and data.

Each node in the network contains routing information to route the packets.

Transport layer: reliable end-to-end data transmission. Sources may use feedback from destinations to retransmit lost packets.

Sources may also use the feedback information to adjust data transmission rates.

Application layer: applications. Protocols such as HTTP, FTP, and SSH transmit data over the network.

destination 2

destination 1source 1

source 2

source 1 destination 1
data packets

feedback

HTTP, FTP, SSH

Figure 1.1 Schematic of the layered architecture of a communication network.

above. Some protocols may have functionalities that cut across more than one layer.

Such cross-layer protocols may be designed for ease of implementation or to improve

the efficiency of the communication network. Nevertheless, the abstraction of a layered

architecture is useful conceptually, and in practice, for the design of communication

networks.

Having described the layers of a communication network, we now discuss the scope

of this book. In Part I, we are interested in the design of protocols for the transport, net-

work, and MAC sublayers. We first develop a mathematical formulation of the problem of

resource sharing in a large communication network accessed by many sources. We show

how transport layer algorithms can be designed to solve this problem. We then drill deeper
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into the communication network, and understand the operation of a single link and how

temporary overload is handled at a link. Next, we discuss the problem of interconnecting

links through a router in the Internet and the problem of contention resolution between

multiple links in a wireless network. The algorithms that resolve contention in wireless

links form the MAC sublayer. As we will see, the algorithms that are used to interconnect

links within a wireline router share a lot of similarities with wireless MAC algorithms.

We devote a separate chapter to network protocols, where we discuss the actual protocols

used in the Internet and wireless networks, and relate them to the theory and algorithms

developed in the earlier chapters. Part I concludes with an introduction to a particular set

of application layer protocols called peer-to-peer networks. Traditional applications deliver

data from a single source to a destination or a group of destinations. They simply use the

lower layer protocols in a straightforward manner to perform their tasks. In Peer-to-Peer

(P2P) networks, many users of the network (called peers) are interested in the same data,

but do not necessarily download these data from a single destination. Instead, peers down-

load different pieces of the data and share these pieces among themselves. This type of

sharing of information make P2P systems interesting to study in their own right. Therefore,

we devote a separate chapter to the design of these types of applications in Part I.

Part II is a collection of mathematical tools that can be used for performance analysis

once a protocol or a set of protocols have been designed. The chapters in this part are

not organized by functionalities within a communication network, but are organized by

the commonality of the mathematical tools used. We will introduce the reader to tools

from queueing theory, heavy-traffic methods, large deviations, and models of wireless

networks where nodes are viewed as random points on a plane. Throughout, we will

apply these mathematical tools to analyze the performance of various components of a

communication network.
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In this chapter, we will develop a mathematical formulation of the problem of resource allo-

cation in the Internet. A large communication network such as the Internet can be viewed

as a collection of communication links shared by many sources. Congestion control algo-

rithms are protocols that allocate the available network resources in a fair, distributed,

and stable manner among the sources. In this chapter, we will introduce the network util-

ity maximization formulation for resource allocation in the Internet, where each source

is associated with a utility function Ur(xr), and xr is the transmission rate allocated to

source r. The goal of fair resource allocation is to maximize the net utility
∑

r Ur(xr) sub-

ject to resource constraints. We will derive distributed, congestion control algorithms that

solve the network utility maximization problem. In a later chapter, we will discuss the

relationship between the mathematical models developed in this chapter to transport layer

protocols used in the Internet. Optimality and stability of the congestion control algorithms

will be established using convex optimization and control theory. We will also introduce

a game-theoretical view of network utility maximization and study the impact of strategic

users on the efficiency of network utility maximization. Finally, routing and IP addressing

will be discussed. The following key questions will be answered in this chapter.

• What is fair resource allocation?

• How do we use convex optimization and duality to design distributed resource allocation

algorithms to achieve a fair and stable resource allocation?

• What are the game-theoretic implications of fair resource allocation?

Mathematical background: convex optimization
..................................................................................................................................................

2.1

In this section, we present some basic results from convex optimization which we will find

useful in the rest of the chapter. Often, the results will be presented without proofs, but

some concepts will be illustrated with figures to provide an intuitive feel for the results.

2.1.1 Convex sets and convex functions

We first introduce the basic concepts from optimization theory, including the definitions of

convex sets and convex functions.

Definition 2.1.1 (Convex set) A set S ⊆ Rn is convex if αx + (1 − α)y ∈ S whenever

x, y ∈ S and α ∈ [0, 1]. Since αx + (1 − α)y, for α ∈ [0, 1], describes the line segment
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8 Mathematics of Internet architecture

between x and y, a convex set can be pictorially depicted as in Figure 2.1: given any two

points x, y ∈ S , the line segment between x and y lies entirely in S . �

x

y

S ⊆ R2

Figure 2.1 A convex set, S ⊆ R
2.

Definition 2.1.2 (Convex hull) The convex hull of set S , denoted by Co(S), is the smallest

convex set that contains S, and contains all convex combinations of points in S , i.e.,

Co(S) =

{

k
∑

i=1

αixi

∣

∣

∣

∣

∣

xi ∈ S , αi ≥ 0,

k
∑

i=1

αi = 1

}

.

See Figure 2.2 for an example. �

Figure 2.2 The solid line forms the boundary of the convex hull of the shaded set.

Definition 2.1.3 (Convex function) A function f (x) : S ⊆ Rn → R is a convex function

if S is a convex set and the following inequality holds for any x, y ∈ S and α ∈ [0, 1] :

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y);

f (x) is strictly convex if the above inequality is strict for all α ∈ (0, 1) and x �= y.

Pictorially, f (x) looks like a bowl, as shown in Figure 2.3. �

Definition 2.1.4 (Concave function) A function f (x) : S ⊆ Rn → R is a concave func-

tion (strictly concave) if −f is a convex (strictly convex) function. Pictorially, f (x) looks

like an inverted bowl, as shown in Figure 2.4. �
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9 2.1 Mathematical background: convex optimization

The line segment connecting the two points (x, f (x ))

and (y, f(y )) lies “above” the plot of f (x ).

yx

Figure 2.3 Pictorial description of a convex function in R
2.

The line segment connecting the two points (x, f (x ))

and (y, f (y )) lies “below” the plot of f (x ).

yx

Figure 2.4 Pictorial description of a concave function in R
2.

Definition 2.1.5 (Affine function) A function f (x) : Rn
→ Rm is an affine function if it

is a sum of a linear function and a constant, i.e., there exist α ∈ Rm×n and a ∈ Rm such

that

f (x) = αx + a. �

The convexity of a function may be hard to verify from the definition given above.

Therefore, next we present several conditions that can be used to verify the convexity of

a function. The proofs are omitted here, and can be found in most textbooks on convex

analysis or convex optimization.

Result 2.1.1 (First-order condition I) Let f : S ⊂ R → R be a function defined over a

convex set S. If f is differentiable and the derivative f �(x) is non-decreasing (increasing) in

S , f (x) is convex (strictly convex) over S. �
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10 Mathematics of Internet architecture

Result 2.1.2 (First-order condition II) Let f : S ⊂ Rn → R be a differentiable function

defined over a convex set S . Then f is a convex function if and only if

f (y) ≥ f (x) + �f (x)(y − x), ∀x, y ∈ S , (2.1)

where

�f (x) =

(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn

(x)

)

and xi is the ith component of vector x. Pictorially, if x is one-dimensional, this condition

implies that the tangent of the function at any point lies below the function, as shown in

Figure 2.5.

Note that f (x) is strictly convex if the inequality above is strict for any x �= y. �

f (y )

f (x ) + f�(x ) (y  − x )

f (x )

x y

Figure 2.5 Pictorial description of inequality (2.1) in one-dimensional space.

Result 2.1.3 (Second-order condition) Let f : S ⊂ Rn → R be a twice differentiable

function defined over the convex set S . Then, f is a convex (strictly convex) function if the

Hessian matrix H with

Hij =
∂2f

∂xi∂xj

(x)

is positive semidefinite (positive definite) over S . �

Result 2.1.4 (Strict separation theorem) Let S ⊂ Rn be a convex set and x be a point

that is not contained in S. Then there exists a vector β ∈ Rn, β �= 0, and constant δ > 0

such that

n
∑

i=1

βiyi ≤

n
∑

i=1

βixi − δ

holds for any y ∈ S . �
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11 2.1 Mathematical background: convex optimization

2.1.2 Convex optimization

We first consider the following unconstrained optimization problem:

max
x∈S

f (x), (2.2)

and present some important results without proofs.

Definition 2.1.6 (Local maximizer and global maximizer) For any function f (x) over

S ⊆ Rn, x∗ is said to be a local maximizer or local optimal point if there exists an � > 0

such that

f (x∗ + δx) ≤ f (x∗)

for δx such that �δx� ≤ � and x + δx ∈ S , where �·� can be any norm; x∗ is said to be a

global maximizer or global optimal point if

f (x) ≤ f (x∗)

for any x ∈ S . When not specified, maximizer refers to global maximizer in this book. �

Result 2.1.5 If f (x) is a continuous function over a compact set S (i.e., S is closed and

bounded if S ⊆ Rn), then f (x) achieves its maximum over this set, i.e., maxx∈S f (x)

exists. �

Result 2.1.6 If f (x) is differentiable, then any local maximizer x∗ in the interior of S ⊆ Rn

satisfies

�f (x∗) = 0. (2.3)

If f (x) is a concave function over S , condition (2.3) is also sufficient for x∗ to be a local

maximizer. �

Result 2.1.7 If f (x) is concave, then a local maximizer is also a global maximizer. In gen-

eral, multiple global maximizers may exist. If f (x) is strictly concave, the global maximizer

x∗ is unique. �

Result 2.1.8 Results 2.1.6 and 2.1.7 hold for convex functions if the max in the optimiza-

tion problem (2.2) is replaced by min, and maximizer is replaced by minimizer in Results

2.1.6 and 2.1.7. �

Result 2.1.9 If f (x) is a differentiable function over set S and x∗ is a maximizer of the

function, then

�f (x∗)dx ≤ 0

for any feasible direction dx, where a non-zero vector dx is called a feasible direction if

there exists α such that x + adx ∈ S for any 0 ≤ a ≤ α.
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12 Mathematics of Internet architecture

Further, if f (x) is a concave function, then x∗ is a maximizer if and only if

�f (x∗)δx ≤ 0

for any δx such that x∗ + δx ∈ S . �

Next, we consider an optimization problem with equality and inequality constraints as

follows:

max
x∈S

f (x), (2.4)

subject to

hi(x) ≤ 0, i = 1, 2, ..., I, (2.5)

gj(x) = 0, j = 1, 2, ..., J. (2.6)

A vector x is said to be feasible if x ∈ S , hi(x) ≤ 0 for all i, and gj(x) = 0 for all j. While

(2.5) and (2.6) are inequality and equality constraints, respectively, the set S in the above

problem captures any other constraints that are not in equality or inequality form.

A key concept that we will exploit later in the chapter is called Lagrangian duality.

Duality refers to the fact that the above maximization problem, also called the primal

problem, is closely related to an associated problem called the dual problem. Given

the constrained optimization problem in (2.4)–(2.6), the Lagrangian of this optimization

problem is defined to be

L(x, λ, µ) = f (x) −

I∑

i=1

λihi(x) +

J∑

j=1

µjgj(x), λi ≥ 0 ∀i.

The constants λi ≥ 0 and µj are called Lagrange multipliers. The Lagrangian dual function

is defined to be

D(λ, µ) = sup
x∈S

L(x, λ, µ).

Let f ∗ be the maximum of the optimization problem (2.4), i.e., f ∗ = maxx∈S f (x). Then,

we have the following theorem.

Theorem 2.1.1 D(λ, µ) is a convex function and D(λ, µ) ≥ f ∗.

Proof The convexity comes from a known fact that the pointwise supremum of affine

functions is convex (see Figure 2.6). To prove the bound, note that hi(x) ≤ 0 and gj(x) = 0

for any feasible x, so the following inequality holds for any feasible x:

L(x, λ, µ) ≥ f (x).

This inequality further implies that

sup
x∈S

h(x)≤0
g(x)=0

L(x, λ, µ) ≥ sup
x∈S

h(x)≤0
g(x)=0

f (x) = f ∗.
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