Contents

Preface page xv			
1	INTRODUCTION	1	
	Study Objectives		
	1.1 What is Process Control?	1	
	1.2 Feedback Control System: Key Ideas, Concepts and Terminology	2	
	1.3 Process Control Notation and Control Loop Representation	8	
	1.4 Understanding Process Dynamics is a Prerequisite for Learning		
	Process Control	9	
	1.5 Some Historical Notes	11	
	Learning Summary	15	
	Terms and Concepts	15	
	Further Reading	16	
	Problems	17	
2	DYNAMIC MODELS FOR CHEMICAL PROCESS SYSTEMS	18	
	Study Objectives	18	
	2.1 Introduction	18	
	2.2 Conservation Laws	20	
	2.3 Modeling Examples of Nonreacting Systems	23	
	2.4 Modeling of Reacting Systems	28	
	2.5 Modeling of Equilibrium Separation Systems	37	
	2.6 Modeling of Simple Electrical and Mechanical Systems	39	
	2.7 Software Tools	43	
	Learning Summary	45	
	Terms and Concepts	46	
	Further Reading	46	
	Problems	47	
3	FIRST-ORDER SYSTEMS	55	
	Study Objectives	55	
	3.1 Examples of First-Order Systems	55	
	3.2 Deviation Variables	58	
	3.3 Solution of Linear First-Order Differential Equations with Constant		
	Coefficients	59	
		iv	

x Contents

	3.4	The Choice of Reference Steady State Affects the Mathematical	
		Form of the Dynamics Problem	62
	3.5	Unforced Response: Effect of Initial Condition under Zero Input	63
	3.6	Forced Response: Effect of Nonzero Input under Zero Initial Condition	63
	3.7	Standard Idealized Input Variations	65
	3.8	Response of a First-Order System to a Step Input	68
	3.9	Response of a First-Order System to a Pulse Input	73
	3.10	Response of a First-Order System to a Ramp Input	75
	3.11	Response of a First-Order System to a Sinusoidal Input	77
	3.12	Response of a First-Order System to an Arbitrary Input – Time	
		Discretization of the First-Order System	82
	3.13	Another Example of a First-Order System: Liquid Storage Tank	88
	3.14	Nonlinear First-Order Systems and their Linearization	94
	3.15	Liquid Storage Tank with Input Bypass	97
	3.16	General Form of a First-Order System	99
	3.17	Software Tools	102
	Lear	ning Summary	106
	Tern	ns and Concepts	107
	Furt	her Reading	108
	Prob	lems	108
4	CON	NECTIONS OF FIRST-ORDER SYSTEMS	115
	Stud	v Objectives	115
	4.1	First-Order Systems Connected in Series	115
	4.2	First-Order Systems Connected in Parallel	119
	4.3	Interacting First-Order Systems	122
	4.4	Response of First-Order Systems Connected in Series or in Parallel	123
	4.5	Software Tools	132
	Lear	ning Summary	134
	Tern	and Concepts	136
	Furt	her Reading	136
	Prob	lems	137
5	SECO	NND-ORDER SYSTEMS	144
-	Stud		144
	5 1	A Classical Example of a Second Order System	144
	5.1 5.2	A Classical Example of a Second-Order System A Second Order System can be Described by Either a Set of Two	145
	5.2	First Order ODEs or a Single Second Order ODE	147
	53	Calculating the Response of a Second Order System Stan Response of a	14/
	5.5	Second Order System	110
	5 /	Qualitative and Quantitative Characteristics of the Stan Despanse of a	140
	5.4	Second-Order System	154
		Scong-Order System	1.74

		Contents	xi
	5 5		
	5.5	Frequency Response and Bode Diagrams of Second-Order Systems with $\zeta > 0$	150
	56	with $\zeta \geq 0$ The General Form of a Linear Second-Order System	161
	5.0	Software Tools	163
	Lear	ning Summary	166
	Tern	and Concepts	166
	Furt	her Reading	167
	Prob	lems	168
6	LINE	AR HIGHER-ORDER SYSTEMS	171
	Stud	v Objectives	171
	6.1	Representative Examples of Higher-Order Systems – Using Vectors	
		and Matrices to Describe a Linear System	171
	6.2	Steady State of a Linear System – Deviation Variables	175
	6.3	Using the Laplace-Transform Method to Solve the Linear Vector	
		Differential Equation and Calculate the Response – Transfer Function	
		of a Linear System	177
	6.4	The Matrix Exponential Function	179
	6.5	Solution of the Linear Vector Differential Equation using the Matrix	
		Exponential Function	182
	6.6	Dynamic Response of a Linear System	187
	6.7	Response to an Arbitrary Input – Time Discretization of a Linear System	191
	6.8	Calculating the Response of a Second-Order System via the Matrix	
		Exponential Function	195
	6.9	Multi-Input–Multi-Output Linear Systems	197
	6.10	Software Tools	202
	Lear	ning Summary	206
	Tern	ns and Concepts	206
	Furt	her Keading	206
	Prob	lems	207
7	EIGE	NVALUE ANALYSIS – ASYMPTOTIC STABILITY	215
	Stud	y Objectives	215
	7.1	Introduction	215
	7.2	The Role of System Eigenvalues on the Characteristics of the Response of	
		a Linear System	216
	7.3	Asymptotic Stability of Linear Systems	220
	7.4	Properties of the Forced Response of Asymptotically Stable Linear Systems	224
	7.5	The Role of Eigenvalues in Time Discretization of Linear Systems –	a
		Stability Test on a Discretized Linear System	225
	7.6	Nonlinear Systems and their Linearization	228
	7.7	Software Tools	240

xii Contents

	Learning Summary	244
	Further Deciding	245
	Purchase	243
	Problems	245
8	TRANSFER-FUNCTION ANALYSIS OF THE INPUT-OUTPUT BEHAVIOR	251
	Study Objectives	251
	8.1 Introduction	251
	8.2 A Transfer Function is a Higher-Order Differential Equation in	
	Disguise	252
	8.3 Proper and Improper Transfer Functions – Relative Order	257
	8.4 Poles, Zeros and Static Gain of a Transfer Function	259
	8.5 Calculating the Output Response to Common Inputs from the	
	Transfer Function – the Role of Poles in the Response	261
	8.6 Effect of Zeros on the Step Response	268
	8.7 Bounded-Input–Bounded-Output (BIBO) Stability	273
	8.8 Asymptotic Response of BIBO-Stable Linear Systems	275
	8.9 Software Tools	279
	Learning Summary	287
	Terms and Concepts	287
	Further Reading	288
	Problems	288
9	FREQUENCY RESPONSE	297
	Study Objectives	297
	9.1 Introduction	297
	9.2 Frequency Response and Bode Diagrams	298
	9.3 Straight-Line Approximation Method for Sketching Bode Diagrams	303
	9.4 Low-Frequency and High-Frequency Response	311
	9.5 Nyquist Plots	312
	9.6 Software Tools	319
	Learning Summary	321
	Terms and Concepts	321
	Further Reading	322
	Problems	322
10) THE FEEDBACK CONTROL SYSTEM	327
	Study Objectives	327
	10.1 Heating Tank Process Example	327
	10.2 Common Sensors and Final Control Elements	329
	10.3 Block-Diagram Representation of the Heating Tank Process Example	332

CAMBRIDGE

Cambridge University Press 978-1-107-03558-4 — Understanding Process Dynamics and Control Costas Kravaris , Ioannis K. Kookos Table of Contents <u>More Information</u>

	Contents	xiii
10.4 Eurther Examples of Process Control Loops		335
10.5 Commonly Used Control Laws		338
Learning Summary		345
Terms and Concepts		345
Further Reading		346
Problems		346
11 BLOCK-DIAGRAM REDUCTION AND TRANSIENT-RESPONSE CALCUL	ATION	
IN A FEEDBACK CONTROL SYSTEM		350
Study Objectives		350
11.1 Calculation of the Overall Closed-Loop Transfer Functions	in a	
Standard Feedback Control Loop		350
11.2 Calculation of Overall Transfer Functions in a Multi-Loop	Feedback	
Control System		356
11.3 Stirred Tank Heater under Negligible Sensor Dynamics:		
Closed-Loop Response Calculation under P or PI Control		359
11.4 Software Tools		366
Learning Summary		372
Terms and Concepts		373
Further Reading		373
Problems		374
12 STEADY-STATE AND STABILITY ANALYSIS OF THE CLOSED-LOOP SYS	TEM	377
Study Objectives		377
12.1 Steady-State Analysis of a Feedback Control System		377
12.2 Closed-Loop Stability, Characteristic Polynomial and		
Characteristic Equation		385
12.3 The Routh Criterion		389
12.4 Calculating Stability Limits via the Substitution $s = i\omega$		394
12.5 Some Remarks about the Role of Proportional,		
Integral and Derivative Actions		395
12.6 Software Tools		399
Learning Summary		404
Terms and Concepts		405
Further Reading		405
Problems		405
13 STATE-SPACE DESCRIPTION AND ANALYSIS OF THE CLOSED-LOOP S	YSTEM	409
Study Objectives		409
13.1 State-Space Description and Analysis of the Heating Tank		409
13.2 State-Space Analysis of Closed-Loop Systems		415

xiv Contents

	13.3 Time Discretization of the Closed-Loop System	422
	13.4 State-Space Description of Nonlinear Closed-Loop Systems	426
	13.5 Software Tools	428
	Learning Summary	434
	Further Reading	435
	Problems	435
14	SYSTEMS WITH DEAD TIME	437
	Study Objectives	437
	14.1 Introduction	437
	14.2 Approximation of Dead Time by Rational Transfer Functions	446
	14.3 Parameter Estimation for FOPDT Systems	456
	14.4 Feedback Control of Systems with Dead Time – Closed-Loop	
	Stability Analysis	460
	14.5 Calculation of Closed-Loop Response for Systems involving Dead Time	467
	14.6 Software Tools	473
	Learning Summary	475
	Terms and Concepts	476
	Further Reading	476
	Problems	476
15	PARAMETRIC ANALYSIS OF CLOSED-LOOP DYNAMICS – ROOT-LOCUS DIAGRAMS	484
	Study Objectives	484
	15.1 What is a Root-Locus Diagram? Some Examples	484
	15.2 Basic Properties of the Root Locus – Basic Rules for Sketching	
	Root-Locus Diagrams	502
	15.3 Further Properties of the Root Locus – Additional Rules for Sketching	
	Root-Locus Diagrams	508
	15.4 Calculation of the Points of Intersection of the Root Locus with the	
	Imaginary Axis	524
	15.5 Root Locus with Respect to Other Controller Parameters	527
	15.6 Software Tools	531
	Learning Summary	536
	Terms and Concepts	537
	Further Reading	537
	Problems	537
16	OPTIMAL SELECTION OF CONTROLLER PARAMETERS	541
	Study Objectives	541
	16.1 Control Performance Criteria	541
	16.2 Analytic Calculation of Quadratic Criteria for a Stable System and a	
	Step Input	549

CAMBRIDGE

Cambridge University Press 978-1-107-03558-4 — Understanding Process Dynamics and Control Costas Kravaris , Ioannis K. Kookos Table of Contents <u>More Information</u>

	Contents	xv
16.3 Calculation of Optimal Controller Parameters for Ou	adratic Criteria	557
16.4 Software Tools		563
Learning Summary		570
Terms and Concepts		571
Further Reading		571
Problems		572
17 BODE AND NYQUIST STABILITY CRITERIA – GAIN AND PHAS	E MARGINS	575
Study Objectives		575
17.1 Introduction		575
17.2 The Bode Stability Criterion		576
17.3 The Nyquist Stability Criterion		594
17.4 Example Applications of the Nyquist Criterion		597
17.5 Software Tools		604
Learning Summary		607
Terms and Concepts		607
Further Reading		608
Problems		608
18 MULTI-INPUT–MULTI-OUTPUT SYSTEMS		613
Study Objectives		613
18.1 Introduction		613
18.2 Dynamic Response of MIMO Linear Systems		620
18.3 Feedback Control of MIMO Systems: State-Space ve	ersus	
Transfer-Function Description of the Closed-Loop S	ystem	623
18.4 Interaction in MIMO Systems		627
18.5 Decoupling in MIMO Systems		632
18.6 Software Tools		634
Learning Summary		638
Terms and Concepts		639
Further Reading		639
Problems		639
19 SYNTHESIS OF MODEL-BASED FEEDBACK CONTROLLERS		641
Study Objectives		641
19.1 Introduction		641
19.2 Nearly Optimal Model-Based Controller Synthesis		648
19.3 Controller Synthesis for Low-Order Models		650
19.4 The Smith Predictor for Processes with Large Dead T	ime	657
19.5 Effect of Modeling Error		660
19.6 State-Space Form of the Model-Based Controller		668

xvi Contents

	19.7	Model-Based Controller Synthesis for MIMO Systems	674
	Lear	ning Summary	678
	Tern	ns and Concepts	678
	Furt	her Reading	679
	Prob	lems	679
20	CAS	CADE, RATIO AND FEEDFORWARD CONTROL	683
	Stud	y Objectives	683
	20.1	Introduction	683
	20.2	Cascade Control	684
	20.3	Ratio Control	694
	20.4	Feedforward Control	695
	20.5	Model-Based Feedforward Control	700
	Lear	ning Summary	714
	Tern	ns and Concepts	715
	Furt	her Reading	715
	Prob	lems	715
APPENDIX A LAPLACE TRANSFORM		719	
	A.1	Definition of the Laplace Transform	719
	A.2	Laplace Transforms of Elementary Functions	720
	A.3	Properties of Laplace Transforms	721
	A.4	Inverse Laplace Transform	725
	A.5	Calculation of the Inverse Laplace Transform of Rational	
		Functions via Partial Fraction Expansion	725
	A.6	Solution of Linear Ordinary Differential Equations using the	
		Laplace Transform	732
	A.7	Software Tools	735
	Prob	lems	739
AP	PEND	IX B BASIC MATRIX THEORY	743
	B .1	Basic Notations and Definitions	743
	B.2	Determinant of a Square Matrix	747
	B.3	Matrix Inversion	749
	B.4	Eigenvalues	750
	B.5	The Cayley–Hamilton Theorem and the Resolvent Identity	752
	B.6	Differentiation and Integration of Matrices	755
	B .7	Software Tools	756

760

Index