Structural Geology:
A Quantitative Introduction

Tackling structural geology problems today requires a quantitative understanding of the underlying physical principles, and the ability to apply mathematical models to deformation processes within the Earth.

Accessible, yet rigorous, this unique textbook demonstrates how to approach structural geology quantitatively using calculus and mechanics, and prepares students to interface with professional geophysicists and engineers who appreciate and utilize the same tools and computational methods to solve multi-disciplinary problems. Clearly explained methods are used throughout the book to quantify field data, set up mathematical models for the formation of structures, and compare model results to field observations.

An extensive online package of coordinated laboratory exercises enables students to consolidate their learning and put it into practice by analyzing structural data and building insightful models. Designed for single-semester undergraduate courses, this pioneering text prepares students for graduate studies and careers as professional geoscientists.

David D. Pollard is a Professor Emeritus in Geology at Stanford University. He holds a Ph.D. in Geology from Stanford University and a Diploma of Imperial College (University of London). He has been on the faculty at Stanford since 1983, where he taught an undergraduate course in structural geology from which this textbook emerged. He co-authored Fundamentals of Structural Geology, published by Cambridge University Press in 2005, which won the Best Publication of the Year Award from the Structural Geology and Tectonics Division of the Geological Society of America in 2007. He is a Fellow of the Geological Society of America and the American Geophysical Union.

Stephen J. Martel is a Professor in Earth Sciences at the University of Hawai‘i. He holds a Ph.D. in Applied Earth Sciences from Stanford University. Since joining the faculty in Hawai‘i in 1992, he has taught both structural geology and engineering geology. He previously worked at the Bureau of Economic Geology at The University of Texas at Austin, and at Lawrence Berkeley National Laboratory. Particular research interests include landslides, nuclear waste disposal, neotectonics, fault mechanics, rock fracture, detailed geologic mapping, and the influence of topography on stresses in rock masses. He is a Fellow of the Geological Society of America.
Structural Geology
A Quantitative Introduction

David D. Pollard
Stanford University, California

Stephen J. Martel
University of Hawai’i, Manoa
CONTENTS

List of Boxes
List of Symbols
Preface
Acknowledgements

PART I

1: Scope of Structural Geology
1.1 Deformation of Earth’s Lithosphere and Asthenosphere
1.2 Styles of Deformation
1.3 Geologic Structures
1.4 Methodology of Structural Geology
1.5 Applications and Careers
Recapitulation
Review Questions
MATLAB Exercises for Chapter 1: A Tutorial
Further Reading

PART II

2: Mathematical Tools
2.1 Characteristics of Scalar, Vector, and Tensor Quantities
2.2 Algebraic Representation of Vectors
2.3 Mapping Geologic Structures with Vectors
2.4 Geologic Structures Represented by Vector Functions
2.5 Vector Quantities
2.6 Tensor Quantities
2.7 Coordinate Rotation for Points, Vectors, and Tensors
Recapitulation
Review Questions
MATLAB Exercises for Chapter 2: Mathematical Tools
Further Reading

3: Physical Concepts
3.1 Units of Measure
3.2 Accuracy, Precision, and Significant Figures
3.3 Dimensional Analysis
3.4 Material Continuum
3.5 Conservation of Mass
3.6 Conservation of Linear Momentum
3.7 Conservation of Angular Momentum
3.8 Conservation of Energy
Recapitulation
Review Questions

PART III

4: Elastic–Brittle Deformation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Hookean Elastic Solid</td>
<td>105</td>
</tr>
<tr>
<td>4.2 Elastic Deformation of Earth’s Lithosphere</td>
<td>107</td>
</tr>
<tr>
<td>4.3 Brittle Deformation at the Outcrop and Grain Scales</td>
<td>107</td>
</tr>
<tr>
<td>4.4 Elastic–Brittle Deformation in the Laboratory</td>
<td>109</td>
</tr>
<tr>
<td>4.5 Field Estimates of Rock Stiffness at the Kilometer Scale</td>
<td>114</td>
</tr>
<tr>
<td>4.6 Three-Dimensional Stress States</td>
<td>116</td>
</tr>
<tr>
<td>4.7 Elastic–Brittle Deformation under Axisymmetric Loading</td>
<td>118</td>
</tr>
<tr>
<td>4.8 The State of Stress During Opening and Shear Fracture</td>
<td>124</td>
</tr>
<tr>
<td>4.9 Displacement and Strain Fields During Brittle Deformation</td>
<td>128</td>
</tr>
<tr>
<td>4.10 Constitutive Equations for the Linear Elastic Solid</td>
<td>134</td>
</tr>
<tr>
<td>4.11 Equations of Motion for the Elastic Solid</td>
<td>135</td>
</tr>
</tbody>
</table>

Recapitulation | 139 |
Review Questions | 140 |
MATLAB Exercises for Chapter 4: Elastic Brittle Deformation | 142 |
Further Reading | 142 |

5: Elastic–Ductile Deformation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Idealized Plastic Solids</td>
<td>144</td>
</tr>
<tr>
<td>5.2 Elastic–Ductile Deformation at the Outcrop Scale</td>
<td>146</td>
</tr>
<tr>
<td>5.3 Elastic–Ductile Deformation at the Crustal Scale</td>
<td>146</td>
</tr>
<tr>
<td>5.4 Elastic–Ductile Deformation in the Laboratory</td>
<td>148</td>
</tr>
<tr>
<td>5.5 Deformation and Strain for the Ductile Solid</td>
<td>154</td>
</tr>
<tr>
<td>5.6 Mechanisms of Ductile Deformation</td>
<td>163</td>
</tr>
<tr>
<td>5.7 Constitutive Equations for Elastic–Ductile Deformation</td>
<td>172</td>
</tr>
<tr>
<td>5.8 Equations of Motion for Rigid Plastic Deformation</td>
<td>175</td>
</tr>
</tbody>
</table>

Recapitulation | 179 |
Review Questions | 180 |
MATLAB Exercises for Chapter 5: Elastic Ductile Deformation | 181 |
Further Reading | 181 |

6: Elastic–Viscous Deformation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Viscous and Viscoelastic Liquids</td>
<td>184</td>
</tr>
<tr>
<td>6.2 Viscous Deformation at the Outcrop Scale</td>
<td>187</td>
</tr>
<tr>
<td>6.3 Viscous Deformation at the Crustal Scale</td>
<td>188</td>
</tr>
<tr>
<td>6.4 Viscous Deformation in the Laboratory</td>
<td>190</td>
</tr>
<tr>
<td>6.5 Field Estimates of Lava Viscosity</td>
<td>197</td>
</tr>
<tr>
<td>6.6 Kinematics of Flow</td>
<td>198</td>
</tr>
<tr>
<td>6.7 Constitutive Equations for Linear Viscous Materials</td>
<td>203</td>
</tr>
<tr>
<td>6.8 Equations of Motion for Linear Viscous Materials</td>
<td>206</td>
</tr>
</tbody>
</table>

Recapitulation | 214 |
Review Questions | 215 |
MATLAB Exercises for Chapter 6: Elastic Viscous Deformation | 217 |
Further Reading | 217 |
PART IV

7: Fractures 223
 7.1 Descriptions of Joints, Veins, and Dikes 223
 7.2 A Canonical Model for Opening Fractures 230
 7.3 Fracture Modes and the Near-tip Fields 243
 7.4 Fracture Initiation and Propagation 249
 Recapitulation 253
 Review Questions 254
 MATLAB Exercises for Chapter 7: Fractures 256
 Further Reading 256

8: Faults 258
 8.1 Fault Terminology 258
 8.2 Descriptions of Faults at the Outcrop Scale 260
 8.3 Descriptions of Faults at the Crustal Scale 269
 8.4 A Canonical Model for Faulting 279
 8.5 Kinematics of Faulting and Associated Deformation 287
 8.6 Fossil Earthquakes 292
 Recapitulation 296
 Review Questions 297
 MATLAB Exercises for Chapter 8: Faults 298
 Further Reading 299

9: Folds 301
 9.1 Fold Terminology 301
 9.2 Descriptions of Folds at the Outcrop Scale 304
 9.3 Quantifying Fold Profiles using Curvature 307
 9.4 Descriptions of Folds in Three Dimensions at the Crustal Scale 310
 9.5 Quantifying Folds in Three Dimensions using Curvature 313
 9.6 A Canonical Model for Bending 322
 9.7 A Canonical Model for Buckling 331
 9.8 Fault-Cored Anticlines 339
 Recapitulation 341
 Review Questions 342
 MATLAB Exercises for Chapter 9: Folds 344
 Further Reading 344

10: Fabrics 346
 10.1 Descriptions of Rock Fabrics from Outcrop to Thin Section 346
 10.2 Descriptions of Rock Fabrics in Sedimentary and Igneous Rock 349
 10.3 Kinematics of Ductile Deformation 361
 10.4 A Canonical Model for a Viscous Shear Zone 365
 10.5 Relating Fabric to Plastic Deformation at Fault Steps 367
 Recapitulation 373
 Review Questions 375
 MATLAB Exercises for Chapter 10: Fabrics 376
 Further Reading 376
Contents

11: Intrusions 379
 11.1 Dikes 379
 11.2 Sills 394
 11.3 Laccoliths 400
 11.4 Stocks 403
 11.5 Salt Diapirs 408
 11.6 A Canonical Model for a Rising Diapir 410
Recapitulation 415
Review Questions 417
MATLAB Exercises for Chapter 11: Intrusions 418
Further Reading 418

References 421
Index 428
BOXES

<table>
<thead>
<tr>
<th>Box 1.1</th>
<th>Universal Transverse Mercator (UTM) Projection and Google Maps</th>
<th>page 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1.2</td>
<td>Keyhole Markup Language (KML) and Google Earth</td>
<td>14</td>
</tr>
<tr>
<td>Box 2.1</td>
<td>Global Positioning System (GPS)</td>
<td>35</td>
</tr>
<tr>
<td>Box 2.2</td>
<td>Matrix Laboratory (MATLAB)</td>
<td>56</td>
</tr>
<tr>
<td>Box 3.1</td>
<td>International System of Units (SI)</td>
<td>71</td>
</tr>
<tr>
<td>Box 3.2</td>
<td>Continuum Mechanics</td>
<td>81</td>
</tr>
<tr>
<td>Box 4.1</td>
<td>Rock Mechanics</td>
<td>110</td>
</tr>
<tr>
<td>Box 4.2</td>
<td>Engineering Geology</td>
<td>126</td>
</tr>
<tr>
<td>Box 5.1</td>
<td>Materials Science and Engineering</td>
<td>166</td>
</tr>
<tr>
<td>Box 6.1</td>
<td>Geodynamics</td>
<td>189</td>
</tr>
<tr>
<td>Box 6.2</td>
<td>Fluid Mechanics</td>
<td>208</td>
</tr>
<tr>
<td>Box 7.1</td>
<td>Solid Mechanics</td>
<td>237</td>
</tr>
<tr>
<td>Box 7.2</td>
<td>Fracture Mechanics</td>
<td>245</td>
</tr>
<tr>
<td>Box 8.1</td>
<td>Seismic Surveying</td>
<td>275</td>
</tr>
<tr>
<td>Box 8.2</td>
<td>Earthquake Geology</td>
<td>292</td>
</tr>
<tr>
<td>Box 9.1</td>
<td>Airborne Laser Swath Mapping (ALSM)</td>
<td>312</td>
</tr>
<tr>
<td>Box 10.1</td>
<td>Structural Petrology and Microtectonics</td>
<td>360</td>
</tr>
<tr>
<td>Box 11.1</td>
<td>Structure from Motion (SfM)</td>
<td>384</td>
</tr>
<tr>
<td>Box 11.2</td>
<td>Synthetic Aperture Radar Interferometry (InSAR)</td>
<td>396</td>
</tr>
</tbody>
</table>
a acceleration vector
α azimuth angle (Greek alpha)
b Burgers vector for a dislocation
B bending modulus for a thin elastic layer
e(t) parametric representation of a curved line; a vector-valued function of the arbitrary parameter t
c specific heat capacity
Ct conventional triaxial compressive strength
Cu uniaxial compressive strength
CPO Crystallographic Preferred Orientation
Dc differential strength in compression
dc differential tangent vector to a curved line
def total differential of a scalar function f(x, y, z)
Df material time derivative of a scalar function f(x, y, z, t)
∇f gradient of a scalar function f(x, y, z); a vector
∇v gradient of a vector function v(x, y, z); a tensor
Δp, ΔP driving pressure (Greek capital delta)
Δσ differential stress
ΔσI, ΔσII driving stress for mode I, mode II fracture
Δu displacement discontinuity vector
Δx, Δy, Δz lengths of the edges of a volume element
D sample mean
D' deviatoric rate of deformation tensor
DEM Digital Elevation Model
EBSD Electron Backscatter Diffraction
E Young's modulus of elasticity
E, N, U geographic coordinates: East, North, Up
E, F, G coefficients of the first fundamental form for a curved surface
E Lagrangian finite strain tensor
Exx Exy Exz
Exy Eyy Exz
Exz Eyz Ezz
[E] matrix form of the Lagrangian finite strain tensor
[=] “has units”
[=] “has dimensions”
ε small strain tensor (Greek epsilon)
e.xx, ε.xy, ε.xz
ε.xy, ε.yy, ε.yz
ε.xz, ε.yz, ε.zz
[ε] matrix form of the small strain tensor
ε rate of axial strain
fH2O fugacity of water
f, F force vector
List of Symbols

- \mathbf{F}_{grav}: gravitational body force vector
- \mathbf{F}_{buoy}: buoyant body force vector
- \mathbf{F}: spatial gradient of deformation tensor

 \[
 \frac{\partial u_x}{\partial x} \quad \frac{\partial u_y}{\partial x} \quad \frac{\partial u_z}{\partial x} \\
 \frac{\partial u_x}{\partial y} \quad \frac{\partial u_y}{\partial y} \quad \frac{\partial u_z}{\partial y} \\
 \frac{\partial u_x}{\partial z} \quad \frac{\partial u_y}{\partial z} \quad \frac{\partial u_z}{\partial z}
 \]

 components of the gradient of deformation tensor

- $[\mathbf{F}]$: matrix form of the gradient of deformation tensor

- \mathbf{g}: acceleration of gravity vector
- \mathbf{g}^*: representative acceleration of gravity vector for the lithosphere

- g_x^*, g_y^*, g_z^*: components of the representative gravity acceleration vector

- G: shear modulus of elasticity
- G: displacement gradient tensor

- $\left[\frac{\partial u_x}{\partial x} \right] \quad \left[\frac{\partial u_y}{\partial x} \right] \quad \left[\frac{\partial u_z}{\partial x} \right] \\
 \left[\frac{\partial u_x}{\partial y} \right] \quad \left[\frac{\partial u_y}{\partial y} \right] \quad \left[\frac{\partial u_z}{\partial y} \right] \\
 \left[\frac{\partial u_x}{\partial z} \right] \quad \left[\frac{\partial u_y}{\partial z} \right] \quad \left[\frac{\partial u_z}{\partial z} \right]

 Cartesian components of the displacement gradient tensor

- $[\mathbf{G}]$: matrix form of the displacement gradient tensor

- η: Newtonian viscosity (Greek eta)

- I: first fundamental form for a curved surface
- II: second fundamental form for a curved surface
- $[I]$: identity matrix

- $\mathbf{i}, \mathbf{j}, \mathbf{k}$: base vectors for the Cartesian coordinate system

- k: thermal conductivity

- k: curvature vector for a curved line

- kg: kilogram; base unit for mass in SI

- K: kelvin; base unit for temperature in SI

- K_I, K_{II}, K_{III}: mode I, mode II, and mode III stress intensity

- K_{IC}: mode I fracture toughness

- κ: scalar curvature for a curved line (Greek kappa)
- κ: thermal diffusivity

- κ_s, κ_2: principal values (eigenvalues) of normal curvature for a curved surface

- κ_g: Gaussian curvature

- κ_m: mean normal curvature

- L: length dimension

- \mathbf{L}: spatial gradient of velocity tensor

- $\left[\frac{\partial v_x}{\partial x} \right] \quad \left[\frac{\partial v_y}{\partial x} \right] \quad \left[\frac{\partial v_z}{\partial x} \right] \\
 \left[\frac{\partial v_x}{\partial y} \right] \quad \left[\frac{\partial v_y}{\partial y} \right] \quad \left[\frac{\partial v_z}{\partial y} \right] \\
 \left[\frac{\partial v_x}{\partial z} \right] \quad \left[\frac{\partial v_y}{\partial z} \right] \quad \left[\frac{\partial v_z}{\partial z} \right]

 components of the spatial gradient of velocity tensor

- $[\mathbf{L}]$: matrix form of the spatial gradient of velocity tensor

- L, M, N: coefficients of the second fundamental form for a curved surface

- LNB: Level of Neutral Buoyancy
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda, \lambda_0)</td>
<td>current and initial wavelength of a buckled layer (Greek lambda)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Lame’s constant of elasticity (Greek lambda)</td>
</tr>
<tr>
<td>(\Lambda)</td>
<td>bulk viscosity (Greek capital lambda)</td>
</tr>
<tr>
<td>(m)</td>
<td>meter; base unit for length in SI</td>
</tr>
<tr>
<td>(M)</td>
<td>mass dimension</td>
</tr>
<tr>
<td>(M)</td>
<td>bending moment on the cross section of a thin layer</td>
</tr>
<tr>
<td>(M_0)</td>
<td>seismic moment</td>
</tr>
<tr>
<td>(M_w)</td>
<td>seismic moment magnitude</td>
</tr>
<tr>
<td>(\mu_i)</td>
<td>coefficient of internal friction (Greek mu)</td>
</tr>
<tr>
<td>(\mu_c)</td>
<td>coefficient of friction</td>
</tr>
<tr>
<td>(\mathbf{n})</td>
<td>unit normal vector</td>
</tr>
<tr>
<td>(\mathbf{N})</td>
<td>unit normal vector to a surface</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Poisson’s ratio of elasticity (Greek nu)</td>
</tr>
<tr>
<td>([O])</td>
<td>shape operator for a curved surface</td>
</tr>
<tr>
<td>(p)</td>
<td>pressure, thermodynamic pressure</td>
</tr>
<tr>
<td>(p_s)</td>
<td>pressure in a static liquid</td>
</tr>
<tr>
<td>(\bar{p})</td>
<td>mean normal pressure in a flowing liquid</td>
</tr>
<tr>
<td>(P_c)</td>
<td>confining pressure in a conventional triaxial test</td>
</tr>
<tr>
<td>(P_p)</td>
<td>pore fluid pressure</td>
</tr>
<tr>
<td>(p, \mathbf{x}, \mathbf{X})</td>
<td>position vectors</td>
</tr>
<tr>
<td>(\mathbf{PQ})</td>
<td>vector from point (P) to point (Q)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>inclination angle (Greek phi)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>angle of shearing</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>Airy stress function (Greek capital phi)</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>Stokes stream function (Greek capital psi)</td>
</tr>
<tr>
<td>(q)</td>
<td>fold limb slope amplification factor</td>
</tr>
<tr>
<td>(\mathbf{q})</td>
<td>heat flux vector</td>
</tr>
<tr>
<td>(Q)</td>
<td>activation energy</td>
</tr>
<tr>
<td>(\dot{Q})</td>
<td>volume flow rate</td>
</tr>
<tr>
<td>(r, \theta, \phi)</td>
<td>spherical coordinates (Greek theta, phi)</td>
</tr>
<tr>
<td>(R)</td>
<td>universal gas constant</td>
</tr>
<tr>
<td>(R)</td>
<td>flexural rigidity of a bending elastic layer</td>
</tr>
<tr>
<td>(\text{Re})</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>(\mathbf{R})</td>
<td>pure rotation tensor</td>
</tr>
<tr>
<td>(\mathbf{U})</td>
<td>pure stretch tensor</td>
</tr>
<tr>
<td>(\rho)</td>
<td>mass density (Greek rho)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>radius of curvature of a curved line</td>
</tr>
<tr>
<td>(\rho_d)</td>
<td>dislocation density</td>
</tr>
<tr>
<td>(s)</td>
<td>second; base unit for time in SI</td>
</tr>
<tr>
<td>(s)</td>
<td>estimated standard deviation</td>
</tr>
<tr>
<td>(s^2)</td>
<td>estimated variance</td>
</tr>
<tr>
<td>(s)</td>
<td>spherical variance</td>
</tr>
<tr>
<td>(\text{SI})</td>
<td>International System of Units</td>
</tr>
<tr>
<td>(S)</td>
<td>stretch tensor</td>
</tr>
<tr>
<td>(S_1, S_2, S_3)</td>
<td>principal values of the stretch tensor</td>
</tr>
<tr>
<td>(S)</td>
<td>shear force on the cross section of a thin layer</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_o</td>
<td>inherent shear strength</td>
</tr>
<tr>
<td>S_f</td>
<td>frictional strength</td>
</tr>
<tr>
<td>$s(u,v)$</td>
<td>parametric representation of a curved surface; vector-valued function of the arbitrary parameters u and v</td>
</tr>
<tr>
<td>SM</td>
<td>Structure from Motion</td>
</tr>
<tr>
<td>σ</td>
<td>stress tensor (Greek sigma)</td>
</tr>
<tr>
<td>$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$</td>
<td>Cartesian components of the stress tensor</td>
</tr>
<tr>
<td>$\sigma_{xy}, \sigma_{yz}, \sigma_{zx}$</td>
<td></td>
</tr>
<tr>
<td>$[\sigma]$</td>
<td>matrix form of the stress tensor</td>
</tr>
<tr>
<td>3×3</td>
<td></td>
</tr>
<tr>
<td>$\sigma_1, \sigma_2, \sigma_3$</td>
<td>principal values (eigenvalues) of the stress tensor</td>
</tr>
<tr>
<td>$\mathbf{l}, \mathbf{m}, \mathbf{n}$</td>
<td>principal vectors (eigenvectors) of the stress tensor</td>
</tr>
<tr>
<td>$[\sigma']$</td>
<td>matrix form of the deviatoric stress tensor</td>
</tr>
<tr>
<td>3×3</td>
<td></td>
</tr>
<tr>
<td>$[\sigma^e]$</td>
<td>matrix form of the effective stress tensor</td>
</tr>
<tr>
<td>3×3</td>
<td></td>
</tr>
<tr>
<td>σ_y, k</td>
<td>yield strength</td>
</tr>
<tr>
<td>σ_u</td>
<td>maximum shear stress</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>t</td>
<td>arbitrary parameter for a curved line</td>
</tr>
<tr>
<td>\mathbf{t}</td>
<td>traction vector acting on a surface</td>
</tr>
<tr>
<td>\mathbf{t}</td>
<td>tangent vector for a dislocation line</td>
</tr>
<tr>
<td>\mathbf{i}</td>
<td>unit tangent vector</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>T</td>
<td>time dimension</td>
</tr>
<tr>
<td>T_u</td>
<td>uniaxial tensile strength</td>
</tr>
<tr>
<td>\mathbf{T}</td>
<td>tangent vector to curve</td>
</tr>
<tr>
<td>$\theta_{ij}, \theta_{ik}, \theta_{jk}$</td>
<td>direction angles between vector \mathbf{v} and base vectors (Greek theta)</td>
</tr>
<tr>
<td>$\cos \theta_{ij}, \cos \theta_{ik}, \cos \theta_{jk}$</td>
<td>direction cosines of direction angles</td>
</tr>
<tr>
<td>θ_c</td>
<td>Coulomb angle; orientation of potential shear fractures</td>
</tr>
<tr>
<td>Θ</td>
<td>temperature dimension (Greek capital theta)</td>
</tr>
<tr>
<td>u, v</td>
<td>arbitrary parameters for curved surface</td>
</tr>
<tr>
<td>\mathbf{u}</td>
<td>displacement vector</td>
</tr>
<tr>
<td>u_x, u_y, u_z</td>
<td>components of the displacement vector</td>
</tr>
<tr>
<td>$[\mathbf{u}]$</td>
<td>matrix form of the displacement vector</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator projection</td>
</tr>
<tr>
<td>UDF</td>
<td>undefined angle</td>
</tr>
<tr>
<td>\mathbf{v}</td>
<td>velocity vector</td>
</tr>
<tr>
<td>v_x, v_y, v_z</td>
<td>components of the velocity vector</td>
</tr>
<tr>
<td>$[\mathbf{v}]$</td>
<td>matrix form of the velocity vector</td>
</tr>
<tr>
<td>\mathbf{W}</td>
<td>rate of spin tensor; vorticity tensor</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Cartesian coordinates</td>
</tr>
<tr>
<td>ω_x, ω_y, ω_z</td>
<td>small rotation angles (Greek omega)</td>
</tr>
<tr>
<td>Ω</td>
<td>small rotation tensor (Greek capital omega)</td>
</tr>
</tbody>
</table>
PREFACE

Structural geology is a core course in the curriculum for undergraduate students majoring in Geology at the college and university level. Usually, structural geology is a junior or senior level course, taken after students complete introductory and core courses in geology and the supporting courses in mathematics and physics that are appropriate for a major in the science part of a more broadly conceived Science, Technology, Engineering, and Mathematics (STEM) curriculum. This textbook is an introduction to structural geology for the undergraduate major that builds upon those formative geology courses, and makes extensive use of the relevant concepts and tools from the supporting courses in mathematics and physics.

This textbook also is appropriate for geology students whose first course in structural geology was primarily descriptive and qualitative. In addition, the quantitative approach used here has proven to be accessible and useful for students from other disciplines, such as geophysics, petroleum engineering, and civil engineering, who are likely to be working with structural geologists in their professional careers. Both authors have welcomed students from other disciplines in their structural geology courses, and both have found that these students enrich the experience for the geology students.

Although this textbook is a first course in structural geology, it takes a decidedly different approach to the subject matter than other “first course” textbooks, which focus on descriptions of structures and qualitative explanations for their formation. Our goal is to provide a balance between description and analysis of structures, so we offer quantitative explanations for their formation, based on the physics of deformation. Despite this difference in approach, the topics we cover are similar to those in other “first course” textbooks. For example, chapters are devoted to the basic categories of geologic structures including fractures, faults, folds, fabrics, and intrusions. However, the shift to a quantitative treatment of the formation of structures necessarily relies on more equations to build the student’s knowledge base. We find that carefully labeled diagrams complement the equations substantially, so we include many diagrams in the textbook.

The mathematical pre-requisite for this book is a course in calculus that includes differential calculus and integral calculus of functions of one variable. Some calculus courses include analytic geometry and vector calculus, while others introduce aspects of linear algebra. Some of the elementary concepts from analytic geometry, vector calculus, and linear algebra are used in this textbook, but they are at a level that does not require a pre-requisite course. Instead, we introduce the necessary concepts and motivate readers to learn them by offering direct applications to structural geology.

The differential calculus of more than one variable is used throughout the book, but a course in multivariate calculus is not considered a pre-requisite. We introduce the few necessary extensions from differential calculus of one variable to multiple variables, including the partial derivative, the gradient vector, and the material time derivative. Finally, although differential equations appear throughout the book, a course in ordinary and partial differential equations is not a pre-requisite. Differential equations appear solely for displaying the underlying physical concepts and relationships. Solutions are provided where they illustrate applications to structural geology, but solution methods are left to more advanced textbooks and courses.

We recognize that some college and university students struggle with spatial thinking tasks encountered in their first structural geology class. They are challenged to learn to “think in 3D.” The authors of this textbook have found that a modern graphical user interface and a computational engine like MATLAB provide many helpful tools and needed support for this learning process. Scripts with dynamic three-dimensional graphical output are run, modified, and rerun using MATLAB to obtain spatial feedback, to alter incorrect mental models, and to build intuition. These tools, along with an elementary understanding of vector calculus and differential geometry, open the door for thinking in 3D.

The goal of this textbook is to build confidence in students that they know not only what the common geologic structures are, and how to name, describe, and map them, but they also know how to apply a set of fundamental physical principles of deformation to explain the origins of these structures. To promote this goal, most of the analyses in this book follow a step-by-step procedure, starting with the most basic principles and leading to a result that can be compared to observations or data. This approach results in many equations, but each of them adds incrementally to the mathematical derivations, and to understanding
Preface

the physics of the tectonic processes. Memorization of equations is not the authors’ objective for this book. Instead, we advocate reading the equations as an integral part of the text to build confidence and understanding.

Commitment to the step-by-step procedure described in the previous paragraph presented the authors with a significant challenge. If we analyzed all of the structures described in other “first course” textbooks, this book would be too big for a typical first course. Instead, we selected a subset of those structures that admit an analysis at the introductory level. As a consequence, this textbook is tutorial rather than encyclopedic. For each of the five categories of structures we identify a “canonical problem” that illuminates the underlying physics and provides a template for the student to use in the analysis of other similar structures. The canonical problems also are the building blocks for developing a sound physical intuition that should help students analyze other structures in the future.

Each chapter of this textbook ends with a section on Further Reading. This is aimed at students who desire to expand their horizons and delve into related textbooks, monographs, and review papers. The Further Reading section also provides faculty with resources for enriching their lectures and conversations with students. The books and review papers listed in these sections would form a good working library for a practicing structural geologist in academia, industry, or a government laboratory.

This textbook contains abundant color photographs of outcrops, hand samples, and thin sections. These, and all the diagrams, graphs, and maps are freely available for instructors and students to download for teaching and learning purposes from the textbook website: www.cambridge.org/SGAQI. This material comes largely from the senior author’s photographic collection, and from the Ph.D. theses and published papers of his students. The choice to use “in house” graphical material, data, maps, and analysis results was made because of accessibility and familiarity. We encourage instructors to provide their students with materials from their own collections, and to enrich their courses with results from their own research. Also available from this website are the .kmz files referred to in the captions of selected figures, so readers can take virtual field trips to these outcrops and map areas using Google Earth.

The book is supported by online student exercises, which are also available at the website given above. Students are encouraged to work through the online exercises after reading and addressing the chapter review questions. For many of the online exercises, students write MATLAB® scripts to solve quantitative problems and present graphical results. Other online exercises ask students to derive key mathematical relationships using paper and pencil. Solutions for selected online exercises and sample MATLAB® scripts are available to instructors for download.

This textbook was originally conceived as one of a pair of books by the authors; the other being a Lab Manual of practical and field-based instruction together with student exercises and activities. Writing of the Lab Manual is underway and we anticipate that it will be published within the next year or two. In the meantime, we intend to post some of the draft exercises and activities at www.cambridge.org/SGAQI so that instructors can start testing them out in their classes. These include introductory exercises for mapping, orthographic projections, stereonets and three-point problems, rotations and cross sections. Please continue to check back to the website regularly for new materials. We welcome any feedback on any of the online resources posted there.

This textbook has four parts. Part I (Chapter 1) summarizes the scope of structural geology. Part II (Chapters 2 and 3) reviews and summarizes the mathematical tools and physical principles used in this textbook. Part III (Chapters 4–6) covers the three major styles of deformation: brittle, ductile, and viscous. Part IV (Chapters 7–11) covers the five broad categories of geologic structures: fractures, faults, folds, fabrics, and intrusions. For each category we introduce the canonical model for that structure and derive the resulting stress, strain, displacement, or velocity fields.

This textbook contains more material than could reasonably be presented in a one-quarter or one-semester course. At Stanford University, the senior author developed the following schedule for a one-quarter (10 week, 20 lecture) course:

• Chapter 1 – lecture 1
• Chapter 2 – lectures 2 and 3
• Chapter 3 – lectures 4 and 5
• Chapter 4 – lectures 6, 7, and 8
• Chapter 6 – lectures 9, 10, and 11
• Chapter 7 – lectures 12, 13, and 14
• Chapter 8 – lectures 15, 16, and 17
• Chapter 11 – lectures 18, 19, and 20
This selection emphasizes brittle and viscous deformation and uses fractures, faults, and intrusions as the representative structures. An alternative selection substitutes Chapters 5 and 10 for Chapters 6 and 11, and thereby includes ductile deformation and rock fabrics instead of viscous deformation and intrusions. Another alternative is to be more selective within chapters and cover more deformation styles and structures, while omitting some of the analyses.
ACKNOWLEDGEMENTS

David Pollard thanks the students who enrolled in his course at Stanford University and provided valuable motivation and feedback for developing his lecture notes into a textbook. He also thanks the Ph.D. students and colleagues who carried out research with him and provided materials that appear here as graphical data, diagrams, photographs, and maps. These students and colleagues shared the pleasures of discovering new structures in the field, mapping structures with many different high-tech instruments, and solving boundary and initial value problems of continuum mechanics using both analytical and numerical models to reveal new insights about structures. He especially thanks his co-author, Steve Martel, for many enjoyable Skype conversations about the manuscript, and for countless exchanges of edited drafts that eventually grew into the published book.

Steve Martel is fortunate to have had the privilege to learn from, and work with, David Pollard and many of his graduate students at Stanford University. He also is grateful for the wonderful opportunity to work with many undergraduate and graduate students at the University of Hawai‘i, as well as colleagues there and around the world. The ongoing collaborative experience of trying to understand the world better through a combination of new discoveries and the use of tools developed by our forerunners has been fascinating, humbling, and rewarding.

The authors thank Richard Stultz for helping to set up the tabletop experiments used to illustrate the mechanical behavior of materials in Chapters 4, 5, 6, and 9, and for his expertise in taking and editing the photographs of these experiments. The authors also thank Ryan McCarty for his expertise in digitizing, colorizing, and editing all the maps and many of the diagrams. His graphics skill and artistry have added a significant dimension to the textbook. David Pollard thanks Professors Bernard Hallet and Darrel Cowan of the Department of Earth and Space Sciences, University of Washington, for hosting his sabbatical in 2010, during which the outlines of this textbook emerged.

Finally, we thank those scientists and engineers who, in past generations, laid down the cornerstones of continuum mechanics, and those philosophers who established the self-correcting methodology of science advocated in this textbook that compensates for human fallibility, technological innovation, and random discovery. Using that methodology we may, in the words of Charles S. Peirce, confidently “pile the ground before the foot of the outworks of truth with the carcasses of this generation, and perhaps of others to come after it, until some future generation, by treading on them, can storm the citadel” (Peirce, 2011).