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PREFACE

Structural geology is a core course in the curriculum for undergraduate students majoring in Geology at the

college and university level. Usually, structural geology is a junior or senior level course, taken after

students complete introductory and core courses in geology and the supporting courses in mathematics and

physics that are appropriate for a major in the science part of a more broadly conceived Science,

Technology, Engineering, and Mathematics (STEM) curriculum. This textbook is an introduction to

structural geology for the undergraduate major that builds upon those formative geology courses, and

makes extensive use of the relevant concepts and tools from the supporting courses in mathematics and

physics.

This textbook also is appropriate for geology students whose first course in structural geology was

primarily descriptive and qualitative. In addition, the quantitative approach used here has proven to be

accessible and useful for students from other disciplines, such as geophysics, petroleum engineering, and

civil engineering, who are likely to be working with structural geologists in their professional careers. Both

authors have welcomed students from other disciplines in their structural geology courses, and both have

found that these students enrich the experience for the geology students.

Although this textbook is a first course in structural geology, it takes a decidedly different approach to

the subject matter than other “first course” textbooks, which focus on descriptions of structures and

qualitative explanations for their formation. Our goal is to provide a balance between description and

analysis of structures, so we offer quantitative explanations for their formation, based on the physics of

deformation. Despite this difference in approach, the topics we cover are similar to those in other “first

course” textbooks. For example, chapters are devoted to the basic categories of geologic structures

including fractures, faults, folds, fabrics, and intrusions. However, the shift to a quantitative treatment of

the formation of structures necessarily relies on more equations to build the student’s knowledge base. We

find that carefully labeled diagrams complement the equations substantially, so we include many diagrams

in the textbook.

The mathematical pre-requisite for this book is a course in calculus that includes differential calculus

and integral calculus of functions of one variable. Some calculus courses include analytic geometry and

vector calculus, while others introduce aspects of linear algebra. Some of the elementary concepts from

analytic geometry, vector calculus, and linear algebra are used in this textbook, but they are at a level that

does not require a pre-requisite course. Instead, we introduce the necessary concepts and motivate readers

to learn them by offering direct applications to structural geology.

The differential calculus of more than one variable is used throughout the book, but a course in

multivariate calculus is not considered a pre-requisite. We introduce the few necessary extensions from

differential calculus of one variable to multiple variables, including the partial derivative, the gradient

vector, and the material time derivative. Finally, although differential equations appear throughout the

book, a course in ordinary and partial differential equations is not a pre-requisite. Differential equations

appear solely for displaying the underlying physical concepts and relationships. Solutions are provided

where they illustrate applications to structural geology, but solution methods are left to more advanced

textbooks and courses.

We recognize that some college and university students struggle with spatial thinking tasks encountered

in their first structural geology class. They are challenged to learn to “think in 3D.” The authors of this

textbook have found that a modern graphical user interface and a computational engine like MATLAB

provide many helpful tools and needed support for this learning process. Scripts with dynamic three-

dimensional graphical output are run, modified, and rerun using MATLAB to obtain spatial feedback, to

alter incorrect mental models, and to build intuition. These tools, along with an elementary understanding

of vector calculus and differential geometry, open the door for thinking in 3D.

The goal of this textbook is to build confidence in students that they know not only what the common

geologic structures are, and how to name, describe, and map them, but they also know how to apply a set of

fundamental physical principles of deformation to explain the origins of these structures. To promote this

goal, most of the analyses in this book follow a step-by-step procedure, starting with the most basic

principles and leading to a result that can be compared to observations or data. This approach results in

many equations, but each of them adds incrementally to the mathematical derivations, and to understanding
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the physics of the tectonic processes. Memorization of equations is not the authors’ objective for this book.

Instead, we advocate reading the equations as an integral part of the text to build confidence and

understanding.

Commitment to the step-by-step procedure described in the previous paragraph presented the authors

with a significant challenge. If we analyzed all of the structures described in other “first course” textbooks,

this book would be too big for a typical first course. Instead, we selected a subset of those structures that

admit an analysis at the introductory level. As a consequence, this textbook is tutorial rather than

encyclopedic. For each of the five categories of structures we identify a “canonical problem” that

illuminates the underlying physics and provides a template for the student to use in the analysis of other

similar structures. The canonical problems also are the building blocks for developing a sound physical

intuition that should help students analyze other structures in the future.

Each chapter of this textbook ends with a section on Further Reading. This is aimed at students who

desire to expand their horizons and delve into related textbooks, monographs, and review papers. The

Further Reading section also provides faculty with resources for enriching their lectures and conversations

with students. The books and review papers listed in these sections would form a good working library for a

practicing structural geologist in academia, industry, or a government laboratory.

This textbook contains abundant color photographs of outcrops, hand samples, and thin sections. These,

and all the diagrams, graphs, and maps are freely available for instructors and students to download for

teaching and learning purposes from the textbook website: www.cambridge.org/SGAQI. This material

comes largely from the senior author’s photographic collection, and from the Ph.D. theses and published

papers of his students. The choice to use “in house” graphical material, data, maps, and analysis results was

made because of accessibility and familiarity. We encourage instructors to provide their students with

materials from their own collections, and to enrich their courses with results from their own research. Also

available from this website are the .kmz files referred to in the captions of selected figures, so readers can

take virtual field trips to these outcrops and map areas using Google Earth.

The book is supported by online student exercises, which are also available at the website given above.

Students are encouraged to work through the online exercises after reading and addressing the chapter

review questions. For many of the online exercises, students write MATLAB® scripts to solve quantitative

problems and present graphical results. Other online exercises ask students to derive key mathematical

relationships using paper and pencil. Solutions for selected online exercises and sample MATLAB® scripts

are available to instructors for download.

This textbook was originally conceived as one of a pair of books by the authors; the other being a Lab

Manual of practical and field-based instruction together with student exercises and activities. Writing of the

Lab Manual is underway and we anticipate that it will be published within the next year or two. In the

meantime, we intend to post some of the draft exercises and activities at www.cambridge.org/SGAQI so

that instructors can start testing them out in their classes. These include introductory exercises for mapping,

orthographic projections, stereonets and three-point problems, rotations and cross sections. Please continue

to check back to the website regularly for new materials. We welcome any feedback on any of the online

resources posted there.

This textbook has four parts. Part I (Chapter 1) summarizes the scope of structural geology. Part II

(Chapters 2 and 3) reviews and summarizes the mathematical tools and physical principles used in this

textbook. Part III (Chapters 4–6) covers the three major styles of deformation: brittle, ductile, and viscous.

Part IV (Chapters 7–11) covers the five broad categories of geologic structures: fractures, faults, folds,

fabrics, and intrusions. For each category we introduce the canonical model for that structure and derive the

resulting stress, strain, displacement, or velocity fields.

This textbook contains more material than could reasonably be presented in a one-quarter or one-semester

course. At Stanford University, the senior author developed the following schedule for a one-quarter (10 week,

20 lecture) course:

• Chapter 1 – lecture 1

• Chapter 2 – lectures 2 and 3

• Chapter 3 – lectures 4 and 5

• Chapter 4 – lectures 6, 7, and 8

• Chapter 6 – lectures 9, 10, and 11

• Chapter 7 – lectures 12, 13, and 14

• Chapter 8 – lectures 15, 16, and 17

• Chapter 11 – lectures 18, 19, and 20
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This selection emphasizes brittle and viscous deformation and uses fractures, faults, and intrusions as the

representative structures. An alternative selection substitutes Chapters 5 and 10 for Chapters 6 and 11, and

thereby includes ductile deformation and rock fabrics instead of viscous deformation and intrusions.

Another alternative is to be more selective within chapters and cover more deformation styles and

structures, while omitting some of the analyses.
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