

GRANULAR MEDIA

Between Fluid and Solid

Sand, rice, sugar, snow, cement . . . Although ubiquitous in our daily lives, granular media still challenge engineers and fascinate researchers. This book provides the state of the art of the physics of granular media and recent advances in the field.

The book presents the fundamental properties of granular materials: interactions between grains; solid, liquid and gaseous behaviours; coupling with a fluid; and sediment transport and formation of geological structures. Descriptions of the phenomena combine qualitative and formal arguments, coming from areas as diverse as elasticity, plasticity, statistical physics, fluid mechanics and geomorphology. Many examples of the astonishing behaviours of granular media are presented, including avalanches, segregation, dune song and quicksand. This book is ideal for graduate students and researchers in physics, applied mathematics and engineering.

BRUNO ANDREOTTI is a Professor at the Université Paris Diderot, and he performs his research at the ESPCI, PMMH Laboratory, France. His primary research concerns hydrodynamics, wetting and geomorphodynamics.

YOËL FORTERRE is Director of Research at the Centre National de la Recherche Scientifique (CNRS), and he performs his research at Aix-Marseille University, IUSTI Laboratory, France. His primary research concerns granular media, complex fluids and plant biomechanics.

OLIVIER POULIQUEN is Director of Research at CNRS, and he performs his research at Aix-Marseille University, IUSTI Laboratory, France. His primary research concerns granular media, dense suspensions and complex fluids.

GRANULAR MEDIA

Between Fluid and Solid

BRUNO ANDREOTTI

Université Paris Diderot

YOËL FORTERRE CNRS

OLIVIER POULIQUEN

CNRS

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107034792

© B. Andreotti, Y. Forterre and O. Pouliquen 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Andreotti, B.

Granular media : between fluid and solid / Bruno Andreotti, Yoël Forterre, Olivier Pouliquen.

pages cm

Includes bibliographical references and index. ISBN 978-1-107-03479-2 (hardback)

1. Granular materials – Fluid dynamics. I. Forterre, Yoël, 1973 – II. Pouliquen, Olivier. III. Title.

TA418.78.A53 2013 620'.43 – dc23 2013006089

ISBN 978-1-107-03479-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Fore	eword	page v11
1	Introduction		1
	1.1	Definition and examples of granular media	1
	1.2	Between solid and liquid: what makes granular matter so	
		difficult to describe?	3
	1.3	A sketch of the book	7
2	Interactions at the grain level		15
	2.1	Solid contact forces	15
	2.2	Cohesion forces	30
	2.3	Forces in a flow	45
3	The granular solid: statics and elasticity		59
	3.1	Granular packings	59
	3.2	Forces in a granular packing	70
	3.3	From forces to stresses	82
	3.4	Stress distribution in static configurations	86
	3.5	Elasticity	92
4	The granular solid: plasticity		122
	4.1	Phenomenology	122
	4.2	The different levels of description: a scalar	
		approach	128
	4.3	The Mohr–Coulomb model	135
	4.4	The role of the volume fraction: critical-state	
		theory	149
	4.5	Towards a more refined description of the plasticity	155
	4.6	Plasticity of cohesive materials	161

V

V1	Contents		
5	Granular gases		
	5.1 Analogies and differences with a molecular gas	169	
	5.2 A heuristic approach to the kinetic theory	171	
	5.3 A formal approach to the kinetic theory: the Boltzmann		
	equation	180	
	5.4 Applications	195	
	5.5 Limits of the kinetic theory	209	
6	The granular liquid		
	6.1 Introduction	215	
	6.2 Rheology	220	
	6.3 The depth-averaged approach	251	
	6.4 Segregation in granular flows	269	
7	Immersed granular media		
	7.1 Two-phase flow equations	285	
	7.2 The role of the fluid in static piles	290	
	7.3 The role of the interstitial fluid during changes of volum	e	
	fraction	294	
	7.4 The role of fluid in granular flows	303	
8	Erosion and sediment transport		
	8.1 Introduction	311	
	8.2 The static transport threshold	313	
	8.3 A description of transport	325	
	8.4 Bed load	332	
	8.5 Aeolian transport: saltation and reptation	343	
	8.6 Turbulent suspension	355	
9	Geomorphology		
	9.1 Slope processes and gravity-driven flows	363	
	9.2 Ripples and dunes	373	
	9.3 Coastal processes	395	
	9.4 Rivers	407	
	References	432	
	Index	459	

Foreword

Sand, gravel, rice, sugar... Granular matter is familiar and abounds around us. However, the physics of granular media is still poorly understood and continues to fascinate scientists and other people, more than three centuries after the work of Coulomb on slope stability. A pile of grains actually exhibits a great variety of behaviours with unique properties. Strong enough to support the weight of a building, grains can also easily flow like water in an hourglass or be transported by wind to sculpt dunes and deserts. For a long time, the study of granular materials has remained the preserve of engineers and geologists. Therefore, important concepts arose from the need to build structures on solid ground, store grains in a silo or predict the history of a sediment. More recently, the study of granular media has entered the field of physics, at the crossroads of statistical physics, mechanics and soft-matter physics. The combination of results from laboratory experiments on model materials, discrete numerical simulations and theoretical approaches from other fields has enriched and renewed our understanding of granular materials.

This book has been written in this context. Our goal is to provide an introduction to the physics of granular media that takes into account recent advances in this field, while describing the basic concepts and tools useful in many industrial and geophysical applications. This book is intended primarily for students, researchers and engineers willing to become familiar with the fundamental properties of granular matter. Thus, we will favour as much as possible the physical approach to the phenomena over lengthy mathematical developments. In this sense, the study of granular media belongs to a certain school of physics dear to the late Pierre-Gilles de Gennes, who was a pioneer and a transmitter of ideas in this area. With a bucket of sand and a few careful observations, we will meet fields as diverse as elasticity, plasticity, statistical physics, fluid mechanics and geomorphology. Often we will face unresolved issues that are still at the frontier of our knowledge. Here certainly lies, beyond the numerous applications, the profound attraction exerted by the physics of granular media.

vii

viii Foreword

This book is the result of courses we gave for many years at ENSTA ParisTech (Paris), Polytech Marseille (Aix-Marseille University), the Ecole Normale Supérieure (Paris) and the Université Paris Diderot. It has benefited from the many questions and suggestions from students, as well as countless discussions with our French and foreign colleagues during their visits to our laboratories. We would especially like to thank the CNRS GDR Midi research community, which, through numerous meetings in Paris, Carry-le-Rouet and Porquerolles, played a key role in this adventure. This work owes much to them.