

Introductory Econometrics for Finance

This bestselling and thoroughly classroom-tested textbook is a complete resource for finance students. A comprehensive and illustrated discussion of the most common empirical approaches in finance prepares students for using econometrics in practice, while detailed case studies help them understand how the techniques are used in relevant financial contexts. Worked examples from the latest version of the popular statistical software EViews guide students to implement their own models and interpret results. Learning outcomes, key concepts and end-of-chapter review questions (with full solutions online) highlight the main chapter takeaways and allow students to self-assess their understanding. Building on the successful data- and problem-driven approach of previous editions, this third edition has been updated with new data, extensive examples and additional introductory material on mathematics, making the book more accessible to students encountering econometrics for the first time. A companion website, with numerous student and instructor resources, completes the learning package.

Chris Brooks is Professor of Finance and Director of Research at the ICMA Centre, Henley Business School, University of Reading, UK where he also obtained his PhD. He has diverse research interests and has published over a hundred articles in leading academic and practitioner journals, and six books. He is Associate Editor of several journals, including the Journal of Business Finance and Accounting, the International Journal of Forecasting and the British Accounting Review. He acts as consultant and advisor for various banks, corporations and professional bodies in the fields of finance, real estate, and econometrics.

Introductory Econometrics for Finance

THIRD EDITION

Chris Brooks

The ICMA Centre, Henley Business School, University of Reading

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107661455

© Chris Brooks 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002 Second edition 2008 Third edition published 2014 3rd printing 2015

Printed in the United Kingdom by Bell and Bain Ltd, Glasgow

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Brooks, Chris

Introductory econometrics for finance / Chris Brooks, The ICMA Centre, Henley Business School, University of Reading. – Third edition.

pages cm

Includes bibliographical references and index.

 $ISBN\ 978-1-107-03466-2\ (hardback)-ISBN\ 978-1-107-66145-5\ (pbk)$

1. Finance – Econometric models. 2. Econometrics. I. Title.

HG173.B76 2014

332.01'5195 - dc23 2013049908

ISBN 978-1-107-03466-2 Hardback

ISBN 978-1-107-66145-5 Paperback

 $Additional\ resources\ for\ this\ publication\ at\ www.cambridge.org/brooks 3$

Neither Cambridge University Press nor the author accept responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, nor do we guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List c	of figures	page x11
	List c	of tables	XV
	List c	of boxes	xvii
	List c	of screenshots	xix
	Prefa	ce to the third edition	xxi
	Ackn	owledgements	XXV
1	Intro	duction	1
	1.1	What is econometrics?	2
	1.2	Is financial econometrics different from 'economic	
		econometrics'?	2
	1.3	Types of data	4
	1.4	Returns in financial modelling	7
	1.5	Steps involved in formulating an econometric model	11
	1.6	Points to consider when reading articles in empirical	
		finance	12
	1.7	A note on Bayesian versus classical statistics	13
	1.8	An introduction to EViews	14
	1.9	Further reading	24
	1.10	Outline of the remainder of this book	24
2	Math	ematical and statistical foundations	28
	2.1	Functions	28
	2.2	Differential calculus	37
	2.3	Matrices	41
	2.4	Probability and probability distributions	56
	2.5	Descriptive statistics	61
3	A bri	ef overview of the classical linear regression model	75
	3.1	What is a regression model?	75
	3.2	Regression versus correlation	76
	3.3	Simple regression	76
	3.4		84
	3.5		
		hedge ratio	86

vi

Contents

	3.6	The assumptions underlying the classical linear regression	
		model	90
	3.7	Properties of the OLS estimator	91
	3.8	Precision and standard errors	93
	3.9	An introduction to statistical inference	98
	3.10	A special type of hypothesis test: the <i>t</i> -ratio	111
	3.11	An example of a simple <i>t</i> -test of a theory in finance: can US	
		mutual funds beat the market?	113
	3.12	Can UK unit trust managers beat the market?	115
	3.13		116
	3.14	The exact significance level	120
	3.15	Hypothesis testing in EViews – example 1: hedging revisited	121
	3.16	Hypothesis testing in EViews – example 2: the CAPM	123
		Appendix: Mathematical derivations of CLRM results	127
	Furth	er development and analysis of the classical linear	
		ession model	134
	4.1	Generalising the simple model to multiple linear regression	134
	4.2	The constant term	135
	4.3	How are the parameters (the elements of the eta vector) calculated	
		in the generalised case?	137
	4.4	Testing multiple hypotheses: the <i>F</i> -test	139
	4.5	Sample EViews output for multiple hypothesis tests	144
	4.6	Multiple regression in EViews using an APT-style model	145
	4.7	Data mining and the true size of the test	150
	4.8	Goodness of fit statistics	151
	4.9	Hedonic pricing models	156
	4.10	Tests of non-nested hypotheses	159
	4.11	Quantile regression	161
		Appendix 4.1: Mathematical derivations of CLRM results	168
		Appendix 4.2: A brief introduction to factor models and principal	
		components analysis	170
5	Class	sical linear regression model assumptions and diagnostic tests	179
		Introduction	179
	5.2	Statistical distributions for diagnostic tests	180
	5.3	Assumption 1: $E(u_t) = 0$	181
	5.4	Assumption 2: $var(u_t) = \sigma^2 < \infty$	181
	5.5	Assumption 3: $cov(u_i, u_j) = 0$ for $i \neq j$	188
	5.6	Assumption 4: the x_t are non-stochastic	208
	5.7	Assumption 5: the disturbances are normally distributed	209
	5.8	Multicollinearity	217
	5.9	Adopting the wrong functional form	220
	5.10	Omission of an important variable	224
	5.11	Inclusion of an irrelevant variable	225

		Contents	vii
	5.12	Parameter stability tests	226
		Measurement errors	235
		A strategy for constructing econometric models and a discussion	
		of model-building philosophies	238
	5.15	Determinants of sovereign credit ratings	240
6	Univa	ariate time series modelling and forecasting	251
	6.1	Introduction	251
	6.2	Some notation and concepts	252
	6.3	Moving average processes	256
	6.4	Autoregressive processes	259
	6.5	The partial autocorrelation function	266
	6.6	ARMA processes	268
	6.7	Building ARMA models: the Box–Jenkins approach	273
	6.8	Constructing ARMA models in EViews	276
	6.9	Examples of time series modelling in finance	281
	6.10		283
	6.11	Forecasting in econometrics	285
	6.12	Forecasting using ARMA models in EViews	296
	6.13	Exponential smoothing models in EViews	299
7		variate models	305
	7.1	Motivations	305
	7.2	Simultaneous equations bias	307
	7.3	So how can simultaneous equations models be validly estimated?	308
	7.4	Can the original coefficients be retrieved from the πs ?	309
	7.5	Simultaneous equations in finance	311
	7.6	A definition of exogeneity	312
	7.7	Triangular systems	314
	7.8	Estimation procedures for simultaneous equations systems	315
	7.9	An application of a simultaneous equations approach to modelling	210
	7.40	bid—ask spreads and trading activity	318
	7.10	Simultaneous equations modelling using EViews	323
	7.11	ϵ	326
		Does the VAR include contemporaneous terms?	332
	7.13	Block significance and causality tests	333
	7.14	VARs with exogenous variables	335
		Impulse responses and variance decompositions	336
	7.16	VAR model example: the interaction between property returns and the macroeconomy	338
	7.17	VAR estimation in EViews	344
	/.1/	VIII Commanon in Lyiews	J 11
8	Mod	elling long-run relationships in finance	353
	8.1	Stationarity and unit root testing	353
	8.2	Tests for unit roots in the presence of structural breaks	365

viii

Contents

	8.3	Testing for unit roots in EViews	369
	8.4	Cointegration	373
	8.5	Equilibrium correction or error correction models	375
	8.6	Testing for cointegration in regression: a residuals-based approach	376
	8.7	Methods of parameter estimation in cointegrated systems	377
	8.8	Lead-lag and long-term relationships between spot and futures	
		markets	380
	8.9	Testing for and estimating cointegrating systems using the	
		Johansen technique based on VARs	386
	8.10	Purchasing power parity	390
	8.11	Cointegration between international bond markets	391
	8.12	Testing the expectations hypothesis of the term structure of	
		interest rates	398
	8.13	Testing for cointegration and modelling cointegrated systems	
		using EViews	400
9	Mod	elling volatility and correlation	415
	9.1	Motivations: an excursion into non-linearity land	415
	9.2	Models for volatility	420
	9.3	Historical volatility	420
	9.4	Implied volatility models	421
	9.5	Exponentially weighted moving average models	421
	9.6	Autoregressive volatility models	422
	9.7	Autoregressive conditionally heteroscedastic (ARCH) models	423
	9.8	Generalised ARCH (GARCH) models	428
	9.9	Estimation of ARCH/GARCH models	431
	9.10	Extensions to the basic GARCH model	439
	9.11	Asymmetric GARCH models	440
	9.12	The GJR model	440
	9.13	The EGARCH model	441
	9.14	J contract of the contract of	441
	9.15	Tests for asymmetries in volatility	443
	9.16		445
	9.17	Uses of GARCH-type models including volatility forecasting	446
	9.18	Testing non-linear restrictions or testing hypotheses about	
	0.40	non-linear models	452
	9.19	Volatility forecasting: some examples and results from the	45.4
	0.20	literature	454
	9.20	Stochastic volatility models revisited	461
	9.21	Forecasting covariances and correlations	463
	9.22	Covariance modelling and forecasting in finance: some	464
	9.23	examples Simple covariance models	466
		Multivariate GARCH models	467
		Direct correlation models	471
	9.43	DIECE COLLEGATOR HIGHER	' †/1

		Contents	, ix
	9.26 9.27	Extensions to the basic multivariate GARCH model A multivariate GARCH model for the CAPM with	472
	9.28	time-varying covariances Estimating a time-varying hedge ratio for FTSE stock index	474
	, 0	returns	475
	9.29	Multivariate stochastic volatility models	478
	9.30	Estimating multivariate GARCH models using EViews	480
		Appendix: Parameter estimation using maximum likelihood	484
10		ning models	490
	10.1	Motivations	490
	10.2	Seasonalities in financial markets: introduction and literature review	492
	10.3	Modelling seasonality in financial data	493
	10.4	Estimating simple piecewise linear functions	500
	10.5	Markov switching models	502
	10.6	A Markov switching model for the real exchange rate	503
	10.7	A Markov switching model for the gilt–equity yield ratio	506
	10.8	Estimating Markov switching models in EViews	510
	10.9	Threshold autoregressive models	513
	10.10	Estimation of threshold autoregressive models	515
	10.11	Specification tests in the context of Markov switching and	
	10.12	threshold autoregressive models: a cautionary note A SETAR model for the French franc–German mark exchange	516
	10.12	rate	517
	10.13	Threshold models and the dynamics of the FTSE 100 index and	E4.0
	10 14	index futures markets	519
	10.14	A note on regime switching models and forecasting accuracy	523
11	Panel	data	526
	11.1	Introduction – what are panel techniques and why are they used?	526
	11.2	What panel techniques are available?	528
	11.3	The fixed effects model	529
	11.4	Time-fixed effects models	531
	11.5	Investigating banking competition using a fixed effects model	532
	11.6	The random effects model	536
	11.7	Panel data application to credit stability of banks in Central and	F25
	11.0	Eastern Europe	537
	11.8	Panel data with EViews	541
	11.9	Panel unit root and cointegration tests	547
	11.10	Further reading	557
12	Limite	d dependent variable models	559
	12.1	Introduction and motivation	559
	12.2	The linear probability model	560

~

Contents

	12.3	The logit model	562
	12.4	Using a logit to test the pecking order hypothesis	563
	12.5	The probit model	565
	12.6	Choosing between the logit and probit models	565
	12.7	Estimation of limited dependent variable models	565
	12.8	Goodness of fit measures for linear dependent	
		variable models	567
	12.9	Multinomial linear dependent variables	568
	12.10	The pecking order hypothesis revisited – the choice between	
		financing methods	571
	12.11	Ordered response linear dependent variables models	574
	12.12	Are unsolicited credit ratings biased downwards? An ordered	
		probit analysis	574
	12.13	Censored and truncated dependent variables	579
	12.14	Limited dependent variable models in EViews	583
		Appendix: The maximum likelihood estimator for logit and	
		probit models	589
13	Simula	ation methods	591
	13.1	Motivations	591
	13.2	Monte Carlo simulations	592
	13.3	Variance reduction techniques	593
	13.4	Bootstrapping	597
	13.5	Random number generation	600
	13.6	Disadvantages of the simulation approach to econometric or	
		financial problem solving	601
	13.7	An example of Monte Carlo simulation in econometrics:	
		deriving a set of critical values for a Dickey-Fuller test	603
	13.8	An example of how to simulate the price of a financial	
		option	607
	13.9	An example of bootstrapping to calculate capital risk	
		requirements	613
14	Cond	ucting empirical research or doing a project or	
	disser	tation in finance	626
	14.1	What is an empirical research project and what is it for?	626
	14.2	Selecting the topic	627
	14.3	Sponsored or independent research?	629
	14.4	The research proposal	631
	14.5	Working papers and literature on the internet	631
	14.6	Getting the data	633
	14.7	Choice of computer software	634
	14.8	Methodology	634
	14.9	Event studies	634
	14.10	Tests of the CAPM and the Fama-French Methodology	648

		Contents	xi
	14.11 How might the finished project look?		661
	14.12 Presentational issues		666
Appendix 1	Sources of data used in this book		667
Appendix 2	Tables of statistical distributions		668
	Glossary		680
	References		697
	Index		710

Figures

1.1	Steps involved in forming an		3.8	Effect on the standard errors of	
	econometric model page	2 11		the coefficient estimates when	
2.1	A plot of hours studied (x) against			$(x_t - \bar{x})$ are widely dispersed	96
	grade-point average (y)	30	3.9	Effect on the standard errors of x_t^2	
2.2	Examples of different straight line			large	96
	graphs	30	3.10	Effect on the standard errors of	
2.3	Examples of quadratic functions	31		x_t^2 small	97
2.4	A plot of an exponential function	34	3.11	The <i>t</i> -distribution versus the	
2.5	A plot of a logarithmic function	35		normal	101
2.6	The tangent to a curve	39	3.12	Rejection regions for a two-sided	
2.7	The probability distribution			5% hypothesis test	103
	function for the sum of two dice	58	3.13	Rejection region for a one-sided	
2.8	The pdf for a normal distribution	59		hypothesis test of the form	
2.9	The cdf for a normal distribution	60		$H_0: \beta = \beta^*, H_1: \beta < \beta^*$	104
2.10	A normal versus a skewed		3.14	Rejection region for a one-sided	
	distribution	67		hypothesis test of the form	
2.11	A normal versus a leptokurtic			$H_0: \beta = \beta^*, H_1: \beta > \beta^*$	104
	distribution	67	3.15	Critical values and rejection	
3.1	Scatter plot of two variables,			regions for a $t_{20;5\%}$	108
	y and x	77	3.16	Frequency distribution of <i>t</i> -ratios	
3.2	Scatter plot of two variables with a			of mutual fund alphas (gross of	
	line of best fit chosen by eye	79		transactions costs). Source: Jensen	
3.3	Method of OLS fitting a line to			(1968). Reprinted with the	
	the data by minimising the sum of			permission of Blackwell Publishers	114
	squared residuals	79	3.17	Frequency distribution of <i>t</i> -ratios	
3.4	Plot of a single observation,			of mutual fund alphas (net of	
	together with the line of best fit,			transactions costs). Source: Jensen	
	the residual and the fitted value	80		(1968). Reprinted with the	
3.5	Scatter plot of excess returns on			permission of Blackwell Publishers	114
	fund XXX versus excess returns		3.18	Performance of UK unit trusts,	
	on the market portfolio	82		1979–2000	116
3.6	No observations close to the		4.1	$R^2 = 0$ demonstrated by a flat	
	y-axis	84		estimated line, i.e. a zero slope	
3.7	Effect on the standard errors of			coefficient	153
	the coefficient estimates when		4.2	$R^2 = 1$ when all data points lie	
	$(x_t - \bar{x})$ are narrowly dispersed	95		exactly on the estimated line	154

				List of figures	xiii
5.1	Effect of no intercept on a			model with negative coefficient:	
	regression line	181		$y_t = -0.5y_{t-1} + u_t$	272
5.2	Graphical illustration of		6.7	Sample autocorrelation and partial	
	heteroscedasticity	182		autocorrelation functions for a	
5.3	Plot of \hat{u}_t against \hat{u}_{t-1} , showing			non-stationary model (i.e. a unit	
	positive autocorrelation	191		coefficient): $y_t = y_{t-1} + u_t$	272
5.4	Plot of \hat{u}_t over time, showing		6.8	Sample autocorrelation and	
	positive autocorrelation	191		partial autocorrelation functions	
5.5	Plot of \hat{u}_t against \hat{u}_{t-1} , showing			for an ARMA(1, 1) model:	
	negative autocorrelation	192		$y_t = 0.5y_{t-1} + 0.5u_{t-1} + u_t$	273
5.6	Plot of \hat{u}_t over time, showing		6.9	Use of in-sample and out-of-	
	negative autocorrelation	192		sample periods for analysis	286
5.7	Plot of \hat{u}_t against \hat{u}_{t-1} , showing no		7.1	Impulse responses and standard	
	autocorrelation	193		error bands for innovations in	
5.8	Plot of \hat{u}_t over time, showing no			unexpected inflation equation	
	autocorrelation	193		errors	343
5.9	Rejection and non-rejection		7.2	Impulse responses and standard	
	regions for DW test	196		error bands for innovations in the	
5.10	Regression residuals from stock			dividend yields	343
	return data, showing large outlier		8.1	Value of R^2 for 1,000 sets of	
	for October 1987	212		regressions of a non-stationary	
5.11	Possible effect of an outlier on			variable on another independent	
	OLS estimation	213		non-stationary variable	354
5.12	Plot of a variable showing		8.2	Value of <i>t</i> -ratio of slope	
	suggestion for break date	231		coefficient for 1,000 sets of	
6.1	Autocorrelation function for			regressions of a non-stationary	
	sample MA(2) process	259		variable on another independent	
6.2	Sample autocorrelation and			non-stationary variable	355
	partial autocorrelation functions		8.3	Example of a white noise process	358
	for an MA(1) model:		8.4	Time series plot of a random	
	$y_t = -0.5u_{t-1} + u_t$	270		walk versus a random walk with	
6.3	Sample autocorrelation and			drift	359
	partial autocorrelation functions		8.5	Time series plot of a deterministic	
	for an MA(2) model:			trend process	359
	$y_t = 0.5u_{t-1} - 0.25u_{t-2} + u_t$	270	8.6	Autoregressive processes with	
6.4	Sample autocorrelation and partial			differing values of ϕ (0, 0.8, 1)	360
	autocorrelation functions for a		9.1	Daily S&P returns for August	
	slowly decaying AR(1) model:			2003–August 2013	423
	$y_t = 0.9y_{t-1} + u_t$	271	9.2	The problem of local optima in	
6.5	Sample autocorrelation and partial			maximum likelihood estimation	433
	autocorrelation functions for a		9.3	News impact curves for S&P500	
	more rapidly decaying AR(1)			returns using coefficients implied	
	model: $y_t = 0.5y_{t-1} + u_t$	271		from GARCH and GJR model	
6.6	Sample autocorrelation and partial			estimates	445
	autocorrelation functions for a		9.4	Three approaches to hypothesis	
	more rapidly decaying AR(1)			testing under maximum likelihood	452

xiv	List of figures				
9.5	Time-varying hedge ratios			distribution with the same mean	
	derived from symmetric and			and variance. Source: Brooks and	
	asymmetric BEKK models for			Persand (2001b)	507
	FTSE returns. Source: Brooks,		10.6	Value of GEYR and probability	
	Henry and Persand (2002)	478		that it is in the High GEYR	
10.1	Sample time series plot illustrating			regime for the UK. Source: Brooks	
	a regime shift	491		and Persand (2001b)	509
10.2	Use of intercept dummy variables		12.1	The fatal flaw of the linear	
	for quarterly data	494		probability model	561
10.3	Use of slope dummy variables	497	12.2	The logit model	562
10.4	Piecewise linear model with		12.3	Modelling charitable donations as	
	threshold x^*	501		a function of income	580
10.5	Unconditional distribution of US		12.4	Fitted values from the failure	
	GEYR together with a normal			probit regression	587

Tables

1.1	How to construct a series in real		5.2	Determinants and impacts of	
	terms from a nominal one pa	ige 10		sovereign credit ratings	243
2.1	Sample data on hours of study and		5.3	Do ratings add to public	
	grades	29		information?	245
3.1	Sample data on fund XXX to		5.4	What determines reactions to	
	motivate OLS estimation	82		ratings announcements?	247
3.2	Critical values from the standard		6.1	Uncovered interest parity test	
	normal versus t-distribution	102		results	283
3.3	Classifying hypothesis testing		6.2	Forecast error aggregation	292
	errors and correct conclusions	110	7.1	Call bid-ask spread and trading	
3.4	Summary statistics for the			volume regression	321
	estimated regression results		7.2	Put bid-ask spread and trading	
	for (3.34)	113		volume regression	321
3.5	Summary statistics for unit trust		7.3	Granger causality tests and	
	returns, January 1979–May 2000	115		implied restrictions on VAR	
3.6	CAPM regression results for unit			models	335
	trust returns, January 1979–		7.4	Marginal significance levels	
	May 2000	116		associated with joint F-tests	341
3.7	Is there an overreaction effect in		7.5	Variance decompositions for	
	the UK stock market?	119		the property sector index	
3.8	Part of the EViews regression			residuals	342
	output revisited	121	8.1	Critical values for DF tests (Fuller,	
4.1	Hedonic model of rental values in			1976, p. 373)	362
	Quebec City, 1990. Dependent		8.2	Recursive unit root tests for	
	variable: Canadian dollars per			interest rates allowing for	
	month	157		structural breaks	368
4.2	OLS and quantile regression		8.3	DF tests on log-prices and returns	
	results for the Magellan fund	165		for high frequency FTSE data	381
4A.1	Principal component ordered		8.4	Estimated potentially	
	eigenvalues for Dutch interest	450		cointegrating equation and test for	
	rates, 1962–70	173		cointegration for high frequency	202
4A.2	Factor loadings of the first and		0.5	FTSE data	382
	second principal components for	474	8.5	Estimated error correction model	202
E 1	Dutch interest rates, 1962–70	174	0.7	for high frequency FTSE data	382
5.1	Constructing a series of lagged	100	8.6	Comparison of out-of-sample	202
	values and first differences	190		forecasting accuracy	383

	:				
xvi	List of tables				
8.7	Trading profitability of the error		11.1	Tests of banking market	
	correction model with cost of			equilibrium with fixed effects	
	carry	385		panel models	534
8.8	Cointegration tests of PPP with		11.2	Tests of competition in banking	
	European data	392		with fixed effects panel models	535
8.9	DF tests for international bond		11.3	Results of random effects panel	
	indices	393		regression for credit stability of	
8.10	Cointegration tests for pairs of			Central and East European banks	540
	international bond indices	394	11.4	Panel unit root test results for	
8.11	Johansen tests for cointegration			economic growth and financial	
	between international bond			development	553
	yields	394	11.5	Panel cointegration test results for	
8.12	Variance decompositions for VAR			economic growth and financial	
	of international bond yields	396		development	554
8.13	Impulse responses for VAR of	205	12.1	Logit estimation of the probability	1
0.17	international bond yields	397	100	of external financing	564
8.14	Tests of the expectations		12.2	Multinomial logit estimation of	5 70
	hypothesis using the US zero		100	the type of external financing	573
	coupon yield curve with monthly	100	12.3	Ordered probit model results for	
0.1	data	400	10 /	the determinants of credit ratings	577
9.1	GARCH versus implied volatility	457	12.4	Two-step ordered probit model	
9.2	EGARCH versus implied	4E O		allowing for selectivity bias in the	E 7.0
0.2	volatility	458	12 5	determinants of credit ratings	578
9.3	Out-of-sample predictive power	460	12.5	Marginal effects for logit and	
9.4	for weekly volatility forecasts Comparisons of the relative	400		probit models for probability of MSc failure	588
7.4	information content of out-of-		13.1	EGARCH estimates for currency	300
	sample volatility forecasts	461	15.1	futures returns	616
9.5	Hedging effectiveness: summary	701	13.2	Autoregressive volatility estimates	010
7.0	statistics for portfolio returns	477	10.2	for currency futures returns	617
10.1	Values and significances of days of	1,,,	13.3	Minimum capital risk	017
	the week coefficients	496		requirements for currency futures	
10.2	Day-of-the-week effects with the			as a percentage of the initial value	
	inclusion of interactive dummy			of the position	620
	variables with the risk proxy	499	14.1	Journals in finance and	
10.3	Estimates of the Markov switching			econometrics	630
	model for real exchange rates	505	14.2	Useful internet sites for financial	
10.4	Estimated parameters for the			literature	632
	Markov switching models	508	14.3	Fama and MacBeth's results on	
10.5	SETAR model for FRF-DEM	518		testing the CAPM	652
10.6	FRF-DEM forecast accuracies	519	14.4	Results from Fama-MacBeth	
10.7	Linear AR(3) model for the basis	521		procedure using EViews	661
10.8	A two-threshold SETAR model		14.5	Suggested structure for a typical	
	for the basis	522		dissertation or project	662

Boxes

1.1	Examples of the uses of		5.2	'Solutions' for heteroscedasticity	186
	econometrics	page 2	5.3	Conditions for DW to be a valid	
1.2	Time series data	4		test	197
1.3	Log returns	8	5.4	Conducting a Breusch-Godfrey	
1.4	Points to consider when reading	a		test	198
	published paper	13	5.5	The Cochrane-Orcutt procedure	201
1.5	Features of EViews	22	5.6	Observations for the dummy	
2.1	The roots of a quadratic equation	a 32		variable	212
2.2	Manipulating powers and their		5.7	Conducting a Chow test	226
	indices	33	6.1	The stationarity condition for an	
2.3	The laws of logs	35		AR(p) model	260
2.4	The population and the sample	62	6.2	The invertibility condition for an	
3.1	Names for y and x s in regression			MA(2) model	267
	models	76	6.3	Naive forecasting methods	288
3.2	Reasons for the inclusion of the		7.1	Determining whether an equation	
	disturbance term	78		is identified	310
3.3	Assumptions concerning		7.2	Conducting a Hausman test for	
	disturbance terms and their			exogeneity	312
	interpretation	91	7.3	Forecasting with VARs	334
3.4	Standard error estimators	95	8.1	Stationarity tests	365
3.5	Conducting a test of significance	103	8.2	Multiple cointegrating	
3.6	Carrying out a hypothesis test			relationships	379
	using confidence intervals	106	9.1	Testing for 'ARCH effects'	426
3.7	The test of significance and		9.2	Estimating an ARCH or	
	confidence interval approaches			GARCH model	431
	compared	107	9.3	Using maximum likelihood	
3.8	Type I and type II errors	111		estimation in practice	434
3.9	Reasons for stock market		10.1	How do dummy variables work?	494
	overreactions	117	11.1	Fixed or random effects?	537
3.10	Ranking stocks and forming		12.1	Parameter interpretation for probit	
	portfolios	118		and logit models	566
3.11	Portfolio monitoring	118	12.2	The differences between censored	
4.1	The relationship between the			and truncated dependent variables	581
	regression F -statistic and R^2	158	13.1	Conducting a Monte Carlo	
4.2	Selecting between models	160		simulation	593
5.1	Conducting White's test	183	13.2	Re-sampling the data	599

xviii	List of boxes				
13.3	Re-sampling from the residuals	600	13.6	Generating draws from a	
13.4	Setting up a Monte Carlo			GARCH process	609
	simulation	604	14.1	Possible types of research project	628
13.5	Simulating the price of an Asian				
	option	608			

Screenshots

1.1	Creating a workfile	page 16	5.4	Chow test for parameter stability	233
1.2	Importing Excel data into the		5.5	Plotting recursive coefficient	
	workfile	17		estimates	235
1.3	The workfile containing loaded		5.6	CUSUM test graph	236
	data	18	6.1	Estimating the correlogram	277
1.4	Summary statistics for a series	20	6.2	The options available when	
1.5	A line graph	21		producing forecasts	297
2.1	Setting up a variance-covariance		6.3	Dynamic forecasts for the	
	matrix in Excel	52		percentage changes in house prices	297
2.2	The spreadsheet for constructing		6.4	Static forecasts for the percentage	
	the efficient frontier	53		changes in house prices	298
2.3	Completing the Solver window	54	6.5	Estimating exponential smoothing	
2.4	A plot of the completed efficient			models	299
	frontier	55	7 .1	Estimating the inflation equation	324
2.5	The capital market line and		7.2	Estimating the rsandp equation	327
	efficient frontier	56	7.3	VAR inputs screen	344
2.6	Sample summary statistics in		7.4	Constructing the VAR impulse	
	EViews	68		responses	349
3.1	How to deal with dated		7.5	Combined impulse response	
	observations in EViews	87		graphs	349
3.2	Summary statistics for spot and		7.6	Variance decomposition graphs	350
	futures	88	8.1	Options menu for unit root tests	370
3.3	Equation estimation window	89	8.2	Actual, fitted and residual plot to	
3.4	Estimation results	90		check for stationarity	401
3.5	Plot of two series	125	8.3	Johansen cointegration test	404
4.1	Stepwise procedure equation		8.4	VAR specification for Johansen	
	estimation window	148		tests	409
4.2	Stepwise procedure estimation		9.1	Estimating a GARCH-type model	436
	options window	148	9.2	GARCH model estimation	
4.3	Quantile regression estimation			options	437
	window	166	9.3	Forecasting from GARCH models	450
4.4	Conducting PCA in EViews	176	9.4	Dynamic forecasts of the	
5.1	Regression options window	189		conditional variance	450
5.2	Non-normality test results	211	9.5	Static forecasts of the conditional	
5.3	Regression residuals, actual values	8		variance	451
	and fitted series	215	9.6	Making a system	480

xx	List of screenshots				
9.7	Multivariate GARCH estimation		11.2	Panel workfile structure window	543
	options	481	11.3	Panel unit root test window	556
10.1	Estimating a Markov switching		12.1	Equation estimation window for	
	model	511		limited dependent variables	584
10.2	Smoothed probabilities of being in		12.2	Equation estimation options for	
	regimes 1 and 2	513		limited dependent variables	585
11.1	Panel workfile create window	542	13.1	Running an EViews program	604

Preface to the third edition

Sales of the first two editions of this book surpassed expectations (at least those of the author). Almost all of those who have contacted the author seem to like the book, and while other textbooks have been published since in the broad area of financial econometrics, none are really at the introductory level. All of the motivations for the first edition, described below, seem just as important today. Given that the book seems to have gone down well with readers, I have left the style largely unaltered but changed the structure slightly and added new material.

The main motivations for writing the first edition of the book were:

- To write a book that focused on *using and applying* the techniques rather than deriving proofs and learning formulae.
- To write an accessible textbook that required no prior knowledge of econometrics, but which also covered more recently developed approaches usually only found in more advanced texts.
- To use examples and terminology from finance rather than economics since there are many introductory texts in econometrics aimed at students of economics but none for students of finance.
- To litter the book with case studies of the use of econometrics in practice taken from the academic finance literature.
- To include sample instructions, screen dumps and computer output from a popular econometrics package. This enabled readers to see how the techniques can be implemented in practice.
- To develop a companion web site containing answers to end of chapter questions, PowerPoint slides and other supporting materials.

What is new in the third edition

The third edition includes a number of important new features:

(1) Students of finance have enormously varying backgrounds, and in particular varying levels of training in elementary mathematics and statistics. In order to make the book more self-contained, the material that was previously buried in an appendix at the end of the book has now been considerably expanded and enhanced, and is now placed in a new chapter 2. As a result, all of the previous chapters 2 to 13 have been shunted forward by a chapter (so the

xxii

Preface to the third edition

previous chapter 2 becomes chapter 3, 3 becomes 4, and so on). What was the concluding chapter in the second edition, chapter 14, has now been removed (with some of the content worked into other chapters) so that there are also fourteen chapters in the third edition.

- (2) An extensive glossary has been added at the end of the book to succinctly explain all of the technical terms used in the text.
- (3) As a result of the length of time it took to write the book, to produce the final product and the time that has elapsed since then, the data and examples used in the second edition are already several years old. The data, EViews instructions and screenshots have been fully updated. EViews version 8.0, the latest available at the time of writing, has been used throughout. The data continue to be drawn from the same freely available sources as in the previous edition.
- (4) Two of the most important uses of statistical models by students in their courses tend to be the methodology developed in a series of papers by Fama and French, and the event study approach. Both of these are now described in detail with examples in chapter 14.
- (5) New material has been added in the appropriate places in the book covering panel unit root and cointegration tests; measurement error in variables; unit root testing with structural breaks; and conditional correlation models.

Motivations for the first edition

This book had its genesis in two sets of lectures given annually by the author at the ICMA Centre (formerly ISMA Centre), Henley Business School, University of Reading and arose partly from several years of frustration at the lack of an appropriate textbook. In the past, finance was but a small sub-discipline drawn from economics and accounting, and therefore it was generally safe to assume that students of finance were well grounded in economic principles; econometrics would be taught using economic motivations and examples.

However, finance as a subject has taken on a life of its own in recent years. Drawn in by perceptions of exciting careers in the financial markets, the number of students of finance grew phenomenally all around the world. At the same time, the diversity of educational backgrounds of students taking finance courses has also expanded. It is not uncommon to find undergraduate students of finance even without advanced high-school qualifications in mathematics or economics. Conversely, many with PhDs in physics or engineering are also attracted to study finance at the Masters level. Unfortunately, authors of textbooks failed to keep pace with the change in the nature of students. In my opinion, the currently available textbooks fall short of the requirements of this market in three main regards, which this book seeks to address:

(1) Books fall into two distinct and non-overlapping categories: the introductory and the advanced. Introductory textbooks are at the appropriate level for students with limited backgrounds in mathematics or statistics, but their focus is too narrow. They often spend too long deriving the most basic results, and

Preface to the third edition xxiii

treatment of important, interesting and relevant topics (such as simulations methods, VAR modelling, etc.) is covered in only the last few pages, if at all. The more advanced textbooks, meanwhile, usually require a quantum leap in the level of mathematical ability assumed of readers, so that such books cannot be used on courses lasting only one or two semesters, or where students have differing backgrounds. In this book, I have tried to sweep a broad brush over a large number of different econometric techniques that are relevant to the analysis of financial and other data.

- (2) Many of the currently available textbooks with broad coverage are too theoretical in nature and students can often, after reading such a book, still have no idea of how to tackle real-world problems themselves, even if they have mastered the techniques in theory. To this end, in this book, I have tried to present examples of the use of the techniques in finance, together with annotated computer instructions and sample outputs for an econometrics package (EViews). This should assist students who wish to learn how to estimate models for themselves - for example, if they are required to complete a project or dissertation. Some examples have been developed especially for this book, while many others are drawn from the academic finance literature. In my opinion, this is an essential but rare feature of a textbook that should help to show students how econometrics is really applied. It is also hoped that this approach will encourage some students to delve deeper into the literature, and will give useful pointers and stimulate ideas for research projects. It should, however, be stated at the outset that the purpose of including examples from the academic finance print is not to provide a comprehensive overview of the literature or to discuss all of the relevant work in those areas, but rather to illustrate the techniques. Therefore, the literature reviews may be considered deliberately deficient, with interested readers directed to the suggested readings and the references therein.
- (3) With few exceptions, almost all textbooks that are aimed at the introductory level draw their motivations and examples from economics, which may be of limited interest to students of finance or business. To see this, try motivating regression relationships using an example such as the effect of changes in income on consumption and watch your audience, who are primarily interested in business and finance applications, slip away and lose interest in the first ten minutes of your course.

Who should read this book?

The intended audience is undergraduates or Masters/MBA students who require a broad knowledge of modern econometric techniques commonly employed in the finance literature. It is hoped that the book will also be useful for researchers (both academics and practitioners), who require an introduction to the statistical tools commonly employed in the area of finance. The book can be used for courses covering financial time-series analysis or financial econometrics in undergraduate or postgraduate programmes in finance, financial economics, securities and investments.

xxiv

Preface to the third edition

Although the applications and motivations for model-building given in the book are drawn from finance, the empirical testing of theories in many other disciplines, such as management studies, business studies, real estate, economics and so on, may usefully employ econometric analysis. For this group, the book may also prove useful.

Finally, while the present text is designed mainly for students at the undergraduate or Masters level, it could also provide introductory reading in financial modelling for finance doctoral programmes where students have backgrounds which do not include courses in modern econometric techniques.

Pre-requisites for good understanding of this material

In order to make the book as accessible as possible, no prior knowledge of statistics, econometrics or algebra is required, although those with a prior exposure to calculus, algebra (including matrices) and basic statistics will be able to progress more quickly. The emphasis throughout the book is on a valid application of the techniques to real data and problems in finance.

In the finance and investment area, it is assumed that the reader has knowledge of the fundamentals of corporate finance, financial markets and investment. Therefore, subjects such as portfolio theory, the capital asset pricing model (CAPM) and arbitrage pricing theory (APT), the efficient markets hypothesis, the pricing of derivative securities and the term structure of interest rates, which are frequently referred to throughout the book, are not explained from first principles in this text. There are very many good books available in corporate finance, in investments and in futures and options, including those by Brealey and Myers (2013), Bodie, Kane and Marcus (2011) and Hull (2011) respectively.

Acknowledgements

I am grateful to Gita Persand, Olan Henry, James Chong and Apostolos Katsaris, who assisted with various parts of the software applications for the first edition. I am also grateful to Hilary Feltham for assistance with chapter 2 and to Simone Varotto for useful discussions and advice concerning the EViews example used in chapter 11.

I would also like to thank Simon Burke, James Chong and Con Keating for detailed and constructive comments on various drafts of the first edition, Simon Burke for suggestions on parts of the second edition and Jo Cox, Eunyoung Mallet, Ogonna Nneji, Ioannis Oikonomou and Chardan Wese Simen for comments on part of the third edition. The first and second editions additionally benefited from the comments, suggestions and questions of Peter Burridge, Kyongwook Choi, Rishi Chopra, Araceli Ortega Diaz, Xiaoming Ding, Thomas Eilertsen, Waleid Eldien, Andrea Gheno, Christopher Gilbert, Kimon Gomozias, Cherif Guermat, Abid Hameed, Ibrahim Jamali, Arty Khemlani, Margaret Lynch, David McCaffrey, Tehri Jokipii, Emese Lazar, Zhao Liuyan, Dimitri Lvov, Bill McCabe, Junshi Ma, David Merchan, Victor Murinde, Mikael Petitjean, Marcelo Perlin, Thai Pham, Jean-Sebastien Pourchet, Marcel Prokopczuk, Guilherme Silva, Jerry Sin, Andre-Tudor Stancu, Silvia Stanescu, Yiguo Sun, Li Qui, Panagiotis Varlagas, Jakub Vojtek, Henk von Eije, Jue Wang and Meng-Feng Yen.

A number of people sent useful e-mails pointing out typos or inaccuracies in the first edition. To this end, I am grateful to Merlyn Foo, Jan de Gooijer and his colleagues, Mikael Petitjean, Fred Sterbenz and Birgit Strikholm.

Useful comments and software support from Quantitative Micro Software (QMS) (now IHS Global) are gratefully acknowledged. Any remaining errors are mine alone.

The publisher and author have used their best endeavours to ensure that the URLs for external web sites referred to in this book are correct and active at the time of going to press. However, the publisher and author have no responsibility for the web sites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.