
1
Programming overview

A programming language useful to this book must provide a minimal set of compo-
nents that can be used to combine numbers, compare quantities and act on the result
of that comparison, repeat operations until a condition is met, and contain functions
that we can use to input data, and output results. Almost any language will suffice,
but I have chosen to use Mathematica’s programming environment as the vehi-
cle. The reasoning is that 1. The input/output functions of Mathematica are easy
to use, and require little additional preparation1 2. We will be focused on the ideas,
numerical and otherwise, associated with the methods we study, and I want to draw
a clear distinction between those ideas and issues of implementation. This book is
not meant to teach you everything you need to know about programming2 – we will
discuss only the bare essentials needed to implement the methods. Instead, we will
focus on the physical motivation and tools of analysis for a variety of techniques.
My hope is that the use of Mathematica allows us to discuss implementation
in a homogeneous way, and our restriction to the basic programming structure
of Mathematica (as opposed to the higher-level functionality) allows for easy
porting to the language of your choice.

Here, we will review the basic operations, rendered in Mathematica, falling
into the broad categories: arithmetic operations, comparisons, loops, and input–
output routines. In addition, we must be able to use variable names that can be
assigned values, and there is a scoping for these constructions in Mathematica
similar to C (and many other languages). Functions, in the sense of C, exist in
Mathematica, and we will use a particular (safe) form, although depending
on the context, there are faster (and slower) ways to generate functions. We will
bundle almost every set of computations into a function, and this is to mimic

1 There are libraries to import audio and video, for example, in C, but the resulting internal representation can
be difficult to work with. The details of compiling with those libraries correctly linked is also specific to the
language and compiler, issues that I want to avoid.

2 Although, I will employ good programming practice in the examples and accompanying chapter notebooks.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

2 Programming overview

A

Figure 1.1 Examples of basic arithmetic input and output and logical operations.

good coding practice that is enforced in more traditional languages (for a reason –
the logic and readability one gains by breaking calculations up into named con-
stituents cannot be overvalued). Finally, we will look at two important ideas for
algorithm development: recursion and function pointers. Both are supported in
Mathematica, and these are also available in almost any useful programming
language.

Beyond the brief programming overview, there are issues specific to numerical
work, like consideration of timing, and numerical magnitude, that provide further
introduction into the view of physics that we must take if we are to usefully employ
computers to solve problems.

1.1 Arithmetic operations

All of the basic arithmetic operations are in Mathematica, and some are shown
in Figure 1.1 – we can add and subtract, multiply, divide, even evaluate trigonomet-
ric functions (arguments in radians, always). The only occasional hiccup we will
encounter is the distinction, made in Mathematica, between an exact quantity
and a number – in Figure 1.1, we can see that when presented with 1/4, Math-
ematica responds by leaving the ratio alone, since it is already reduced. What
we are most interested in is the actual numerical value. In order to force Mathe-
matica to provide real numbers, we can wrap expressions in the N function, as in
In[3] on the left of Figure 1.1, or we can insert decimal points, as in In[6]. This
is more than an aesthetic point – many simple calculations proceed very slowly if
you suggest (accidentally or not) that all numbers are exact quantities (all fraction
additions, for example, must be brought to a common, symbolic, denominator,
etc.).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

1.3 Variables 3

Aside from integers and real numbers, Mathematica is aware of most math-
ematical constants, like π and e, and when necessary, I’ll tell you the name of any
specific constant of interest.

1.2 Comparison operations

We will use most comparison operations, and Mathematica outputs True or
False to any of the common ones – we can determine whether a number is greater
than, less than, or equal to another number using >, <, == (notice that equality
requires a double equals sign to distinguish it from assignment). We denote “less
than or equal to” with <=, and similarly for “greater than or equal to” (>=). The
logical “not” operation is denoted!, so that inequality is tested using!= (not equal).
Finally, we can string together the True/False output with “AND” (denoted &&)
and “OR” (||). Some examples are shown on the right in Figure 1.1.

1.3 Variables

Unlike C or C++, variables in Mathematica can be instantiated by definition,
and do not require explicit typedef-ing. So setting a variable is as easy as typing
x = 5.0. The variable has this value (subject to scoping) until it is changed, or
cleared (closest to delete that exists in Mathematica) by typing Unset[x].

Variables can take a number of forms: single elements, lists, matrices, etc.
For us, variables will be purely numerical (no symbolic variable assignments are
allowed – those are generally not available in other languages), and the numbers
themselves will be “doubles,” i.e. real numbers with maximum precision. We can
then define tables and arrays of numbers, again by giving values to a variable name.
In Figure 1.2, we see a few different ways of defining variables – first we define
and set the variable p to have value 5 – Mathematica will print an output in
general, and in the case of defining variables, it prints an output that reminds us of
the variable’s value. To suppress printing output, we use a semicolon at the end of
a line – in the second example on the left in Figure 1.2, we define q to have value 7,
and the semicolon tells Mathematica to just set the value without extra verbiage.

We can define variables that are tables of fixed length by specifying the numerical
value for each entry, using {...}, as in the definition of x on the left in Figure 1.2.
The Mathematica command

Table[f[k],{k,start,end,step}]

can also be used to generate tables that have values related to index number by
the function f[k] – in the definition of the array variable y, we use f[k]=k for
“iterator” (a dummy name given to the index used to generate the table) k.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

4 Programming overview

Figure 1.2 Examples of defining and setting variable values.

Figure 1.3 Using arithmetic operations with variables, table elements, and tables.

Once a variable has been defined by giving it a value, the value can be accessed
(by typing the name of the variable as input) or changed (using the operator =) as
shown on the right in Figure 1.2, where a table x is created, and its second entry
set to the value 4.0. The output of such an assignment is the assigned value, if we
want to check the full content of x, we can type it as input, as in In[8].

Variables can be used with the normal arithmetic operations, their value replaces
the variable name internally, just as in most programming languages. In Figure 1.3,
we define x and y, and add them. We can perform operations on elements of lists,
or on the lists themselves (so the final example in Figure 1.3 adds each element

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

1.4 Control structures 5

Figure 1.4 Using Mathematica’s If, While, and For.

of the lists X and Y – note that you cannot add together lists of different size). All
variable and function names are case-sensitive, so that using x and X as variable
names is unambiguous.

1.4 Control structures

The most important tools for us will be the if-then-else, while and for
constructs. These can be used with logical operations to perform instructions based
on certain variable values.

The if-then-else construction operates as you would expect – we perform
instructions if a certain logical test returns True, and other instructions (else) if
the test returns False. The Mathematica structure is:

If[test, op-if-test-true, op-if-test-false]

In Figure 1.4, we define and set the value of x to 4. Then we use the If statement
to check the value of x – if x is less than or equal to 4, then we set x to 5, else we
set x to −1.

Using While is similar in form – we perform instructions while a specified test
yields True, and stop when the logical test returns False. The Mathematica
command that carries out the While loop is

While[test, op-if-test-true]

An example in which we set x to −1 and then add one to x if its value is less than
or equal to four is shown in Figure 1.4. In this example, we also encounter the i/o
function Print[x], which prints the value of the variable x.

Finally, “for loops” perform instructions repeatedly while an iterator counts
from a specified start value to a specified end value – more generally, the iterator is
given some initial value, and a logical test is performed on a function of the iterator
– while the logical test is true, operations are executed. We can construct a for loop

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

6 Programming overview

from a while loop, so the two are, in a sense complementary. In Mathematica,
the syntax is:

For[j = initialval, f[j], j-update, operations]

where j is the iterator, f[j] represents a logical test on some provided function
of j, j-update is a rule for incrementing j, and operations is the set of
instructions to perform while f[j] returns True – each execution of opera-
tions increments j according to j-update. This is easier done than said – an
example of using the for loop is shown in Figure 1.4. That example produces the
same results as the code in the While example.

1.5 Functions

Writing programs requires the ability to break computational instructions into log-
ically isolated blocks – this aids in reading, and debugging. These isolated blocks
are called “functions,” generically, a name for anything that takes in input and
returns output. Mathematica provides a few different ways to define program-
ming functions. We will use the Module form of function definition – the basic
structure is:

functionname[input1 , input2]:= Module[{local variables},
operations;
Return[value];

]

An example of Module in action is shown in Figure 1.5 – but the important thing
to remember is that we now have a function that can be called with some inputs,
returns some output, and has hidden local variables that are not accessible to the
“outside world.”

In Figure 1.5, we define the functionHelloWorld, that takes a single argument
called name – the underscore identifies name as an input. The Module is set up
with two local variables, one takes the value of name (generally, a string), and the
other is set to one. The function itself prints a friendly greeting, and returns the
value stored in localvarx (i.e. one). As a check that the variable localvarx
really is undefined as far as the rest of the Mathematica “session” is concerned,
the last line in Figure 1.5 calls localvarx – the fact that Mathematica returns
the variable name, unevaluated, indicates that it is not currently defined.

We can use all of our arithmetic, logical, and control operations inside the
function to make it do more interesting things. As an example, the two functions
defined in Figure 1.6 are used to sort an array of numbers in increasing order. The
first function is Swap – this takes a list, and two numbers, a and b, as inputs, swaps

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

1.5 Functions 7

Figure 1.5 Example of defining, and then calling, a function in Mathematica
using Module.

Figure 1.6 Definition of the function InsertionSort – this function takes a
list and sorts the elements of the list in increasing order (from [12]).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

8 Programming overview

the value of the ath and bth elements of the list, and returns the resulting array. For
the InsertionSort function, we go through the input array, and sequentially
generate a sorted list of size indexx-1, increasing indexx until it is the size
of the entire array. This is an inefficient but straightforward way to sort lists of
numbers.

1.6 Input and output

There are a wide variety of Mathematica functions that handle various input and
output. We will introduce specific ones as we go, I just want to mention two at the
start that are of interest to us. The first we have already seen: Print[stuff]
prints whatever you want, and can be used within a function to tell us what is going
on inside the function.

The second output command we will make heavy use of is ListPlot. This
function takes a table and generates a plot with the table values as heights at
locations given by the index. Alternatively, if the table consists of pairs of values,
then the plot uses the first of each pair as the x location, and the second provides the
y (height). ListPlot can be used to visualize arrays of data, or function values.
A few examples are shown in Figure 1.7.

1.7 Recursion

Most programming languages support a notion of “recursion” – this is the idea
that a function can call itself. Recursion can be useful when designing “divide-
and-conquer” algorithms. As a simple example of a recursive function, consider
DivideByTwo defined in Figure 1.8. This function takes a number, and, if it is
possible to divide the number by two, calls itself with the input divided by two. If
the number cannot be divided by two, the function returns the non-dividable-by-two
input. Notice the helper function IsDivisableByTwo – this checks divisibility
using Mathematica’s built-in Round command.

An example of the function in action is shown in Figure 1.8 – we are using the
Print command to see what value the function DivideByTwo gets at each call –
you can see that it is called four times for the input 88, and returns a concrete result
when its input is not divisable by two.

As a more interesting example, we can accomplish the same sorting of numbers
idea from InsertionSort using recursion. See if you can “sort out” (no pun
intended) the recursion in the definition of MergeSort shown in Figure 1.9. The
helper function Merge takes two lists that are already sorted, and combines them
to form a sorted list.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

1.7 Recursion 9

Figure 1.7 Plotting – if the table input to ListPlot contains single entries, like
the first example above, then the x-axis is the entry number. If, as in the second
case, the table contains pairs of numbers, then the first number is taken to be
the x value, the second number the y value. The command ListLinePlot is
identical to ListPlot except that the points are connected by lines.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

10 Programming overview

Figure 1.8 Example of recursive function definition – you must provide both
the recursive outcome (call the function again with modified input) and the final
outcome (the definition of the endpoint).

1.8 Function pointers

It is important that functions be able to call other functions – we can accomplish
this in a few different ways. One way to make a function you write accessible
to other functions is to define it globally, and then call it. That is the preferred
method if you have a “helper” function that is not meant to be called by “users.”
The function Swap in the insertion sort example from Figure 1.6 is such a support
function – it is not meant to be called by a user of the function InsertionSort,
it is purely a matter of convenience for us, the programmer.

But sometimes, the user must specify a set of functions for use by a program.
In this case, we don’t know or care what the names of the functions supplied by
the user are – they are user-specified, and hence should be part of the argument
of any function we write. This “variable” function is known, in C, as a “function
pointer” – a user-specifiable routine. Because of the low-key type-checking in
Mathematica, we can pass functions as arguments to another function in the
same way we pass anything. It is up to us to tell the user what constraints their
function must satisfy. As an example, suppose we write a function that computes
the time average of some user-specified function f (t) – that is, we want to write a

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03430-3 - Computational Methods for Physics
Joel Franklin
Excerpt
More information

http://www.cambridge.org/9781107034303
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107034303:

