

PRINCIPLES OF DISCRETE TIME MECHANICS

Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis.

Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer–system relationship is maintained throughout.

GEORGE JAROSZKIEWICZ is an Associate Professor at the School of Mathematical Sciences, University of Nottingham, having formerly held positions at the University of Oxford and the University of Kent.

CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

- S. J. Aarseth Gravitational N-Body Simulations: Tools and Algorithms
- J. Ambjørn, B. Durhuus and T. Jonsson Quantum Geometry: A Statistical Field Theory Approach
- A. M. Anile Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics
- J. A. de Azcárraga and J. M. Izquierdo $Lie~Groups,~Lie~Algebras,~Cohomology~and~Some~Applications~in~Physics^\dagger$
- O. Babelon, D. Bernard and M. Talon Introduction to Classical Integrable Systems
 F. Bastianelli and P. van Nieuwenhuizen Path Integrals and Anomalies in Curved Space
- V. Belinski and E. Verdaguer Gravitational Solitons
- J. Bernstein Kinetic Theory in the Expanding Universe
- G. F. Bertsch and R. A. Broglia Oscillations in Finite Quantum Systems
- N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space[†]
 K. Bolejko, A. Krasiński, C. Hellaby and M–N. Célérier Structures in the Universe by Exact Methods: Formation, Evolution, Interactions
- D. M. Brink Semi-Classical Methods for Nucleus–Nucleus Scattering †
- D. M. Brink Semi-Cussical Assessing J. M. Burgess Classical Covariant Fields
 E. A. Calzetta and B.-L. B. Hu Nonequilibrium Quantum Field Theory
- S. Carlip Quantum Gravity in 2+1 Dimensions
- P. Cartier and C. DeWitt-Morette Functional Integration: Action and Symmetries
- J. C. Collins Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion †
- P. D. B. Collins An Introduction to Regge Theory and High Energy $Physics^{\dagger}$
- M. Creutz Quarks, Gluons and Lattices
- P. D. D'Eath Supersymmetric Quantum Cosmology J. Dereziński and C. Gérard Mathematics of Quantization and Quantum Fields
- F. de Felice and D. Bini Classical Measurements in Curved Space-Times
 F. de Felice and C. J. S Clarke Relativity on Curved Manifolds
- B. DeWitt Supermanifolds, 2nd edition
- P. G. O. Freund Introduction to Supersymmetry[†]
- F. G. Friedlander *The Wave Equation on a Curved Space-Time* † J. L. Friedman and N. Stergioulas *Rotating Relativistic Stars*
- Y. Frishman and J. Sonnenschein Non-Perturbative Field Theory: From Two Dimensional Conformal Field Theory to QCD in Four Dimensions
- J. A. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory
- J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists[†]
 Y. Fujii and K. Maeda The Scalar-Tensor Theory of Gravitation

- A. S. Galperin, E. A. Handler, R. A. Matzner Scattering from Black Holes[†]
 A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky and E. S. Sokatchev Harmonic Superspace
 R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity[†]
 T. Gannon Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics
- M. Göckeler and T. Schücker Differential Geometry, Gauge Theories, and Gravity[†] C. Gómez, M. Ruiz-Altaba and G. Sierra Quantum Groups in Two-Dimensional Physics
- M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 1: Introduction M. B. Green, J. H. Schwarz and E. Witten Superstring Theory Volume 2: Loop Amplitudes, Anomalies and Phenomenology
 V. N. Gribov The Theory of Complex Angular Momenta: Gribov Lectures on Theoretical Physics
- S. W. Hawking and G. F. R. Ellis The Large Scale Structure of Space-Time[†]
- F. Iachello and A. Arima The Interacting Boson Model
 F. Iachello and P. van Isacker The Interacting Boson-Fermion Model
- C. Itzykson and J.-M. Drouffe Statistical Field Theory Volume 1: From Brownian Motion to Renormalization and Lattice Gauge Theory
- C. Itzykson and J. M. Drouffe Statistical Field Theory Volume 2: Strong Coupling, Monte Carlo Methods, Conformal Field Theory and Random Systems[†]
 G. Jaroszkiewicz, Principles of Discrete Time Mechanics
 C. V. Johnson D-Branes
 P. S. Joshi Gravitational Collapse and Spacetime Singularities[†]

- J. I. Kapusta and C. Gale Finite-Temperature Field Theory: Principles and Applications, 2nd

- V. E. Korepin, N. M. Bogoliubov and A. G. Izergin Quantum Inverse Scattering Method and Correlation Functions
- M. Le Bellac Thermal Field Theory
- Y. Makeenko Methods of Contemporary Gauge Theory
- N. Manton and P. Sutcliffe Topological Solitons
- N. H. March Liquid Metals: Concepts and Theory
- I. Montvay and G. Münster $Quantum\ Fields\ on\ a\ Lattice^{\dagger}$
- L. O'Raifeartaigh Group Structure of Gauge Theories
- T. Ortín Gravity and Strings
- A. M. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization[†]
- L. Parker and D. Toms Quantum Field Theory in Curved Spacetime: Quantized Fields and
- R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Spinor Calculus and $Relativistic\ Fields$
- R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry[†]
 S. Pokorski Gauge Field Theories, 2nd edition[†]
- J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String J. Polchinski String Theory Volume 2: Superstring Theory and Beyond J. C. Polkinghorne Models of High Energy Processes[†]

- V. N. Popov Functional Integrals and Collective Excitations[†]
 L. V. Prokhorov and S. V. Shabanov Hamiltonian Mechanics of Gauge Systems
- A. Recknagel and V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes
- R. J. Rivers Path Integral Methods in Quantum Field Theory[†]
 R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering[†]
 C. Rovelli Quantum Gravitui[†]
- C. Rovelli Quantum Gravity

- C. Rovelli Quantum Gravity[†]
 W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems[†]
 R. N. Sen Causality, Measurement Theory and the Differentiable Structure of Space-Time
 M. Shifman and A. Yung Supersymmetric Solitons
 H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of Einstein's Field Equations, 2nd edition[†]
 J. Stewart Advanced General Relativity[†]
 J. C. Taylor Gauge Theories of Weak Interactions[†]
 T. Thiemann Madary Canasical Operature Constal Polativity

- T. Thiemann Modern Canonical Quantum General Relativity
- D. J. Toms The Schwinger Action Principle and Effective Action[†]
- A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects
- R. S. Ward and R. O. Wells, Jr Twistor Geometry and Field Theory
- E. J. Weinberg Classical Solutions in Quantum Field Theory: Solitons and Instantons in High
- Energy Physics
 J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

[†] Issued as a paperback

Principles of Discrete Time Mechanics

GEORGE JAROSZKIEWICZ

University of Nottingham

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

 $www. cambridge. org \\ Information on this title: www. cambridge. org/9781107034297$

© G. Jaroszkiewicz 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2014

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-03429-7 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Prej	uce	page xiii
Par	t I Discrete time concepts	
1	Introduction	3
1.1	What is time?	3
1.2	The architecture of time	5
1.3	The chronon: historical perspectives	14
1.4	The chronon: some modern perspectives	17
1.5	Plan of this book	23
2	The physics of discreteness	24
2.1	The natural occurrence of discreteness	24
2.2	Fourier-transform scales	25
2.3	Atomic scales of time	27
2.4	De Broglie scales	28
2.5	Hadronic scales	30
2.6	Grand unified scales	30
2.7	Planck scales	31
3	The road to calculus	32
3.1	The origins of calculus	32
3.2	The infinitesimal calculus and its variants	37
3.3	Non-standard analysis	40
3.4	q-Calculus	41
4 '	Temporal discretization	46
4.1	Why discretize time?	46
4.2	Notation	47
4.3	Some useful results	50
4.4	Discrete analogues of some generalized functions	52
4.5	Discrete first derivatives	53
4.6	Difference equations	55
47	Discrete Wronskians	58

viii	Contents	
5	Discrete time dynamics architecture	61
5.1	Mappings, functions	61
5.2	Generalized sequences	65
5.3	Causality	66
5.4	Discrete time	67
5.5	Second-order architectures	69
6	Some models	71
6.1	Reverse engineering solutions	71
6.2	Reverse engineering constants of the motion	74
6.3	First-order discrete time causality	75
6.4	The Laplace-transform method	78
7	Classical cellular automata	80
7.1	Classical cellular automata	80
7.2	One-dimensional cellular automata	82
7.3	Spreadsheet mechanics	85
7.4	The Game of Life	88
7.5	Cellular time dilation	89
7.6	Classical register mechanics	97
Par	et II Classical discrete time mechanics	
8	The action sum	111
8.1	Configuration-space manifolds	111
8.2	Continuous time action principles	112
8.3	The discrete time action principle	117
8.4	The discrete time equations of motion	119
8.5	The discrete time Noether theorem	119
8.6	Conserved quantities via the discrete time Weiss action principle	121
9	Worked examples	122
9.1	The complex harmonic oscillator	122
9.2	The anharmonic oscillator	124
9.3	Relativistic-particle models	126
10	Lee's approach to discrete time mechanics	129
10.1		129
10.2	2 The standard particle system	131
10.3	- v	133
10.4	Return to the relativistic point particle	134

	Contents	ix
11 H	Elliptic billiards	136
11.1	The general scenario	136
11.2	Elliptic billiards via the geometrical approach	137
11.3	-	140
11.4	Complex-plane billiards	142
12 7	The construction of system functions	144
12.1	· ·	144
12.2	_	145
12.3		148
13 7	The classical discrete time oscillator	151
13.1	The discrete time oscillator	151
13.2	The Newtonian oscillator	152
13.3	Temporal discretization of the Newtonian oscillator	153
13.4	The generalized oscillator	154
13.5	Solutions	154
13.6	The three regimes	155
13.7	The Logan invariant	156
13.8	The oscillator in three dimensions	157
13.9	The anharmonic oscillator	158
14 7	Type-2 temporal discretization	160
14.1	Introduction	160
14.2	q-Mechanics	161
14.3	Phi-functions	164
14.4	The phi-derivative	165
14.5	Phi-integrals	166
14.6	The summation formula	166
14.7	Conserved currents	168
15 I	ntermission	170
15.1	The continuous time Lagrangian approach	171
15.2	0 0 11	173
15.3	Extended discrete time mechanics	175
Part	III Discrete time quantum mechanics	
16 I	Discrete time quantum mechanics	181
16.1	Quantization	181
16.2	Quantum dynamics	184
16.3	The Schrödinger picture	185

X	Contents	
16.4	Position eigenstates	185
16.5	Normal-coordinate systems	188
16.6	Compatible operators	190
17 7	The quantized discrete time oscillator	192
17.1	Introduction	192
17.2	Canonical quantization	193
17.3	The inhomogeneous oscillator	197
17.4	The elliptic regime	199
17.5	The hyperbolic regime	202
17.6	The time-dependent oscillator	203
18 I	Path integrals	209
18.1	Introduction	209
18.2	Feynman's path integrals	209
18.3	Lee's path integral	215
19 (Quantum encoding	217
19.1	Introduction	217
19.2	First-order quantum encoding	218
	Second-order quantum encoding	220
19.4		221
Part	IV Discrete time classical field theory	
20 I	Discrete time classical field equations	227
20.1	Introduction	227
20.2	System functions for discrete time field theories	227
20.3	System functions for node variables	228
20.4	Equations of motion for node variables	230
20.5	Exact and near symmetry invariants	231
20.6	Linear momentum	233
20.7	Orbital angular momentum	234
20.8	Link variables	234
21 7	The discrete time Schrödinger equation	236
21.1	Introduction	236
21.2	Stationary states	239
21.3	Vibrancy relations	242
21.4	Linear independence and inner products	242
21.5	Conservation of charge	244

	Contents	xi
22]	The discrete time Klein–Gordon equation	246
22.1	Introduction	246
22.2	Linear momentum	248
22.3	Orbital angular momentum	249
22.4	The free-charged Klein–Gordon equation	250
23]	The discrete time Dirac equation	253
23.1	Introduction	253
23.2	Grassmann variables in mechanics	254
23.3	The Grassmannian oscillator in continuous time	256
23.4	The Grassmannian oscillator in discrete time	258
23.5	The discrete time free Dirac equation	260
23.6	Charge and charge density	262
24 I	Discrete time Maxwell equations	265
24.1	Classical electrodynamical fields	265
24.2	Gauge invariance	267
24.3	The inhomogeneous equations	269
24.4	The charge-free equations	270
24.5	Gauge transformations and virtual paths	271
24.6	Coupling to matter fields	272
25 7	The discrete time Skyrme model	275
25.1	The Skyrme model	275
25.2	The $SU(2)$ particle	277
25.3	The σ model	281
25.4	Further considerations	282
Part	V Discrete time quantum field theory	
26 I	Discrete time quantum field theory	287
26.1	Introduction	287
26.2	The discrete time free quantized scalar field	289
26.3	The discrete time free quantized Dirac field	292
26.4	The discrete time free quantized Maxwell fields	297
27 I	nteracting discrete time scalar fields	306
27.1	Reduction formulae	307
27.2	Interacting fields: scalar field theory	308
27.3	Feynman rules for discrete time-ordered products	310
27.4	The two–two box scattering diagram	313
27.5	The vertex functions	316

xii Contents	
27.6 The propagators	316
27.7 Rules for scattering amplitudes	318
Part VI Further developments	
28 Space, time and gravitation	323
28.1 Snyder's quantized spacetime	323
28.2 Discrete time quantum fields on Robertson–Walker spacetimes	328
28.3 Regge calculus	331
29 Causality and observation	333
29.1 Introduction	333
29.2 Causal sets	334
29.3 Quantum causal sets	336
29.4 Discrete time and the evolving observer	336
30 Concluding remarks	341
Appendix A Coherent states	343
Appendix B The time-dependent oscillator	345
Appendix C Quaternions	347
Appendix D Quantum registers	348
References	353
Index	361

Preface

Long ago, great minds speculated on the nature of time. The following question was asked: could time be divided into ever smaller and smaller pieces, just like a length of wood? We know this for a historical fact, because some of Zeno's paradoxes have survived the ravages of time and these paradoxes discuss precisely this question.

Contrary to what might be believed, interest in Zeno's paradoxes has not been extinguished by the rigours of modern mathematics, although we are taught that it has. Yes, the paradox of Achilles and the tortoise can be explained away in terms of a convergent infinite sum. But the concept of an infinitesimal has not been killed off: far from it, for mathematicians have developed a rigorous, consistent mathematical framework called non-standard analysis that allows for such things.

What I believe this debate about time highlights is how conditioned humans can be. We learn from an early age to think in certain terms and, if we are not careful, we end up regarding them as the only possible framework for our thoughts. So it is with time, which has been regarded as continuous throughout the history of mathematics and physics. It is hard to imagine any physical theory without the concept of a time derivative, and that requires continuity in time.

However, it is the obligation of theorists not only to explore current theories to their natural horizons, but to look beyond those horizons and to step outside of them if that is possible. That's really what theorists are paid for, not for the confirmation of established paradigms. I started to be concerned about standard physics when I first encountered wavefunction renormalization, that notorious method of dealing with the divergences of quantum field theory. Now, many years later, I can see that this concern was a portent of what was to come, for a very large quantity can be regarded as the reciprocal of a very small quantity. Very large energies and momenta are related to very small timescales and intervals of space, as I shall discuss.

Can we resolve these problems? Is it possible to understand Zeno's paradoxes about the vanishingly small and understand the divergences in quantum field theory within the same framework?

I think the answer is *possibly*, but it will require a deeper examination of the role of the observer. The observer has long taken a back seat in scientific theory,

xiv Preface

because the focus in science has generally been on the systems under observation. It is my belief that the balance has to be redressed, particularly when it comes to time.

This book is not about approximations to continuous time models but an exploration of discrete time as a model in its own right. I am not interested in finding good discrete time approximations to continuous time equations or their solutions. So do not look here for advice about the latest and best convergent lattice discretizations in fluid mechanics, non-abelian gauge theory or gravitation. There are plenty of sources on those topics. I am exploring the following question: what would be the consequences of the conjecture that time is really discrete?

This book will necessarily be centred on my own experiences: what I have read, what I have written, and what has come to me through talking to others. So I will inevitably have missed some important topics and papers written by others, for which I apologize profusely in advance.

A preface is generally the place where an author expresses their unbounded gratitude to others. I do so now. I am indebted to all my teachers and lecturers, colleagues and students down the years who have given me far more of value than I have given them. In particular, I benefited from the wisdom and inspiration of Professors Nicholas Kemmer, Julian Schwinger and Peter Landshoff at various points in my career. I am indebted also to Andy Walker and Anne Lomax, and to Volodia and Rumy Nikolaev.

I thank also all my research students who took the risk of working with me on discrete time: Keith Norton, Jon Eakins, Jason Ridgway-Taylor and Fernando Aguayo.

My deepest thanks go to all members of my family, past and present: my wife Małgorzata and daughter Joanna for their endless patience and support, and to my parents for the priceless values they gave me.

George Jaroszkiewicz, Walton on the Wolds