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Introduction

1.1 What is time?

This book explores the hypothesis that time is discrete rather than continuous.

Time is an enigma, so we should expect some metaphysics and philosophy to

creep into the discussion. Our inclination is to avoid those disciplines as much

as possible, so let us deal with them right now.

Metaphysics and philosophy deal with statements and conjectures that can-

not be empirically validated. In those disciplines there are constant references

to absolutes such as existence, good and bad, and suchlike without further qual-

ification, as if everyone accepted them as meaningful concepts. Absolutes are

the key things we wish to avoid. For the record, we define an absolute state-

ment as one that is considered to be true regardless of any caveats or criteria,

i.e., context-free. In contrast, a contextual statement has a truth value that is

meaningful only relative to its particular context.

The idea that physical truth can be contextual is an unfamiliar and uncomfort-

able one to physicists conditioned to believe that the laws of physics transcend

the context of observation because they can be empirically validated. In fact, that

is a circular line of reasoning. Every experiment is defined by its own context

and experimentalists have to work hard to create that context: the search for the

Higgs particle at the Large Hadron Collider did not happen overnight. Because it

is impossible to actually perform all imaginable experiments, the known laws of

physics have been validated only relative to a finite subset of all possible contexts.

Therefore, the laws of physics are contextual, not absolute. It is metaphysics to

think otherwise.

Despite that, there are numerous examples in physics of a conditioned meta-

physical belief in an absolute. Lorentz covariance in special relativity (SR) is

the principle that the laws of physics apart from gravitation take the same

form in every inertial frame. In general relativity (GR) the corresponding con-

cept is encoded into general covariance, the principle that the laws of physics
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4 Introduction

are invariant with respect to arbitrary coordinate transformations. Are these

absolute principles? Other examples come to mind: in thermodynamics, physi-

cists make frequent references to the ‘absolute temperature’ of a system under

observation (SUO), whilst in quantum mechanics (QM) they refer to ‘the’ prob-

ability of a quantum outcome. In fact, the temperature of an SUO is contextual

on that SUO being in thermal equilibrium, whilst a probability in QM is always

a conditional probability, i.e., contextual. As for Lorentz covariance and gen-

eral covariance, these are more and more frequently these days being seen by

cosmologists as useful guidelines in the construction of Lagrangians rather than

absolute principles.

This issue impinges on us here because a potential criticism of discrete time

(DT) mechanics is that it breaks Lorentz symmetry explicitly. That is true:

we need to choose a preferred inertial frame in which to discretize time. We

are not unduly concerned by this criticism, however, for several reasons. Three

of these are as follows: (i) there is no empirical proof that time is continuous

or otherwise; (ii) the aforementioned criticism does not take into account the

empirical fact that we can use the laws of physics to identify a preferred local

inertial frame anywhere in the Universe, the local frame relative to which the

dipole anisotropy of the cosmic background radiation field vanishes (Cornell,

1989);1 and (iii) conventional theories that are based on Lorentz symmetry are

riddled with mathematical divergences, and DT may be a possible technique to

grapple with them.

With the above in mind, we shall take as a guiding principle the view that

there are no absolutes in physics: every concept or statement in physics should

be accompanied by a statement of the context relative to which that statement’s

truth value makes sense.2 Care should be taken to understand the opposite of

relative truth: if a statement is not true relative to a given context, then it is false

only relative to that context. Outside of that context, we should say nothing.

When we discuss any theory, the above principle of contextuality requires

us to clarify the context in which our theory is to be discussed and held to be

meaningful. In the case of DT, we should establish (i) who or what sort of observer

is formulating the theory, (ii) for what purpose and to which ends the theory

has been constructed, (iii) the principles underpinning the theory, including its

limitations, and (iv) what might be done with the theory. We address these

points in turn.

Point (i) In this book, time is studied from the perspective of the mathe-

matical physicist, with no hidden agenda or philosophy. The reader will not

1 This is a debatable point, in that it could be argued that the appearance of such a frame is
a consequence of the laws of physics, not a fundamental feature in itself. But we would
argue that the assertion that this frame was chosen at random by a quantum fluctuation is
itself a metaphysical statement.

2 Contextuality applies to mathematics as much as it does to physics. If it did not, why then
do mathematicians spend time defining axioms and postulates? Theorems are true only
relative to the relevant mathematical context.
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1.2 The architecture of time 5

be asked to believe either in continuous time (CT) or in DT. Since most of

science deals with CT theories, it seems reasonable to redress the balance

by investigating the consequences of DT mechanics. At our disposal will be

mathematics backed up by intuition and supported by some empirical knowl-

edge about time, such as its ordering property, its irreversibility and SR time

dilation.

Point (ii) Many questions remain unanswered about the physical Universe,

particularly the nature of space and time. We are not even sure how to classify

time. Is it an object or a process? On the one hand, empty spacetime appears

to have intrinsic physical properties such as curvature and vacuum polariz-

ability, with particles being no more than quantum excitations of a basic state

of empty space known as the vacuum. On the other hand, Mach’s principle

(Mach, 1912) and recent interpretations of QM (Rovelli, 1996) propose that

space and time should be discussed in relational (contextual) terms. Which

view is correct?

Even when spacetime is considered to be more than a relationship between

objects, its structure remains debatable. Newtonian mechanics models space

as a three-dimensional Euclidean manifold and time as a real line, whereas

SR and GR merge space and time into a four-dimensional continuum known

as spacetime. Although Einstein did acknowledge a debt to Mach’s principle

(Einstein, 1913), it is clear that GR spacetimes have intrinsic properties that

can be measured, such as curvature. In GR, time is often identified with one

of the four possible coordinates in a chosen coordinate patch and is continuous

in that context.

On the other hand, some models of spacetime, such as Snyder’s quantized

spacetime (Snyder, 1947a, 1947b), suggest that continuous spacetime models

may be too simplistic. Snyder’s work motivated our particular interest in DT

as an alternative to CT.

Point (iii) The principles we shall use are not controversial, apart from the single

step of replacing the temporal continuum with a discrete set. All the standard

principles of classical mechanics and QM adapted to DT are used in this

book.

Point (iv) As for what DT can do for us, that remains to be seen. There are

some nice things it can do for us, such as provide a natural (to the theory)

cutoff in particle momentum. This may help cure some of the problems in CT

quantum field theory, where the lack of any bound to linear momentum leads

to divergences in loop integrals. This will be discussed in this book.

1.2 The architecture of time

We come now to a question central to this book: what is the architecture or

structure of time? What sort of mathematical model best fits our intuitive notion

of time?
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6 Introduction

This model or architecture should mirror the view of what we believe time

represents and should incorporate into its rules whatever properties we believe

time has. The architecture of time depends, therefore, on our beliefs about the

Universe and how it runs. For instance, we might not believe that there is a

single continuous strand of time such as Newton’s absolute time (Newton, 1687).

We might think there are many parallel strands of time each associated with a

particular observer. Modelling such a ‘multi-fingered architecture’ would require

the mathematics of parallel computer processing rather than the mathematics

associated with single-processor computers.

In the following subsections we review several of the properties that the time

concept should incorporate.

1.2.1 Events

Whatever model we decide on, it is a safe bet that we will incorporate into it

the concept of an event.

Definition 1.1 An event is a well-defined, localized region of time and space,

relative to a given observer.

Without the concept of an event, it would be impossible to discuss atoms

and molecules, for instance. In general, events are assigned specific times and

locations relative to a given observer. The existence of events is a supposition

predicated on our world view. Whilst some quantum theorists view the Universe

holistically as an enormous entangled state, quantum separability seems essential

(Eakins and Jaroszkiewicz, 2003).

In particular, we should be aware of any hidden assumptions that we might be

making about the nature of physical reality, as classically conditioned theorists

find to their cost when they try to explain experiments such as the famous

double-slit experiment (Tonomura and Ezawa, 1989). The quantum explanation

of this experiment is at odds with the metaphysical classical explanation that an

electron impacting on the final detecting screen had taken one or other of two

possible paths on its journey from the source to that detecting screen. Quantum

mechanically, we are not entitled to hold such a view. Therefore the following

question arises: has a definite path been taken or not?

Classically we would have to believe that it had, because in our mind’s eye

we imagine a classical particle always follows a unique, continuous trajectory

from source to screen. Quantum principles, however, require us to say nothing

about this, if we have not attempted to detect anything about which path was

taken.

For reasons such as this we have included the reference to an observer in

Definition 1.1, for, if we did not, we would be implying that events could exist

and things could happen regardless of who or what was observing them. That is

a very classical, absolutist perspective on reality.
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1.2 The architecture of time 7

1.2.2 Temporal ordering

Suppose now that an observer had detected two or more events. How would that

observation be modelled mathematically? In addition to any other attributes

such as position, the observer would assign a time to each event, that is, a real

number, which we call the assigned time (relative to that observer). Now, a

crucial property of real numbers is that they are an ordered set. If we pick any

two real numbers x and y, then only one of the following three statements can

be true: x is less than y, or x equals y, or x is greater than y.

This means that there is temporal ordering relating any two observed events.

If event A is assigned a time tA and event B is assigned a time tB, then tA < tB,

or tA = tB, or tA > tB. These mathematical statements are interpreted physically

as follows. In case (i) we say that A is earlier than B (or, equivalently, that B is

later than A), whilst in case (ii) we say that A and B are simultaneous.

When SR emerged into the general consciousness of physicists, a significant

conceptual problem for theorists conditioned to believe in Newtonian absolute

time (Newton, 1687) was that simultaneity in SR is contextual. In contrast to

Newtonian mechanics, where all classical observers agree on the relative temporal

ordering of all events, SR asserts that A could be earlier than B relative to one

observer and later than B relative to another.

The loss of absolute simultaneity in SR concerns two or more observers. We

may bypass this issue by the simple method of restricting our attention to a

single observer. In that context, all observed events have a well-defined temporal

ordering relative to that observer.

1.2.3 Causality

A new factor now enters into the discussion: cause and effect. Suppose we have

two events A and B, with A earlier than B according to some observer. That

observer may have reason to believe in a causal link between A and B, in that

there may be evidence in support of the notion that A caused B, or at least had

some influence on B.

The notion of causality is notoriously difficult to pin down, principally because

it requires us to contemplate counterfactuality, that is, valid logical conclusions

that are based on premises known to be false. The ‘mark-method’ of Reichenbach

(1958) demonstrates the point clearly (Whitrow, 1980). Reichenbach considers

two events A and B, with A regarded as the cause of B. This relationship is

denoted by AB, with the left–right ordering implying causal association. Now

suppose that what happened at A had been slightly altered. We indicate this

by marking the symbol A with an asterisk, i.e., A is replaced by A∗. Then one

of two things could happen: either B is unchanged or else B is changed to B∗.

Reichenbach asserts that the combinations AB, AB∗ and A∗B∗ are consistent

with A being the cause of B, but A∗B is inconsistent with A being the cause of B.
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8 Introduction

The problem with this line of reasoning is that it is based on classical counter-

factuality, which assumes counterfactual arguments are empirically meaningful.

This is not the case in QM. A much quoted dictum attributed to John A.

Wheeler states the quantum position elegantly: ‘No elementary phenomenon

is a phenomenon until it is an observed (or registered) phenomenon’ (Wheeler,

1979).

1.2.4 The dimensions of time

Time is generally regarded as having a single dimension, but the question of

physics based on two or more times has been discussed by experimentalists and

theorists. We give an example of each.

Several decades ago, the astrophysicist Tifft measured the red shift of distant

galaxies and came to the conclusion that redshifts were ‘quantized’; that is,

they appeared to be clustered into groups or bands. Subsequently, he developed

an interpretation of his data that was based on a model of three-dimensional

time. In his model, he asserted that ‘each galaxy evolves along a 1-d timeline

such that within a given standard galaxy standard 4-d space-physics is satisfied.

The model deviates from ordinary physics by associating different galaxies with

independent timelines within a general 3-d temporal space.’ (Tifft, 1996). In the

model, temporal quantization, involving photon exchange between galaxies and

observers, was invoked to account for the discrete structures in his redshift data.

It would be unfair to criticize this approach since it is no more than an attempt

to fit an unusual mathematical model to actual observations. Unfortunately,

although Tifft’s data were consistent with some subsequent observations, the

most recent analysis concludes that there is no periodic structure in the redshift

data (Schneider et al., 2007). Therefore, the idea that time may be part of a

three-dimensional continuum appears incorrect.

Tifft’s model incorporates a serial time of the form that we are used to, since

a worldline in any dimensional spacetime can be parametrized by a single real

variable, which can be called a time.

We come now to a theoretical discussion by the theorist Tegmark of the

mathematical consequences of having a genuine multi-dimensional form of time.

Tegmark analyses a flat spacetime with p time dimensions modelled by coor-

dinates t ≡ {t1, t2, . . . , tp} and q spatial dimensions modelled by coordinates

x ≡ {x1, x2, . . . , xq} (Tegmark, 1997). The important property here is the signa-

ture of the metric, denoted by (p, q). Drawing on experience in standard-signature

(1, 3) SR spacetime, or Minkowski spacetime, Tegmark’s discussion focuses on a

second-order partial differential wave equation for a spinless relativistic field ϕ

of the form
{

p
∑

i=1

∂2

∂ti ∂ti
−

q
∑

j=1

∂2

∂xj ∂xj

}

ϕ(t,x) + V (ϕ(t,x)) = 0, (1.1)
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1.2 The architecture of time 9

where V is some self-interaction term, such as a mass term, which does

not depend on any derivatives of the field ϕ. The point here is the sign

difference between the timelike coordinates {t1, t2, . . . , tp} and the spacelike coor-

dinates {x1, x2, . . . , xq} in (1.1), which arises from an assumed line element of

the form

ds2 = (dt1)
2

+ · · · + (dtp)2 − (dx1)2 − · · · − (dxq)2. (1.2)

The sign change in (1.2) is of the greatest importance to the modelling and inter-

pretation of physics. In the case p = 0, referred to as the elliptic case, observers

have no predictive power (Tegmark, 1997). There are no lightcones and no

timelike worldlines in such spaces. This case corresponds to the imaginary-time

scenario discussed by Minkowski in 1908 (Minkowski, 1908), which is frequently

invoked in various branches of cosmology and particle physics in attempts to reg-

ularize mathematical divergences. There are numerous issues about this scenario

that should cause concern (Jaroszkiewicz, 2002).

In the case of our Universe as we believe it to be, p = 1 and q = 3. Then the

above differential equation is an example of a hyperbolic differential equation

(Arfken, 1985). This case models the physically reasonable situation where an

observer can use initial data over an initial spacelike hypersurface in relativistic

spacetime to predict the final data over a final spacelike hypersurface. There are

lightcones and timelike worldlines in such a spacetime. Tegmark concludes that

the case q < 3 gives too simple a model and the case q > 3 leads to instability

in the physics.

The remaining possibility, p > 1, is known as the ultrahyperbolic regime and

leads to unpredictability.

Tegmark’s analysis is based on what observers might see or be unable to see

for various values of p and q, the value p = 1 being consistent with information

flow in the form we are used to. In other words, observational criteria are used

to decide what the spacetime architecture of the Universe might be.

There is no principle in GR that forbids a change of signature, apart from

considerations such as those of Tegmark. The possibility that the signature

changes dynamically has been considered. For instance, particle production from

signature change from (1, 1) to (0, 2) was discussed by Dray et al. (1991).

1.2.5 Manifold time versus process time

The question raised earlier, namely that of whether time is an object or a process,

leads to two mutually exclusive interpretations of time referred to as manifold

time and process time, respectively (Encyclopædia Britannica, 2000). Manifold

time regards time as a geometrical quantity, an objective thing having a single

dimension and all the ordering properties of the real line. Manifold time repre-

sents an absolutist approach to time. An associated concept is the block universe

(Price, 1997), which models spacetime as an object.
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10 Introduction

On the other hand, process time models time contextually: time is not anything

that exists by itself but is an attribute of physical processes, a manifestation of

change. Since change can be defined only relative to the memories of observers or

their equivalent, process time implies the presence of observers and is compatible

with and consistent with relational QM (Rovelli, 1996).

The difference between the manifold time and process time perspectives is

important to us in this book. If time is indeed best described as part of a mono-

lithic four-dimensional continuum, then discretizing time requires us to choose a

preferred frame of reference.

On the other hand, if time is a manifestation or résumé of what a given observer

experiences, then discretization of time need be considered only for that observer.

An analogy can be drawn here with electron spin. In classical mechanics (CM),

angular momentum is a continuous variable and a spinning particle can have

any value of angular momentum. But any given observer detecting for quantized

electron spin in a Stern–Gerlach experiment (Gerlach and Stern, 1922a, 1922b)

can assign to it only one of two possible quantum spin values, a discretization

of continuous angular momentum sometimes referred to as spatial quantization.

The classical spatial continuum still exists in the formalism because the orienta-

tion parameters of the apparatus are not quantized, i.e., the direction in space

of the main magnetic field axis is classical and can take on any value in QM.

The history of physics contains two important examples analogous to the

manifold–process time debate: (i) classical thermodynamics treats temperature

and entropy as classical attributes of continuous matter, whereas statistical

physics interprets both of these concepts as statistical attributes of ensembles

of systems in thermal equilibrium; and (ii) heat is interpreted as a substance in

the theory of phlogiston, whereas the modern view is to regard it as part of a

process.

An example of such an idealogical conflict in mathematics comes from proba-

bility theory, where the frequentist view of probability as an absolute quality of

a random variable that can be measured approximately by sampling contrasts

with the Bayesian view of probability as conditioned by prior information, i.e.,

a contextual approach to probability.

1.2.6 Multi-fingered time

Once we think of time as a manifestation of processes involving observers, we are

naturally led to the idea that there may be as many times as there are observers.

In SR, this is a well-understood feature of proper time: different observers fol-

lowing different worldlines experience time in a local, path-dependent way. This

is the source of the so-called twin paradox, which is a paradox only if time is

interpreted in the wrong way.

The multi-fingered time interpretation is compatible with relational QM

(Rovelli, 1996). Moreover, time as it relates to the process of observation is
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1.2 The architecture of time 11

naturally discrete: an observer prepares a quantum state by an initial time

and registers outcome information at a subsequent final time. These times are

reasonably well defined relative to that observer.

1.2.7 Temporal continuity

In addition to the above interpretational issues, there arises the question of

which specific mathematical structures should be used in the modelling of time.

Immediately we are faced with two choices: is time continuous or discrete? In CT,

time is represented by a continuous parameter usually ranging over some interval

Iif ≡ [ti, tf ] of the real line, where ti is the initial time and tf > ti is the final

time of some experiment. The universal convention in physics, which we follow

in this book, is that, given two different values ti and tf of time, the larger value

represents a physically later time in the laboratory, with ‘later’ being associated

with the observed direction of the expansion and evolution of the Universe. On

the other hand, DT is modelled as a sequence {tn} of real numbers, labelled by

an integer n running from an initial value M to some final value N > M .

CT remains a powerful and popular model, which from the time of Newton

onwards has been thoroughly explored and exploited. On the other hand, DT

is still being developed. All the indications are that the importance of DT is

growing, particularly on account of the impossibility of modelling CT exactly on

a computer. Many CT models are approximated by appropriate discretizations

of time so that they can be modelled on computers.

Our aim in this book is to discuss DT in those areas with which we are most

familiar, but the importance of CT should not be overlooked. CT will be a central

feature in much of our discussion and frequently used alongside DT as a parallel

component of the discussion. It is possible to discuss the two views of time in the

same context, provided that care is taken. To illustrate what we mean, consider

a stone skipping over the surface of a pond. The pond’s surface can be regarded

as a continuum, but where the stone bounces off that surface is described as a

discrete set.

Because CT is a central element of Newtonian CM, we may reasonably assume

it is familiar to the reader. However, we shall review some of its basic features

in order to highlight the differences between it and DT.

To understand CT we should understand the definition of a linear continuum.

A continuum is a space, i.e. a set with certain properties. We need not concern

ourselves with the nature of the points of the space.

Definition 1.2 A partially ordered set, or poset, S, is a set with a binary

relation denoted by �, such that we have

(i) reflexivity: for every element x in S, x � x;

(ii) antisymmetry: if x and y are elements of S such that x � y and y � x,

then x = y; and
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12 Introduction

(iii) transitivity: if x, y and z are elements of S such that x � y and y � z,

then x � z.

Posets are important in SR because of the following exotic possibility: there

may be elements u, v for which the binary relation � is not defined. Minkowski

spacetime M4, the four-dimensional spacetime of SR, has a Lorentzian metrical

lightcone structure that creates this possibility. We can pick pairs of different

events U, V in M4 such that, in some inertial frames, the times tU , tV assigned

to them respectively satisfy tU � tV , and such that, in other inertial frames, we

have t′V � t′U . Such pairs of events will be called relatively spacelike pairs.

We shall return to posets in Chapter 29, when we discuss causal sets.

To define a linear continuum, we need extra conditions. In particular, we need

to eliminate the possibility of relatively spacelike relationships by introducing an

extra condition, which turns a poset into a totally ordered set.

Definition 1.3 A linearly ordered or totally ordered set S is a poset with

the additional property of

(iv) totality: for any two elements x, y of S, then x � y or y � x.

The totality property of a totally ordered set essentially places a veto on

finding a spacelike pair in S. An additional binary relation can be defined for

each totally ordered set.

Definition 1.4 A strict total order on a totally ordered set is a binary

relation < such that x < y if and only if x � y and x �= y.

Before we define a linear continuum, we need to define the concept of least

upper bound.

Definition 1.5 Let S be a subset of a poset X. Then an element b of X is an

upper bound for S if, for every element x of S, x � b.

Definition 1.6 Let S be a subset of a poset X. If there exists an element b0

of X such that b0 � b for every upper bound of S, then b0 is the least upper

bound or supremum for S.

We note that the supremum, if it exists, is unique.

We now have the structures needed to define a linear continuum.

Definition 1.7 A linear continuum is a non-empty totally ordered set S such

that

(1) S has the least upper bound property; and

(2) given any two different elements x and y of S such that x < y, there always

exists another, distinct element z in S such that x < z and z < y (we write

x < z < y).

Property (2) is at the heart of the difference between CT and DT. Suppose

we have two values of time, t1 and t2, such that t1 < t2. If we know we are
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