

Modern Particle Physics

Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics.

Physical theory is introduced in a straightforward manner with step-by-step mathematical derivations throughout. Fully worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject

Online resources available at www.cambridge.org/MPP feature password-protected fully worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book.

Mark Thomson is Professor in Experimental Particle Physics at the University of Cambridge. He is an experienced teacher and has lectured particle physics at introductory and advanced levels. His research interests include studies of the electroweak sector of the Standard Model and the properties of neutrinos.

Modern Particle Physics

MARK THOMSON

University of Cambridge

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/MPP

© M. Thomson 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 4th printing 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing-in-Publication data
Thomson, Mark, 1966–
Modern particle physics / Mark Thomson.
pages cm
ISBN 978-1-107-03426-6 (Hardback)

1. Particles (Nuclear physics)—Textbooks. I. Title.
QC793.2.T46 2013
539.7'2–dc23 2013002757

Additional resources for this publication at www.cambridge.org/MPP

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

ISBN 978-1-107-03426-6 Hardback

> To Sophie, Robert and Isabelle for their love, support and endless patience

Contents

P	reface	page x111		
A	cknowled	gements	XV	
1	Introduct	ion	1	
٠				
		teractions of particles with matter	1 13	
		ollider experiments	22	
		easurements at particle accelerators	25	
	Summa	-	27	
	Problem	•	28	
2	Underlying concepts		30	
	2.1 U	nits in particle physics	30	
	2.2 Sp	pecial relativity	33	
	2.3 No	on-relativistic quantum mechanics	40	
	Summa	ry	54	
	Problen	ns	55	
3	Decay rates and cross sections		58	
	3.1 Fe	ermi's golden rule	58	
	3.2 Pł	hase space and wavefunction normalisation	59	
	3.3 Pa	article decays	66	
	3.4 In	teraction cross sections	69	
	3.5 D	ifferential cross sections	72	
	Summary		77	
	Problem	ns	78	
4	The Dirac equation		80	
	4.1 Tl	ne Klein–Gordon equation	80	
	4.2 Tl	ne Dirac equation	82	
	4.3 Pr	obability density and probability current	85	
	4.4 *5	Spin and the Dirac equation	86	
	4.5 Co	ovariant form of the Dirac equation	89	

۷ij

viii	ontents

	4.6 Solutions to the Dirac equation	92
	4.7 Antiparticles	96
	4.8 Spin and helicity states	104
	4.9 Intrinsic parity of Dirac fermions	108
	Summary	111
	Problems	112
5	Interaction by particle exchange	114
	5.1 First- and second-order perturbation theory	114
	5.2 Feynman diagrams and virtual particles	118
	5.3 Introduction to QED	121
	5.4 Feynman rules for QED	124
	Summary	127
	Problems	127
6	Electron—positron annihilation	128
	6.1 Calculations in perturbation theory	128
	6.2 Electron–positron annihilation	130
	6.3 Spin in electron–positron annihilation	139
	6.4 Chirality	140
	6.5 *Trace techniques	144
	Summary	157
	Problems	158
7	Electron—proton elastic scattering	160
	7.1 Probing the structure of the proton	160
	7.2 Rutherford and Mott scattering	161
	7.3 Form factors	166
	7.4 Relativistic electron–proton elastic scattering	168
	7.5 The Rosenbluth formula	171
	Summary	176
	Problems	176
8	Deep inelastic scattering	178
	8.1 Electron–proton inelastic scattering	178
	8.2 Deep inelastic scattering	183
	8.3 Electron–quark scattering	186
	8.4 The quark–parton model	189
	8.5 Electron–proton scattering at the HERA collider	199
	8.6 Parton distribution function measurements	202
	Summary	203
	Problems	204

ix Contents

9	Symmetries and the quark model	207
	9.1 Symmetries in quantum mechanics	207
	9.2 Flavour symmetry	211
	9.3 Combining quarks into baryons	215
	9.4 Ground state baryon wavefunctions	219
	9.5 Isospin representation of antiquarks	221
	9.6 SU(3) flavour symmetry	223
	Summary	238
	9.7 *Addendum: Flavour symmetry revisited	239
	Problems	240
10	Quantum Chromodynamics (QCD)	242
	10.1 The local gauge principle	242
	10.2 Colour and QCD	245
	10.3 Gluons	247
	10.4 Colour confinement	248
	10.5 Running of α_S and asymptotic freedom	253
	10.6 QCD in electron–positron annihilation	259
	10.7 Colour factors	264
	10.8 Heavy mesons and the QCD colour potential	271
	10.9 Hadron–hadron collisions	274
	Summary	282
	Problems	283
11	The weak interaction	285
	11.1 The weak charged-current interaction	285
	11.2 Parity	285
	11.3 $V - A$ structure of the weak interaction	290
	11.4 Chiral structure of the weak interaction	293
	11.5 The W-boson propagator	295
	11.6 Helicity in pion decay	298
	11.7 Experimental evidence for $V - A$	303
	Summary	304
	Problems	304
12	The weak interactions of leptons	307
	12.1 Lepton universality	307
	12.2 Neutrino scattering	309
	12.3 Neutrino scattering experiments	319
	12.4 Structure functions in neutrino interactions	322
	12.5 Charged-current electron–proton scattering	324

Contents

	Summary	327
	Problems	327
13	Neutrinos and neutrino oscillations	329
	13.1 Neutrino flavours	329
	13.2 Solar neutrinos	330
	13.3 Mass and weak eigenstates	336
	13.4 Neutrino oscillations of two flavours	338
	13.5 Neutrino oscillations of three flavours	342
	13.6 Neutrino oscillation experiments	351
	13.7 Reactor experiments	353
	13.8 Long-baseline neutrino experiments	357
	13.9 The global picture	360
	Summary	361
	Problems	362
14	CP violation and weak hadronic interactions	364
	14.1 CP violation in the early Universe	364
	14.2 The weak interactions of quarks	365
	14.3 The CKM matrix	368
	14.4 The neutral kaon system	371
	14.5 Strangeness oscillations	384
	14.6 B-meson physics	394
	14.7 CP violation in the Standard Model	402
	Summary	405
	Problems	405
15	Electroweak unification	408
	15.1 Properties of the W bosons	408
	15.2 The weak interaction gauge group	415
	15.3 Electroweak unification	418
	15.4 Decays of the Z	424
	Summary	426
	Problems	426
16	Tests of the Standard Model	428
	16.1 The Z resonance	428
	16.2 The Large Electron–Positron collider	434
	16.3 Properties of the W boson	442
	16.4 Quantum loop corrections	448
	16.5 The top quark	450

xi Contents

Sum	mary	456	
Prob	lems	457	
17 The F	iggs boson	460	
17.1	The need for the Higgs boson	460	
17.2	Lagrangians in Quantum Field Theory	461	
17.3	Local gauge invariance	467	
17.4	Particle masses	469	
17.5	The Higgs mechanism	470	
17.6	Properties of the Higgs boson	487	
17.7	The discovery of the Higgs boson	490	
Sum	mary	493	
17.8	17.8 *Addendum: Neutrino masses		
Prob	lems	497	
18 The S	tandard Model and beyond	499	
18.1	The Standard Model	499	
18.2	Open questions in particle physics	501	
18.3	Closing words	510	
Appendi	A The Dirac delta-function	512	
A.1	Definition of the Dirac delta-function	512	
	Fourier transform of a delta-function	513	
A.3	Delta-function of a function	513	
Appendi	B Dirac equation	515	
B.1	Magnetic moment of a Dirac fermion	515	
B.2	Covariance of the Dirac equation	517	
	Four-vector current	520	
Prob	lems	521	
Appendi	C The low-mass hadrons	523	
Appendi	D Gauge boson polarisation states	525	
D.1	Classical electromagnetism	525	
D.2	Photon polarisation states	527	
D.3	Polarisation states of massive spin-1 particles	528	
D.4	Polarisation sums	530	
Appendi	E Noether's theorem	535	
Prob	lem	536	

xii	Contents		
	Appendix F	Non-Abelian gauge theories	537
	References		543
	Further reading		545
	Index		546

Preface

The Standard Model of particle physics represents one of the triumphs of modern physics. With the discovery of the Higgs boson at the LHC, all of the particles in the Standard Model have now been observed. The main aim of this book is to provide a broad overview of our current understanding of particle physics. It is intended to be suitable for final-year undergraduate physics students and also can serve as an introductory graduate-level text. The emphasis is very much on the modern view of particle physics with the aim of providing a solid grounding in a wide range of topics.

Our current understanding of the sub-atomic Universe is based on a number of profound theoretical ideas that are embodied in the Standard Model of particle physics. However, the development of the Standard Model would not have been possible without a close interplay between theory and experiment, and the structure of this book tries to reflects this. In most chapters, theoretical concepts are developed and then are related to the current experimental results. Because particle physics is mostly concerned with fundamental objects, it is (in some sense) a relatively straightforward subject. Consequently, even at the undergraduate level, it is quite possible to perform calculations that can be related directly to the recent experiments at the forefront of the subject.

Pedagogical approach

In writing this textbook I have tried to develop the subject matter in a clear and accessible manner and thought long and hard about what material to include. Whilst the historical development of particle physics is an interesting topic in its own right, it does not necessarily provide the best pedagogical introduction to the subject. For this reason, the focus of this book is on the contemporary view of particle physics and earlier experimental results are discussed only to develop specific points. Similarly, no attempt is made to provide a comprehensive review of the many experiments, instead a selection of key measurements is used to illustrate the theoretical concepts; the choice of which experimental measurements to include is primarily motivated by the pedagogical aims of this book.

This textbook is intended to be self-contained, and only a basic knowledge of quantum mechanics and special relativity is assumed. As far as possible, I have tried to derive everything from first principles. Since this is an introductory textbook, the

xiii

xiv Preface

mathematical material is kept as simple as possible, and the derivations show all the main steps. I believe that this approach enables students relatively new to the subject to develop a clear understanding of the underlying physical principles; the more sophisticated mathematical trickery can come later. Calculations are mostly performed using helicity amplitudes based on the explicit Dirac—Pauli representation of the particle spinors. I believe this treatment provides a better connection to the underlying physics, compared to the more abstract trace formalism (which is also described). Some of the more-challenging material is included in optional *starred* sections. When reading these sections, the main aim should be to understand the central concepts, rather than the details.

The general structure of this book is as follows: Chapters 1–5 introduce the underlying concepts of relativistic quantum mechanics and interaction by particle exchange; Chapters 6–12 describe the electromagnetic, strong and weak interactions; and Chapters 13–18 cover major topics in modern particle physics. This textbook includes an extensive set of problems. Each problem is graded according to the *relative* time it is likely to take. This does not always reflect the difficulty of the problem and is meant to provide a guide to students, where for example a shorter graded problem should require relatively little algebra. Hints and outline solutions to many of the problems are available at www.cambridge.org/MPP.

For instructors

This book covers a wide range of topics and can form the basis of a long course in particle physics. For a shorter course, it may not be possible to fit all of the material into a single semester and certain sections can be omitted. In this case, I would recommend that students read the introductory material in Chapters 1–3 as preparation for a lecture course. Chapters 4–8, covering the calculations of the $e^+e^- \to \mu^+\mu^-$ annihilation and e^-p scattering cross sections, should be considered essential. Some of the material in Chapter 9 on the quark model can be omitted, although not the discussion of symmetries. The material in Chapter 14 stands alone and could be omitted or covered only partially. The material on electroweak unification and the tests of the Standard Model, presented in Chapters 15 and 16, represents one of the highlights of modern particle physics and should be considered as core. The chapter describing the Higgs mechanism is (necessarily) quite involved and it would be possible to focus solely on the properties of the Higgs boson and its discovery, rather than the detailed derivations.

Fully worked solutions to all problems are available to instructors, and these can be found at www.cambridge.org/MPP. In addition, to aid the preparation of new courses, PowerPoint slides covering most of the material in this book are available at the same location, as are all of the images in this book.

Acknowledgements

I would like to thank colleagues in the High Energy Physics group at the Cavendish Laboratory for their comments on early drafts of this book. This book is based on my final-year undergraduate lecture course in the Physics Department at the University of Cambridge and as such it represents an evolution of earlier courses; for this reason I am indebted to R. Batley and M. A. Parker who taught the previous incarnations. For their specific comments on a number of the more technical chapters, I am particularly grateful to A. Bevan, B. Webber and J. Wells.

For the permissions to reproduce figures and to use experimental data I am indebted to the following authors and experimental collaborations:

- R. Felst and the JADE Collaboration for Figure 6.7;
- S. Wojcicki and the DELCO Collaboration for Figure 6.12;
- M. Breidenbach for Figure 8.3;
- S. Schmitt and the H1 Collaboration for Figures 8.13 and 12.14;
- D. Plane and the OPAL Collaboration for Figures 10.12, 10.19, 16.8 and 16.9;
- S. Bethke for Figure 10.14;
- C. Kiesling and the CELLO Collaboration for Figure 10.16;
- C. Vellidis, L. Ristori and the CDF Collaboration for Figures 10.29, 16.14 and 16.21:
- J. Incandela and the CMS Collaboration for Figures 10.32, 17.18 and 17.19;
- F. Gianotti and the ATLAS Collaboration for Figures 10.30, 17.18 and 17.19;
- J. Steinberger, F. Dydak and the CDHS Collaboration for Figure 12.10;
- R. Bernstein and the NuTeV Collaboration for Figure 12.12;
- M. Pinsonneault for Figure 13.3;
- Y. Suzuki and the Super-Kamiokande Collaboration for Figures 13.4 and 13.6;
- N. Jelley, R.G.H. Robertson and the SNO Collaboration for Figure 13.8;
- K-B. Luk, Y. Wang and the Daya Bay Collaboration for Figure 13.19;
- K. Inoue and the KamLAND Collaboration for Figure 13.20;
- R. Patterson for Figure 13.21;
- R. Plunkett, J. Thomas and the MINOS Collaboration for Figure 13.22;
- P. Bloch, N. Pavlopoulos and the CPLEAR Collaboration for Figures 14.14–14.16;
- L. Piilonen, H. Hayashii, Y. Sakai and the Belle Collaboration for Figure 14.21;
- M. Roney and the BaBar Collaboration for Figure 14.24;

χV

xvi

Acknowledgements

The LEP Electroweak Working Group for Figures 16.2, 16.5, 16.6 and 16.10; S. Mele and the L3 Collaboration for Figure 16.13.

I am grateful to the Durham HepData project, which is funded by the UK Science and Technologies Facilities Council, for providing the online resources for access to high energy physics data that greatly simplifying the production of a number of the figures in this book.

Every effort has been made to obtain the necessary permissions to reproduce or adapt copyrighted material and I acknowledge:

Annual Reviews for Figure 8.4;

The American Physical Society for Figure 6.12 from Bacino *et al.* (1978), Figure 7.7 from Hughes *et al.* (1965), Figure 7.8 from Sill *et al.* (1993) and Walker *et al.* (1994), Figure 8.3 from Breidenbach *et al.* (1969), Figure 8.4 from Friedman and Kendall (1972) and Bodek *et al.* (1979), Figure 8.14 from Beringer *et al.* (2012), Figure 10.29 from Abe *et al.* (1999), Figure 12.12 from Tzanov *et al.* (2006), Figure 13.3 from Bahcall and Pinsonneault (2004), Figure 13.6 from Fukada *et al.* (2001), Figure 13.8 from Ahmad *et al.* (2002), Figure 13.19 from An *et al.* (2012), Figure 13.20 from Abe *et al.* (2008), Figure 13.22 from Adamson *et al.* (2011), Figure 14.21 from Abe *et al.* (2005), Figure 14.24 from Aubert *et al.* (2007), Figure 16.14 from Aaltonen *et al.* (2012) and Figure 16.21 from Aaltonen *et al.* (2011);

Elsevier for Figure 8.2 from Bartel *et al.* (1968), Figures 8.11, 8.12 and 8.18 from Whitlow *et al.* (1992), Figure 10.16 from Behrend *et al.* (1987), Figures 16.2, 16.5 and 16.6 from LEP and SLD Collaborations (2006);

Springer for Figure 6.7 from Bartel *et al.* (1985), Figure 10.12 from Abbiendi *et al.* (2004), Figure 10.14 from Bethke (2009), Figure 12.10 from de Groot *et al.* (1979), Figure 12.14 from Aaron *et al.* (2012), Figure 14.15 from Angelopoulos *et al.* (2001), Figure 14.16 from Angelopoulos *et al.* (2000), Figure 16.8 from Abbiendi *et al.* (2001) and Figure 16.13 from Achard *et al.* (2006);

CERN Information Services for Figures 10.32, 17.18 and 17.19.