

Mechanisms and Games for Dynamic Spectrum Allocation

Presenting state-of-the-art research into methods of wireless spectrum allocation based on game theory and mechanism design, this innovative and comprehensive book provides a strong foundation for the design of future wireless mechanisms and spectrum markets

Prominent researchers showcase a diverse range of novel insights and approaches to the increasing demand for limited spectrum resources, with a consistent emphasis on theoretical methods, analytical results, and practical examples. Covering fundamental underlying principles, licensed spectrum sharing, opportunistic spectrum sharing, and wider technical and economic considerations, this singular book will be of interest to academic and industrial researchers, wireless industry practitioners, and regulators interested in the foundations of cutting-edge spectrum management

Tansu Alpcan is a Senior Lecturer in the Department of Electrical and Electronic Engineering at The University of Melbourne, and co-author of *Network Security: A Decision and Game-Theoretic Approach* (2011).

Holger Boche is a Professor in the Institute of Theoretical Information Technology, Technische Universität München, and a Fellow of the IEEE.

Michael L. Honig is a Professor in the Department of Electrical Engineering and Computer Science at Northwestern University. He is a Fellow of the IEEE.

H. Vincent Poor is the Dean of Engineering and Applied Science and Michael Henry Strater University Professor of Electrical Engineering at Princeton University. He is a co-author of *Principles of Cognitive Radio* (2012), and a Fellow of the IET and the IEEE

"In the 21st century, the radio-frequency spectrum is a highly valuable resource. Its allocation is an economic problem, requiring a deep understanding of wireless communications engineering. This book, with contributions from many of the most prominent experts, is a must-have for anyone interested in this new, exciting, inter-disciplinary field."

Stephen Hanly
CSIRO-Macquarie University Chair in Wireless Communications
Macquarie University, Australia

Mechanisms and Games for Dynamic Spectrum Allocation

TANSU ALPCAN
The University of Melbourne

HOLGER BOCHE
Technische Universität München

MICHAEL L. HONIG Northwestern University

H. VINCENT POOR Princeton University

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York.

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107034129

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Mechanisms and games for dynamic spectrum allocation / [compiled by] Tansu Alpcan, University of Melbourne, Holger Boche, Technische Universität München, Michael L. Honig, Northwestern University, H. Vincent Poor, Princeton University pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03412-9 (hardback)

1. Wireless communication systems—Management. 2. Radio frequency allocation. 3. Signal theory (Telecommunication) 4. Game theory. I. Alpcan, Tansu, 1975- editor of compilation.

TK5103.2.M437 2013 384.54 524015193-dc23

2013044140

ISBN 978-1-107-03412-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Cont	tributors	page xv11
	Prefe	ace	xxi
Part I	Theoretic	al Fundamentals	1
1		es and mechanisms for networked systems: incentives and algorithms (umar Chorppath, Tansu Alpcan, and Holger Boche	3
	1.1	Introduction	3
	1.2	System model	6
	1.3	Interference and utility function models	8
	1.4	Pricing mechanisms for multi-carrier wireless systems	10
		1.4.1 Net utility maximization	12
		1.4.2 Alternative designer objectives	15
	1.5	Learning in pricing mechanisms	17
	1.6	Auction-based mechanisms	19
	1.7	Discussion and open problems	28
	Refe	erences	28
2		petition in wireless systems via Bayesian interference games n Adlakha, Ramesh Johari, and Andrea Goldsmith	32
	2.1	Introduction	32
	2.2	Static Gaussian interference games	35
		2.2.1 Preliminaries	35
		2.2.2 The Gaussian interference game with unknown channel gains	36
		2.2.3 Bayesian Gaussian interference game	38
	2.3	Sequential interference games with incomplete information	41
		2.3.1 A two-stage sequential game	41
		2.3.2 A sequential game with entry	44
	2.4	Repeated games with entry: the reputation effect	45
		2.4.1 A repeated SBGI-E game	46
		2.4.2 Sequential equilibrium of the repeated game	47
	2.5	Conclusion	49

vi Cont	ents
----------------	------

	2.6	Appendix	50
	Refe	rences	55
3	Reac	ting to the interference field	57
		ane Debbah and Hamidou Tembine	
	3.1	Introduction	57
		3.1.1 Spectrum access as a game	57
		3.1.2 Cognitive access game	57
		3.1.3 Mean-field game approach	58
		3.1.4 Interference management in large-scale networks	58
		3.1.5 Objectives	59
		3.1.6 Structure of the chapter	59
		3.1.7 Notations	60
	3.2	Wireless model	60
		3.2.1 Channel model	61
		3.2.2 Mobility model	62
		3.2.3 Path-loss model	62
		3.2.4 Remaining energy dynamics	63
		3.2.5 Queue dynamics	63
		3.2.6 SINR model	63
	3.3	Game-theoretic formulations	64
	3.4	Reaction to the interference field	64
		3.4.1 Introduction to mean-field games	64
		3.4.2 The interference field	67
	3.5	Mean-field stochastic game	67
		3.5.1 On a game with one-and-half player	68
		3.5.2 Strategies and payoffs	68
		3.5.3 Mean-field equilibrium	69
		3.5.4 Structure of the optimal strategy	69
		3.5.5 Performance	70
		3.5.6 Mean-field deterministic game	70 71
	3.6	3.5.7 Hierarchical mean-field game Discussions	71
	3.7	Conclusions	72
	3.8	Open issues	72
		-	
		nowledgements	73 73
	Kelei	tences	73
4		asian model for resource allocation and transceiver design in ference networks	75
		d A. Jorswieck and Rami Mochaourab	
	4.1	Consumer theory	76

			Contents	vii
		4.1.1	Standard consumer theory	77
		4.1.2	Consumer theory for utility $\alpha - \beta x_1 + \gamma x_1 x_2$	79
		4.1.3	Example 1: Protected and shared bands	80
		4.1.4	Example 2: Two-user MISO interference channel	85
		4.1.5	Example 3: Multi-carrier interference channel	89
			Discussion and comparison of consumer models	91
	4.2	Walra	sian market model	92
		4.2.1	Existence of a Walrasian equilibrium	92
		4.2.2	Uniqueness of the Walrasian equilibrium	94
		4.2.3	Convergence of a tâtonnement process	95
		4.2.4	Efficiency of a Walrasian equilibrium	95
		4.2.5	Example 1: Two-user protected and shared bands	96
		4.2.6	Example 2: Two-user MISO interference channel	99
		4.2.7	Example 3: MC interference channel	103
	Refe	rences		106
5	impl	ementa	ation and spectrum sharing in wireless networks: an tion theory approach shutosh Nayyar, Shrutivandana Sharma, and Demosthenis Teneketzis	108
	5.1	Introd	luction	108
			Chapter organization	109
	5.2		is implementation theory?	109
			Game forms/mechanisms	110
			Implementation in different types of equilibria	111
			Desirable properties of game forms	114
			Key results on implementation theory	115
	5.3		implementation for social welfare maximization and weak Pareto	118
		5.3.1	•	118
		5.3.2	The power allocation and spectrum sharing problem	121
			Constructing a game form for the decentralized power and	122
		5.3.4	spectrum allocation problem Social welfare maximizing power allocation in a single frequency band	125
		5.3.5	Weakly Pareto optimal power and spectrum allocation	127
			Interpreting Nash equilibrium	129
		5.3.7		130
	5.4		nue maximization	131
		5.4.1	The model	132
		5.4.2	Impossibility result from implementation theory	133
		5.4.3	Purely spectrum allocation problem	133
		5.4.4		140
		5.4.5	• •	140
			11	

viii Content	

	5.5	Conclusion and reflections	141
	Refe	prences	142
6		ormance and convergence of multi-user online learning Tekin and Mingyan Liu	145
	6.1	Introduction	145
	6.2		146
	6.3	Problem formulation and preliminaries	149
	0.0	6.3.1 Factors determining the channel quality/reward	149
		6.3.2 Channel models	150
		6.3.3 The set of optimal allocations	151
		6.3.4 Performance measure	153
		6.3.5 Degree of decentralization	153
	6.4	Main results	154
	6.5	Achievable performance with no feedback and iid channels	155
	6.6	Achievable performance with partial feedback and iid channels	160
	6.7	Achievable performance with partial feedback and synchronization for iid and Markovian channels	167
		6.7.1 Analysis of the regret of DLOE	170
		6.7.2 Regret analysis for iid channels	172
		6.7.3 Regret analysis for Markovian channels	175
	6.8	Discussion	179
		6.8.1 Strategic considerations	179
		6.8.2 Multiple optimal allocations	180
		6.8.3 Unknown suboptimality gap	182
	Ackı	nowledgements	183
	Refe	erences	183
7		e-theoretic solution concepts and learning algorithms M. Perlaza and Samson Lasaulce	185
	7.1	Introduction	185
	7.1		186
	7.2	A general dynamic spectrum access game	187
	1.3	Solutions concepts and dynamic spectrum access 7.3.1 Nash equilibrium	187
		7.3.2 Epsilon–Nash equilibrium	193
		7.3.3 Satisfaction equilibrium and efficient satisfaction equilibrium	195
		7.3.4 Generalized Nash equilibrium	197
		7.3.5 Coarse correlated equilibrium and correlated equilibrium	200
		7.3.6 Robust equilibrium	202
		7.3.7 Bayesian equilibrium and augmented equilibrium	204
		7.3.8 Evolutionary stable solutions	206
		· · · · · · · · · · · · · · · · · · ·	

		Contents	ix
		7.3.9 Pareto optimal action profiles and social optimal action profiles	210
		7.3.10 Other equilibrium concepts	210
	7.4	Learning equilibria	211
		7.4.1 Learning Nash equilibria	211
		7.4.2 Learning epsilon-equilibrium	215
		7.4.3 Learning coarse correlated equilibrium	217
		7.4.4 Learning satisfaction equilibrium	218
		7.4.5 Discussion	220
	7.5	Conclusion	222
	Refe	rences	223
Part II Cog	nitive	e radio and sharing of unlicensed spectrum	227
8	-	eration in cognitive radio networks: from access to monitoring Saad and H. Vincent Poor	229
	8.1	Introduction	229
		8.1.1 Cooperation in cognitive radio: mutual benefits and costs	229
	8.2	An overview of coalitional game theory	231
	8.3	Cooperative spectrum exploration and exploitation	233
		8.3.1 Motivation	233
		8.3.2 Basic problem	234
		8.3.3 Joint sensing and access as a cooperative game	238
		8.3.4 Coalition formation algorithm for joint sensing and access	240
		8.3.5 Numerical results	242
	8.4	Cooperative primary user activity monitoring	244
		8.4.1 Motivation	244
		8.4.2 Primary user activity monitoring: basic model	245
		8.4.3 Cooperative primary user monitoring	247
		8.4.4 Numerical results	254
	8.5	Summary	257
	Ackr	nowledgements	258
	Copy	right notice	259
	Refe	rences	259
9	-	erative cognitive radios with diffusion networks	262
	Renat	o Luis Garrido Cavalcante, Slawomir Stańczak, and Isao Yamada	
	9.1	Introduction	262
	9.2	Preliminaries	263
		9.2.1 Basic tools in convex and matrix analysis	264
		9.2.2 Graphs	265
	9.3	Distributed spectrum sensing	265

x Contents

	9.4 Iterative consensus-based approaches	268
	9.4.1 Average consensus algorithms	268
	9.4.2 Acceleration techniques for iterative consensus algorithms	271
	9.4.3 Empirical evaluation	276
	9.5 Consensus techniques based on CoMAC	279
	9.6 Adaptive distributed spectrum sensing based on adaptive subgradient techniques	283
	9.6.1 Distributed detection with adaptive filters	284
	9.6.2 Set-theoretic adaptive filters for distributed detection	285
	9.6.3 Empirical evaluation	292
	9.7 Channel probing	294
	9.7.1 Introduction	294
	9.7.2 Admissibility problem	295
	9.7.3 Power and admission control algorithms	296
	9.7.4 Channel probing for admission control	296
	9.7.5 Conclusions	298
	Acknowledgements	298
	References	299
10	Capacity scaling limits of cognitive multiple access networks	304
	Ehsan Nekouei, Hazer Inaltekin, and Subhrakanti Dey	
	10.1 Introduction	304
	10.2 Organization and notation	305
	10.3 Three main cognitive radio paradigms	306
	10.4 Power allocation in cognitive radio networks	307
	10.4.1 Point-to-point time-invariant cognitive radio channels	308
	10.4.2 Point-to-point time-varying cognitive radio channels	309
	10.4.3 Fading multiple access cognitive radio channels	310
	10.5 Capacity scaling with full CSI: homogeneous CoEs	312
	10.6 Capacity scaling with full CSI: heterogeneous CoEs	316
	10.7 Capacity scaling with generalized fading distributions	317
	10.8 Capacity scaling with reduced CSI	320
	10.9 Capacity scaling in distributed cognitive multiple access networks	323
	10.10 Summary and conclusions	328
	Acknowledgements	330
	References	331
11	Dynamic resource allocation in cognitive radio relay networks using sequential	333
	auctions	
	Tianyu Wang, Lingyang Song, and Zhu Han	222
	11.1 Introduction	333

			Contents	XÌ
		11.1.1 Cognitive radio relay network		333
		11.1.2 Sequential auctions		334
		11.1.3 Chapter outline		335
	11.2	System model and problem formulation		336
		11.2.1 System model of cognitive radio relay network		336
		11.2.2 Bandwidth allocation problem and optimal solution		336
	11.3	Auction formulation and sequential auctions		338
		11.3.1 Auction formulation		338
		11.3.2 Sequential first-price auction		339
		11.3.3 Sequential second-price auction		341
		11.3.4 Example		343
	11.4	Simulation results		345
		11.4.1 Total transmission rate		345
		11.4.2 Feedback and complexity		347
		11.4.3 Fairness		349
	11.5	Conclusions		350
	Refe	rences		350
12	Incer	ntivized secondary coexistence		352
	Dan Zi	hang and Narayan B. Mandayam		
	12.1	Introduction		352
	12.2	System model and bandwidth exchange		353
		12.2.1 System model		353
		12.2.2 Bandwidth exchange		354
	12.3	Database assisted Nash bargaining for bandwidth exchange		355
		12.3.1 Using database to obtain bargaining parameters		356
		12.3.2 Effect of existence of other users		358
		12.3.3 Pairwise Nash bargaining solution		359
		12.3.4 Convergence		360
		12.3.5 Complexity analysis		362
	12.4	Performance improvement		362
	12.5	Implementation in a dynamic environment		363
	12.6	Extension to other access methods		365
	12.7	Numerical results		366
		12.7.1 Simulation model		366
		12.7.2 Simulation results		367
	12.8	Conclusion and discussions		367
	Refe	rences		369

xii Contents

Part III	Manage	ment and allocation of Licensed spectrum	371
13		organizing context-aware small cell networks: challenges and e opportunities	373
	Ali Kha	anafer, Walid Saad, and Tamer Başar	
	13.1	Introduction	373
	13.2	Strategic access polices in the uplink of femtocell networks	376
		13.2.1 System model	377
		13.2.2 Game formulation and best response algorithm	379
		13.2.3 Numerical results	382
	13.3	Context-aware resource allocation	385
		13.3.1 Frequent and occasional users	385
		13.3.2 Context-aware power and frequency allocation game	386
		13.3.3 Numerical results	389
	13.4	Summary	389
	Ackr	nowledgement	391
	Refe	rences	391
14		omic viability of dynamic spectrum management	396
		·	396
		Background	
		Taxonomy and a brief literature review	397
	14.3	Incomplete network information	399
		14.3.1 Case study: Dynamic spectrum bargaining with incomplete information	399
		14.3.2 Further research directions	406
	14.4	Primary–secondary decision coupling	407
		14.4.1 Case study: Revenue maximization based on interference elasticity	407
		14.4.2 Further research directions	412
	14.5	Interaction mechanisms	412
		14.5.1 Case study: Cognitive mobile virtual network operator	413
		14.5.2 Further research directions	421
	14.6	Dynamic decision processes	422
		14.6.1 Case study: Admission control and resource allocation	422
		delay-sensitive communications	
		14.6.2 Further research directions	428
		Conclusion	428
	Refe	rences	429

		Contents	Xiii
15		n-driven market mechanisms for dynamic spectrum management osifidis and Iordanis Koutsopoulos	433
	15.1 I	Introduction	434
		Auction theory fundamentals	437
		15.2.1 Auction design objectives	437
		15.2.2 Multiple-item auctions	441
		15.2.3 Sponsored search auctions	446
		Hierarchical spectrum auctions	447
		15.3.1 Background	447
		5.3.2 Examples of inefficient hierarchical spectrum allocation	449
		15.3.3 Related work	451
	1	5.3.4 Mechanisms for efficient hierarchical spectrum allocation	452
	15.4 I	Double auction mechanism for secondary spectrum markets	453
	1	5.4.1 Background	453
	1	15.4.2 System model	455
	1	15.4.3 The double auction mechanism	457
	15.5	Conclusions	461
	Ackno	wledgements	461
	Refere	nces	461
16	Enablir	ng sharing in auctions for short-term spectrum licenses	464
	lan A. Ka	ash, Rohan Murty, and David C. Parkes	
	16.1 I	Introduction	464
	1	6.1.1 Related work	466
	16.2	Challenges in auction design	467
	16.3	The model of shared spectrum and externalities	469
	1	16.3.1 User model	469
	1	16.3.2 Allocation model	471
	16.4	Auction algorithm	474
	1	6.4.1 Externalities and monotonicity	474
	1	6.4.2 High-level approach	475
	1	6.4.3 The SATYA algorithm	476
	1	16.4.4 Pricing algorithm	479
	1	6.4.5 Running time	479
		6.4.6 Extensions	481
	1	6.4.7 SATYA's use of a MAC	481
		Evaluation	482
		6.5.1 Varying the number of users	483
		6.5.2 Varying the number of channels	486
		6.5.3 Measuring revenue	486
		6.5.4 SATYA's performance with multiple channels	488
	16.6	Conclusions	488

xiv	Conte	ents	
	167		400
		Appendix	490
		right notice	492
	Kere	rences	492
17		omic models for secondary spectrum lease: a spatio-temporal perspective f Al Daoud, Murat Alanyali, and David Starobinski	495
	17.1	Introduction	496
	17.2	Spatio-temporal model for spectrum access	498
	17.3	Economic framework for spectrum leasing	502
		17.3.1 Pricing of spectrum lease	502
		17.3.2 Computation of optimal prices	504
	17.4	Economic model for private commons	506
		17.4.1 Reservation policies	508
		17.4.2 EFPA for reservation policies	508
		17.4.3 Implied cost	510
		17.4.4 Revenue maximization via adaptive reservation	512
	17.5	Conclusion	515
	Refe	rences	516
18		to use a strategic game to optimize the performance of CDMA wireless ork synchronization	518
	Giacor	no Bacci and Marco Luise	
	18.1	Introduction	518
	18.2	CDMA power control as a two-player game	520
		18.2.1 The near-far effect game	520
		18.2.2 The need for power control	524
		18.2.3 The impact of initial code synchronization	527
	18.3	CDMA power control as a multiple-player game	531
		18.3.1 System model	531
		18.3.2 Formulation of the game	535
	18.4	Energy-efficient resource allocation	541
		18.4.1 Implementation of the distributed algorithm	541
		18.4.2 A numerical example	542
	18.5	Discussion and perspectives	545
	18.6	Appendix	546
	Ackr	nowledgements	548
	Refe	rences	548

		Contents	XV
19	Economics and the efficient allocation of spectrum licenses		552
	Simon	Loertscher and Leslie M. Marx	
	19.1	Introduction	552
	19.2	Basic model	554
		19.2.1 Setup	554
		19.2.2 Mechanisms and strategies	556
	19.3	Results	557
		19.3.1 Efficient benchmark for complete information	557
		19.3.2 Results for private information and strategic interaction	560
		19.3.3 Implications for the design of primary and secondary markets	563
	19.4	Generalization	564
		19.4.1 Model	564
		19.4.2 Results	567
		19.4.3 Implications flowing from the general case	570
	19.5	Practical implementation	570
		19.5.1 FCC approach	572
		19.5.2 Experimental approach	574
	19.6	Conclusions	574
	Ackn	nowledgements	575
	Refe	rences	575
	Index	r	570

Contributors

Sachin Adlakha

California Institute of Technology

Ashraf Al Daoud

German Jordanian University

Murat Alanyali

Boston University

Tansu Alpcan

The University of Melbourne

Giacomo Bacci

University of Pisa and Princeton University

Tamer Başar

University of Illinois at Urbana-Champaign

Holger Boche

Technical University of Munich

Renato Luis Garrido Cavalcante

Fraunhofer Heinrich Hertz Institute

Anil Kumar Chorppath

Technical University of Munich

Mérouane Debbah

Ecole supérieure d'électricité (SUPELÉC)

Subhrakanti Dey

The University of Melbourne

Andrea Goldsmith

Stanford University

Zhu Han

University of Houston

Jianwei Huang

The Chinese University of Hong Kong

Hazer Inaltekin

Antalya International University

xviii

List of Contributors

George Iosifidis

University of Thessaly, and CERTH

Ramesh Johari

Stanford University

Eduard A. Jorswieck

Technische Universität Dresden

Ali Kakhbod

University of Pennsylvania

Ian A. Kash

Microsoft Research Cambridge

Ali Khanafer

University of Illinois at Urbana-Champaign

Iordanis Koutsopoulos

Athens University of Economics and Business, and CERTH

Samson Lasaulce

Ecole supérieure d'électricité (SUPELÉC)

Mingyan Liu

University of Michigan

Simon Loertscher

Department of Economics, University of Melbourne

Marco Luise

University of Pisa

Narayan B. Mandayam

Rutgers University

Leslie M. Marx

Duke University

Rami Mochaourab

Fraunhofer Heinrich Hertz Institute

Rohan Murty

Society of Fellows, Harvard University

Ashutosh Nayyar

University of California Berkeley

List of Contributors

XİX

Ehsan Nekouei

The University of Melbourne

David C. Parkes

Harvard University

Samir M. Perlaza

Princeton University

H. Vincent Poor

Princeton University

Walid Saad

University of Miami

Shrutivandana Sharma

University of Toronto, and Singapore University of Technology and Design

Lingyang Song

Peking University

Slawomir Stańczak

Fraunhofer Heinrich Hertz Institute and Technische Universität Berlin

David Starobinski

Boston University

Cem Tekin

University of California, Los Angeles

Hamidou Tembine

Ecole supérieure d'électricité (SUPELÉC)

Demosthenis Teneketzis

University of Michigan, Ann Arbor

Tianyu Wang

Peking University

Isao Yamada

Tokyo Institute of Technology

Dan Zhang

Rutgers University

Preface

Mobile communications is a cornerstone of the ongoing global communication revolution and an indispensable part of the information age. Mobile phones, originally intended mainly for voice services, have spread throughout the world at an unprecedented rate. Nowadays, mobile devices such as smart phones and tablets seamlessly combine previously desktop-level computing power with mobile communications, and are enjoying similar growth rates. That has been coupled with worldwide and aggressively growing public demand for mobile communication and associated services such as broadband internet access.

Mobile communications relies on both networking infrastructure and the carefully managed use of the electromagnetic (wireless) spectrum. It is well known that the spectrum useful for wireless communications is a limited physical resource, and celebrated results from information theory imply that this in turn limits the types of services that this spectrum can support. Given the increasing demand for mobile broadband data services, it is clear that wireless spectrum is a resource that needs to be allocated and managed efficiently.

Until recently, the allocation of spectrum to different applications has been static, and often inefficient. Today, realizing the value of this scarce resource, government agencies and industry are looking for innovative ways of sharing wireless spectrum in a dynamic, efficient, and user-centric manner. Recent wireless networking technologies such as cognitive radios, femtocells, spectrum sensing, orthogonal frequency-division multiplexing (OFDM) and multiple-input and multiple-output (MIMO) methods along with dynamic spectrum sharing schemes such as white-space spectrum usage and secondary spectrum markets, are creating the impetus for the evolution towards dynamic and efficient spectrum allocation.

Advances in wireless networking technologies have occurred at a rapid pace, providing new opportunties for engineers, government agencies, commercial enterprises, and policy-makers to exploit interactions and set future directions. At this point, there is a need for a deeper understanding of the spectrum allocation problem, which has both technological and economic dimensions. Approaching the subject purely from a technological point of view will only yield a partial understanding. Likewise, pure policy-based or economic perspectives will be necessarily limited since the value of wireless spectrum depends on available technologies that can exploit it. Therefore, further research is needed to build a sound basis of understanding encompassing all of these aspects.

A better understanding of the basic technological, economic, and application-level issues in wireless spectrum allocation will, on the one hand, potentially lead to better

xxii Preface

technologies for increasing spectrum usage efficiency. On the other hand, novel regulatory frameworks, including the introduction of new market mechanisms for spectrum sharing, may emerge. Finally, the widespread availability of mobile computing has already had a major societal impact, affecting productivity, social interactions, and organization. Enhanced performance and availability combined with new mobile applications due to more efficient use of wireless spectrum will continue to amplify this impact.

This book aims to provide scientific insights into wireless spectrum allocation based on the framework provided by game theory and mechanism design. Presenting contributions from numerous prominent researchers in this area, the book gives an overview of current research results, and helps to build the foundation needed for designing future mechanisms for allocating and sharing spectrum.

Wireless networks are evolving to become virtual platforms on which multiple independent decision makers (agents) can interact and share resources dynamically over multiple time scales. These decision makers often have conflicting preferences and may act selfishly when obtaining network resources. Similar types of interactions can also exists in dynamic spectrum markets and opportunistic spectrum sharing schemes. Game theory is used to study multi-person decision making and provides an analytical framework for modeling and understanding player interactions in various resource sharing scenarios. Mechanism design focuses on how to design rules for interacting agents such that those interactions lead to desirable outcomes when each participant follows a strategy aligned with her own objectives. Both of these theoretical tools are useful for the analysis and design of spectrum sharing schemes, and constitute the basis for this book along with other fundamental tools from information theory, optimization, signal processing, and control theory.

The book is organized in three parts: (a) theoretical fundamentals; (b) cognitive radio and sharing of unlicensed spectrum; and (c) management and allocation of licensed spectrum. The first part focuses on fundamental methods relevant to spectrum allocation in general. These range from physical layer analysis in wireless networks to game-theoretic models and mechanisms for spectrum markets. The second part of the book focuses on opportunistic spectrum sharing in unlicensed bands such as evolution of WiFi-like schemes, cognitive radio, and white-space spectrum usage. The third part discusses licensed spectrum sharing approaches including dynamic and secondary spectrum markets.

This book is appropriate for researchers and graduate students in engineering, computer science, and economics. While the emphasis is on theoretical models and the presentation of analytical results, we believe that it should also be beneficial for regulators and practitioners in industry who are interested in the technical foundations of spectrum management. The various contributions from prominent researchers collected in this book offer diverse perspectives on the underlying technical issues pertaining to both licensed and unlicensed bands. The book can be adopted as a reference for graduate-level wireless networking and communication courses that cover spectrum allocation issues, and for courses in computer science and economics that cover mechanism design, where spectrum allocation serves as a potential application.