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Introduction

This book discusses an approach to the analysis of asymptotic and global

properties of solutions to the equations of Einstein’s theory of general relativity

(the Einstein field equations) based on ideas arising in conformal geometry. This

approach allows a geometric and rigorous formulation of problems and notions

of great physical relevance in the context of general relativity. At the same time,

it provides valuable insights into the properties of the Einstein field equations

under optimal regularity conditions.

Before entering into the subject, it is useful to discuss the motivation behind

this type of endeavour. Accordingly, a brief account of certain aspects of what

can be called mathematical general relativity is necessary.

1.1 On the Einstein field equations

Einstein’s theory of general relativity is the best theory of gravity we have. It

is a relativistic theory of gravity which considers four-dimensional differentiable,

orientable manifolds M̃ endowed with a Lorentzian metric g̃; a discussion of these

differential geometric notions is provided in Chapter 2. The pair (M̃, g̃) is called

a spacetime . Here, and in the rest of this book, quantities associated to the

spacetime (M̃, g̃) will be distinguished by a tilde (̃ ); the motivation behind this

notation will become clear in the following. The gravitational field is described

in general relativity as a manifestation of the curvature of spacetime.

The fundamental equations of general relativity, the Einstein field equa-

tions, describe how matter produces the curvature of spacetime. They are given,

in the abstract index notation discussed in Section 2.2.6, by

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab, (1.1)

where g̃ab is the abstract index version of g̃, and where R̃ab and R̃ denote,

respectively, the Ricci tensor and Ricci scalar of the metric g̃. Moreover, λ is

the so-called cosmological constant and T̃ab denotes the energy–momentum
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2 Introduction

tensor of the matter in the spacetime. Precise definitions and conventions for the

curvature tensors are provided in Chapter 2, while a discussion of the energy–

momentum tensors for a range of matter models is provided in Chapter 9. The

energy–momentum tensor satisfies the conservation equation

∇̃aT̃ab = 0,

where ∇̃a denotes the covariant derivative of the metric g̃. TheBianchi identity

satisfied by the Riemann curvature tensor R̃a
bcd of the metric g̃ ensures the

consistency between the conservation equation and the Einstein field equations.

A solution to the Einstein field equations is a pair (M̃, g̃), together with

a g̃-divergence-free tensor T̃ab such that Equation (1.1) holds. In suitable open

subsets of M̃ the metric g̃ is expressed, using some local coordinates (xμ), in

terms of its components (g̃μν); here and in what follows, Greek indices are

used as coordinate indices. In general, several coordinate charts will be needed

to cover the spacetime manifold M̃. Two metrics g̃ and ḡ over M̃ are said

to be isometric if they are related, everywhere on M̃, by some coordinate

transformation.

In the cases where T̃ab = 0, a direct computation shows that Equation (1.1)

implies

R̃ab = λg̃ab. (1.2)

In what follows, the latter will be known as the vacuum Einstein field

equations and a solution thereof as an Einstein spacetime. The full curvature

of a four-dimensional manifold is described by the tensor R̃a
bcd. This tensor

has 20 independent components. By contrast, the Ricci tensor appearing in the

Einstein field Equations (1.1) and (1.2) has only 10 independent components.

Hence, even in the absence of a cosmological constant, where the vacuum field

Equations (1.2) reduce to

R̃ab = 0, (1.3)

it is possible to have solutions with a non-vanishing Riemann tensor. As a

consequence, solutions to the vacuum field equations play a special role in general

relativity, as they describe pure gravitational configurations. Vacuum spacetimes

are often deemed more fundamental, as they exclude potential pathologies which

may arise from the choice of a particular matter model.

General relativity has two main domains of applicability: cosmology and iso-

lated systems. To make use of the Einstein field Equations (1.1) within these two

domains, one requires a number of idealisations. On the one hand, in cosmology it

is usually assumed that the matter content of the universe can be described by a

perfect fluid with an equation of state which depends on a particular cosmological

era. It is a convention in mathematical relativity to refer to spacetimes with

compact spacelike sections as cosmological spacetimes. On the other hand,

isolated systems are convenient idealisations of astrophysical objects for which
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1.2 Exact solutions 3

it is assumed that the cosmological expansion has no influence. The transition

between the regime of isolated systems and the cosmological one is a topic

of fundamental relevance for the understanding of the physical content of the

Einstein field equations; see, for example, Ellis (1984, 2002).

The validity of general relativity has been verified in a number of experiments

covering a wide range of scenarios ranging from the dynamics of the solar system

to cosmological scales; see, for example, Will (2014) for a discussion of the

subject. Surveys of the physical content of general relativity and its various

domains of applicability can be found, for example, in Poisson and Will (2015)

and Shapiro (1999).

Note. In the remainder of this chapter, in order to simplify the presentation, the

discussion will be restricted to Einstein spaces, that is, solutions to the vacuum

Equations (1.2). The inclusion of matter very often requires a case-by-case ana-

lysis.

1.2 Exact solutions

A natural first step to developing an understanding of the properties of solutions

to the Einstein field equations is the construction of exact solutions, that is,

explicit solutions written in terms of elementary functions of some coordinates.

The first non-trivial exact solution to the Einstein field equations ever obtained

is the Schwarzschild solution. It describes a static spherically symmetric vacuum

configuration; see Schwarzschild (1916), an English translation of which can

be found in Schwarzschild (2003). Remarkably, despite the complexity of the

field equations, the literature contains a vast number of exact solutions to

the equations of general relativity; see, for example, Stephani et al. (2003)

for a monograph on the subject. The number of solutions with a physical or

geometric significance is, arguably, much smaller; see, for example, Bičák (2000)

and Griffiths and Podolský (2009).

1.2.1 Construction of exact solutions

The construction of exact solutions to the Einstein field equations requires a

number of assumptions concerning the nature of the solutions. The most natural

assumptions involve the presence of continuous symmetries (Killing vectors) of

some type in the solution, for example, spherical symmetry, axial symmetry,

stationarity (including staticity) and homogeneity. Other types of assumptions

involve the algebraic structure of the curvature tensors of the spacetime (e.g.

the Petrov type of the Weyl tensor). These types of assumptions are harder to

justify on a physical basis.

Exact solutions are usually constructed in a coordinate system adapted to

the assumptions being made. Very often, these natural coordinates cover only a

portion of the whole spacetime manifold. Thus, one needs to find new coordinate

systems (charts) for the exact solution which allow one to uncover a full maximal
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4 Introduction

analytic extension of the spacetime. This maximal extension usually paves the

way to the interpretation of the exact solution and gives access to its global

properties.

1.2.2 The limitations of exact solutions

Several of the well-known consequences of general relativity have been developed

through the analysis of exact solutions, for example, the notion of a black

hole. Thus, the study of exact solutions to the Einstein field equations helps to

develop a physical and geometric intuition which, in turn, can lead to questions

concerning more generic solutions. However, despite the valuable insights they

provide, the construction of exact solutions is not a systematic approach to

explore the space of solutions of the theory. In particular, this approach leaves

open the question of whether certain properties of a solution are generic, that

is, satisfied by a broader class of spacetimes. Moreover, exact solutions do not

lend themselves to the analysis of dynamic situations such as, for example, the

description of the gravitational radiation produced by an isolated system. Thus,

it is not possible to address issues involving stability just by means of exact

solutions. In order to analyse the above issues one has to consider whether it is

possible to formulate an initial value problem for the Einstein field equations by

means of which large classes of solutions can be constructed.

1.3 The Cauchy problem in general relativity

As in the case of many other physical theories, general relativity admits the

formulation of an initial value problem (Cauchy problem). This aspect of the

theory is obscured by both the tensorial character of the Einstein field equations

and the absence of a background geometry in the theory ; it is a priori not clear

that the field equations give rise to a system of partial differential equations

(PDEs) of a recognisable type.

Classical physical theories are expected to satisfy a causality principle:

the future of an event in spacetime cannot influence its past, and, moreover,

signals must propagate at finite speed . Among the three main types of PDEs

(elliptic, hyperbolic and parabolic), hyperbolic differential equations are the only

ones compatible with the causality principle. This observation suggests it should

be possible to extract from the Einstein field equations a system of evolution

equations with hyperbolic properties.

1.3.1 Hyperbolic reductions

The seminal work of Fourès-Bruhat (1952) has shown that the hyperbolic

properties of the Einstein field equations can be made manifest by means of

a suitable choice of coordinates. Following modern terminology, a choice of

coordinates is a particular example of gauge choice. Indeed, by choosing the
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1.3 The Cauchy problem in general relativity 5

spacetime coordinates (xμ) in such a way that they satisfy the wave equation

associated with the metric g̃, the Einstein field equations can be shown to

imply a system of quasilinear wave equations for the components (g̃μν) of the

(a priori unknown) metric g̃ with respect to the wave coordinates. For quasilinear

wave differential equations there exists a developed theory which allows the

formulation of a well-posed Cauchy problem. The use of wave coordinates is not

the only way of bringing to the fore the hyperbolic aspects of the Einstein field

equations. In this book, it will be shown that the Einstein field equations can

be reformulated in such a way that after a suitable gauge choice they imply a

so-called (first order) symmetric hyperbolic evolution system – a class of PDEs

with properties similar to those of wave equations and for which a comparable

theory is available. The procedure of extracting suitable hyperbolic evolution

equations through a particular reformulation of the Einstein field equations

and a suitable gauge choice is known as a hyperbolic reduction ; hyperbolic

reductions are further discussed in Chapter 13. Besides its natural relevance

in mathematical relativity, the construction of hyperbolic reductions for the

Einstein field equations is of fundamental importance for numerical relativity;

see, for example, Alcubierre (2008) and Baumgarte and Shapiro (2010).

In the same way that the Einstein field equations are geometric in nature,

a proper formulation of the Cauchy problem in general relativity must also be

done in a geometric way; see, for example, Choquet-Bruhat (2007). This idea

is, in principle, in conflict with the discussion of hyperbolicity properties of the

Einstein field equations, as the associated procedure of gauge fixing breaks the

spacetime covariance of the field equations. As will be seen in the following, this

tension can be resolved in a satisfactory manner.

1.3.2 Initial data and the constraint equations

The formulation of an initial value problem for the Einstein field equations

requires the prescription of suitable initial data for the evolution equations on

a three-dimensional manifold S̃. This manifold will be later interpreted as a

hypersurface of the spacetime (M̃, g̃). An important feature of general relativity

is that the initial data for the evolution equations implied by the Einstein field

equations are constrained. The constraint equations of general relativity

(Einstein constraints) can be formulated as a set of equations intrinsic to the

initial hypersurface S̃ for a pair of symmetric tensors h̃ and K̃ describing,

respectively, the intrinsic geometry of the hypersurface (intrinsic metric or

first fundamental form) and the way the initial hypersurface is curved

within the spacetime (M̃, g̃) – the so-called extrinsic curvature or second

fundamental form. A priori, it is not clear what the freely specifiable data for

these constraint equations consist of, or whether, given a particular choice of

free data, the equations can be solved. The systematic analysis of the constraint

equations has shown that under suitable assumptions, they can be recast as a set

of elliptic partial differential equations ; see, for example, Bartnik and Isenberg
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6 Introduction

(2004). For this type of equation a theory is available to discuss the existence

and uniqueness of solutions.

The constraint equations play a fundamental role in the theory and ensure that

the solution of the evolution equations is, in fact, a solution to the Einstein field

equations; this type of analysis is often called the propagation of the constraints.

The constraint equations of general relativity will be discussed in Chapter 11.

1.3.3 The well-posedness of the Cauchy problem in general relativity

The formulation of the Cauchy problem in general relativity ensures, at least

locally, the existence of a solution to the Einstein field equations which is

consistent with the prescribed initial data. More precisely, one has the following

result first proven in Fourès-Bruhat (1952).

Theorem 1.1 (local existence of solutions to the initial value problem)

Given a solution (h̃, K̃) to the Einstein constraint equations on a three-

dimensional manifold S̃ there exists a vacuum spacetime (M̃, g̃) such that S̃
is a spacelike hypersurface of M̃, h̃ is the intrinsic metric induced by g̃ on S̃
and K̃ is the associated extrinsic curvature.

The spacetime (M̃, g̃) obtained as a result of Theorem 1.1 is called a

development of the initial data set (S̃, h̃, K̃). Not every spacetime can

be globally constructed from an initial value problem. Those which can be

constructed in this way are said to be globally hyperbolic. There are important

examples of spacetimes which do not possess this property – most noticeably,

the anti-de Sitter spacetime. A general result concerning globally hyperbolic

spacetimes states that their topology is that of R×S̃ with each slice S̃t ≡ {t}×S̃
being intersected only once by each timelike curve in the spacetime. The slices

S̃t are known as Cauchy surfaces. The above points will be further discussed

in Chapter 14.

The Cauchy problem for the Einstein field equations provides an appropriate

setting for the discussion of dynamics. In particular, it allows one to investigate

whether a given solution of the Einstein field equations is stable, that is, whether

its essential features are retained if the initial data set is perturbed. Moreover,

it also allows one to analyse whether a given property of a solution is generic,

that is, whether the property holds for all solutions in an open set in the space

of initial data.

1.3.4 Geometric uniqueness and the maximal globally hyperbolic

development

An important observation concerning Theorem 1.1 is that it does not ensure

the uniqueness of the development (M̃, g̃) of the initial data set (S̃, h̃, K̃):

a different hyperbolic reduction procedure will, in general, give rise to an

alternative development (M̃′, g̃′). From the point of view of the Cauchy problem
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1.3 The Cauchy problem in general relativity 7

of general relativity, the solution manifold is not known a priori. Instead, it is

obtained as a part of the evolution process.

Given that an initial data set for the Einstein field equations gives rise to

an infinite number of developments (one for each reasonable gauge choice), it is

natural to ask whether it is possible to combine these various developments to

obtain a maximal development. This question is answered in the positive by the

following fundamental result; see Choquet-Bruhat and Geroch (1969).

Theorem 1.2 (existence of a maximal development) Given an initial data

set for the Einstein field equations (S̃, h̃, K̃), there exists a unique maximal

development (M̃, g̃), that is, a development such that if (M̃′, g̃′) is another

development, then M̃′ ⊆ M̃ and on M̃′ the metrics g̃ and g̃′ are isometric.

The maximal development (M̃, g̃) is also known as the maximal globally

hyperbolic development of the data (S̃, h̃, K̃). Theorem 1.2 clarifies the sense in

which one can expect uniqueness from the Cauchy problem in general relativity;

this idea is known as geometric uniqueness.

One can think of the maximal development of an initial data set as the largest

spacetime that can be uniquely constructed out of an initial value problem. The

boundary of this maximal development, if any at all, sets the limits of predictabil-

ity of the data – accordingly, one has a close link with the notion of classical

determinism. In certain spacetimes, it is possible to extend the maximal devel-

opment of a hypersurface to obtain a maximal extension. Accordingly, in general,

maximal developments and maximal extensions do not coincide. A further

discussion of the Cauchy problem in general relativity is provided in Chapter 14.

1.3.5 Construction of maximal developments and global existence

of solutions

Given some initial data set (S̃, h̃, K̃), it is natural to ask, How can one

construct its maximal development (M̃, g̃)? In general, this is a very difficult

task, as it requires controlling the evolution dictated by the Einstein field

equations under very general circumstances – something for which the required

mathematical technology is not yet available. There are, nevertheless, some

conjectures concerning the global behaviour of maximal developments. The origin

of these conjectures goes back to Penrose (1969) – see Penrose (2002) for a

reprint – and are usually known by the name cosmic censorship. In particular,

the so-called strong cosmic censorship states that the maximal development of

generic initial data for the Einstein field equations cannot be extended as a

Lorentzian manifold.

Given an exact solution to the Einstein equations, if one knows its maximal

extension, one can determine the maximal development (M̃, g̃) of one of its

(Cauchy) hypersurfaces, say, S̃. In what follows, let (h̃, K̃) denote the initial data

implied on S̃ by the spacetime metric g̃. The explicit knowledge of the maximal

development allows one to provide a physical interpretation of the solution and

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03389-4 - Conformal Methods in General Relativity
Juan A. Valiente Kroon
Excerpt
More information

http://www.cambridge.org/9781107033894
http://www.cambridge.org
http://www.cambridge.org


8 Introduction

to analyse its global structure in some detail. One can now ask whether certain

aspects of (M̃, g̃) – say, its basic global structure – are shared by a wider class

of solutions to the Einstein field equations. A strategy to address this question

within the framework of the Cauchy problem in general relativity is to consider

initial data sets (S̃, h̄, K̄) which are, in some sense, close to the initial data for the

exact solution. One can then try to show that the associated maximal globally

hyperbolic development (M̄, ḡ) has the desired global properties. If this is the

case, one has obtained a statement about the stability of the solution and the

genericity of the property one is interested in. The standard convention, to be

used in this book, is to call (M̃, g̃) and (S̃, h̃, K̃), respectively, the background

spacetime and the background initial data set and (M̄, ḡ) and (S̃, h̄, K̄) the

perturbed spacetime and perturbed initial data set, respectively. In prac-

tice, the notion of closeness between initial data sets is dictated by the require-

ments of the PDE theory used to prove the existence of solutions to the evolution

equations. In the previous discussion it has been assumed that the 3-manifolds

on which the background and perturbed initial data are prescribed are the same.

The stability analysis allows one to conclude that the spacetime manifolds M̃
and M̄ are the same – they are, however, endowed with different metrics.

In analysing the stability of the background solution (M̃, g̃) one needs to show

that the solutions to the evolution equations with perturbed initial data exist

as long as the background solution. The expectation is that the assumption of

having initial data close to data for an exact solution whose global structure is

well understood will ease this task. In the following sections a strategy to exploit

this assumption will be discussed.

1.4 Conformal geometry and general relativity

Special relativity provides a framework for the discussion of the notion of

causality – that is, the relation between cause and effect – which is consistent

with the principle of relativity. The causal structure of special relativity is

determined by the light cones associated with the Minkowski metric η̃. It allows

the determination of whether a signal travelling not faster than the speed of light

can be sent between two events – if this is the case, then the two events are said

to be causally related. More generally, one can talk of Lorentzian causality :

any Lorentzian metric g̃ gives rise to a causal structure determined by the light

cones associated to g̃. Thus, general relativity provides a natural generalisation

of the notions of causality of special relativity – one in which the light cones

vary from event to event in spacetime. Crucially, however, in general relativity

the causal structure is a basic unknown of the theory.

The theory of hyperbolic differential equations provides notions of causality

which, in principle, are independent from the notions of Lorentzian causality.

It is, nevertheless, a remarkable feature of general relativity that locally, the

propagation of fields dictated by the Einstein field equations is governed by

the structure of the light cones of the solutions – the so-called characteristic
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1.4 Conformal geometry and general relativity 9

surfaces of the evolution equations. Thus, the notions of Lorentzian and PDE

causality coincide. This aspect of the Einstein field equations is further discussed

in Chapter 14.

1.4.1 Conformal transformations and conformal geometry

Locally, a light cone can be described (away from its vertex) in terms of a

condition of the form φ(xμ) = constant where φ : M̃ → R is such that

g̃μν∂μφ∂νφ = 0. (1.4)

The structure of the light cones of a spacetime (M̃, g̃) is preserved by conformal

rescalings, that is, transformations of the spacetime metric of the form

g̃ �→ g ≡ Ξ2g̃, Ξ > 0 (1.5)

where Ξ is a smooth function on M̃ – the so-called conformal factor.

Throughout this book, the metrics g̃ and g will be called the physical metric

and the unphysical metric, respectively. The rescaling (1.5) gives rise to

a conformal transformation of (M̃, g̃) to (M̃, g). Precise definitions and

further discussion of these notions are provided in Chapter 5. In elementary

geometry, conformal transformations are usually described as transformations

preserving the angle between vectors. In Lorentzian geometry, they preserve the

light cones; from (1.4) it follows that gμν∂μφ∂νφ = 0, so that the condition

φ(xμ) = constant also describes the light cones of the metric g.

One key aspect of conformal rescalings is that they allow one to introduce

conformal extensions of the spacetime (M̃, g̃); see Figure 1.1. In a Riemannian

setting, the most basic example of conformal extensions of manifolds is the so-

called conformal completion of the Euclidean plane R2 into the 2-sphere S2 by

(M,g)

∂M

(M, g)˜ ˜
g=Ξ2g̃

Figure 1.1 Schematic representation of the conformal extension of a manifold.
The physical manifold (M̃, g̃) has infinite extension, while the unphysical
(extended) manifold (M, g) is compact with boundary ∂M. The boundary
∂M corresponds to the points for which Ξ = 0. Further details can be found
in Chapter 5. Adapted from Penrose (1964).
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10 Introduction

I+
(a) (b) (c)

I−

I

I+

I−

Figure 1.2 Penrose diagrams of the three spacetimes of constant curvature: (a)
the de Sitter spacetime; (b) the anti-de Sitter spacetime; (c) the Minkowski
spacetime. Details of these constructions can be found in Chapter 6.

means of stereographic coordinates. By suitably choosing the conformal factor Ξ,

the metric g given by the rescaling (1.5) may be well defined even at the points

where Ξ = 0. If this is the case, it can be verified that the set of points ∂M for

which Ξ = 0 corresponds to ideal points at infinity for the spacetime (M̃, g̃) and

is called the conformal boundary . The pair (M, g) where M is the extended

manifold obtained from attaching to M̃ its conformal boundary is usually known

as the unphysical spacetime. Of particular interest are the portions of the

conformal boundary which are hypersurfaces of the manifold M – these sets

are characterised by the additional requirement of dΞ �= 0, so that they have a

well-defined normal. This part of the conformal boundary is denoted by I .

Explicit calculations show that the three spacetimes of constant curvature –

the Minkowski, de Sitter and anti-de Sitter spacetimes – can be conformally

extended. The details of these constructions are described in Chapter 6. These

conformal extensions are conveniently represented in terms of Penrose diagrams ;

see Figure 1.2. A discussion of the construction of Penrose diagrams can also

be found in Chapter 6. The insights provided by the conformal extensions of

these solutions are, in great measure, the fundamental justification for the use

of conformal methods in general relativity.

1.4.2 Conformal geometry

The study of properties which are invariant under conformal transformations of

a manifold is known as conformal geometry . Associated to the metric g of

the unphysical spacetime (M, g) one has its covariant derivative (connection) ∇a

and its curvature tensors, say, Ra
bcd, Rab, R. These objects can be related to the

corresponding objects associated to the physical metric g̃ (∇̃a, R̃
a
bcd, R̃ab and R̃)

and the conformal factor Ξ and its derivatives. Their transformation laws show,

in particular, that the Riemann tensor, the Ricci tensor and the Ricci scalar are

not conformal invariants. There is, however, another part of the curvature which
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