VECTORS, PURE AND APPLIED

A General Introduction to Linear Algebra

Many books on linear algebra focus purely on getting students through exams, but this text explains both the how and the why of linear algebra and enables students to begin thinking like mathematicians. The author demonstrates how different topics (geometry, abstract algebra, numerical analysis, physics) make use of vectors in different ways, and how these ways are connected, preparing students for further work in these areas.

The book is packed with hundreds of exercises ranging from the routine to the challenging. Sketch solutions of the easier exercises are available online.

T. W. KÖRNER is Professor of Fourier Analysis in the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. His previous books include *Fourier Analysis* and *The Pleasures of Counting*. Cambridge University Press 978-1-107-03356-6 - Vectors, Pure and Applied: A General Introduction to Linear Algebra T. W. Körner Frontmatter More information Cambridge University Press 978-1-107-03356-6 - Vectors, Pure and Applied: A General Introduction to Linear Algebra T. W. Körner Frontmatter More information

VECTORS, PURE AND APPLIED

A General Introduction to Linear Algebra

T. W. KÖRNER Trinity Hall, Cambridge

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107033566

© T. W. Körner 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Körner, T. W. (Thomas William), 1946– Vectors, pure and applied : a general introduction to linear algebra / T. W. Körner. pages cm Includes bibliographical references and index. ISBN 978-1-107-03356-6 (hardback) – ISBN 978-1-107-67522-3 (paperback) 1. Vector algebra. 2. Algebras, Linear. I. Title. QA200.K67 2013 516'.182 – dc23 2012036797

> ISBN 978-1-107-03356-6 Hardback ISBN 978-1-107-67522-3 Paperback

Additional resources for this publication at www.dpmms.cam.ac.uk/~twk/

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. In general the position as regards all such new calculi is this. – That one cannot accomplish by them anything that could not be accomplished without them. However, the advantage is, that, provided that such a calculus corresponds to the inmost nature of frequent needs, anyone who masters it thoroughly is able – without the unconscious inspiration which no one can command – to solve the associated problems, even to solve them mechanically in complicated cases in which, without such aid, even genius becomes powerless.... Such conceptions unite, as it were, into an organic whole, countless problems which otherwise would remain isolated and require for their separate solution more or less of inventive genius.

(Gauss Werke, Bd. 8, p. 298 (quoted by Moritz [24]))

For many purposes of physical reasoning, as distinguished from calculation, it is desirable to avoid explicitly introducing ... Cartesian coordinates, and to fix the mind at once on a point of space instead of its three coordinates, and on the magnitude and direction of a force instead of its three components. ... I am convinced that the introduction of the idea [of vectors] will be of great use to us in the study of all parts of our subject, and especially in electrodynamics where we have to deal with a number of physical quantities, the relations of which to each other can be expressed much more simply by [vectorial equations rather] than by the ordinary equations.

(Maxwell A Treatise on Electricity and Magnetism [21])

We [Halmos and Kaplansky] share a love of linear algebra. ... And we share a philosophy about linear algebra: we think basis-free, we write basis-free, but when the chips are down we close the office door and compute with matrices like fury.

(Kaplansky in Paul Halmos: Celebrating Fifty Years of Mathematics [17])

Marco Polo describes a bridge, stone by stone.

'But which is the stone that supports the bridge?' Kublai Khan asks.

'The bridge is not supported by one stone or another,' Marco answers, 'but by the line of the arch that they form.'

Kublai Khan remains silent, reflecting. Then he adds: 'Why do you speak to me of the stones? It is only the arch that matters to me.'

Polo answers: 'Without stones there is no arch.'

(Calvino Invisible Cities (translated by William Weaver) [8])

Cambridge University Press 978-1-107-03356-6 - Vectors, Pure and Applied: A General Introduction to Linear Algebra T. W. Körner Frontmatter More information

Contents

	Intro	<i>page</i> xi	
PART I		FAMILIAR VECTOR SPACES	1
1	Gau	ussian elimination	3
	1.1	Two hundred years of algebra	3
	1.2	Computational matters	8
	1.3	Detached coefficients	12
	1.4	Another fifty years	15
	1.5	Further exercises	18
2	A li	ttle geometry	20
	2.1	Geometric vectors	20
	2.2	Higher dimensions	24
	2.3	Euclidean distance	27
	2.4	Geometry, plane and solid	32
	2.5	Further exercises	36
3	The	algebra of square matrices	42
	3.1	The summation convention	42
	3.2	Multiplying matrices	43
	3.3	More algebra for square matrices	45
	3.4	Decomposition into elementary matrices	49
	3.5	Calculating the inverse	54
	3.6	Further exercises	56
4	The	e secret life of determinants	60
	4.1	The area of a parallelogram	60
	4.2	Rescaling	64
	4.3	3×3 determinants	66
	4.4	Determinants of $n \times n$ matrices	72
	4.5	Calculating determinants	75
	4.6	Further exercises	81

vii

viii		Contents	
5	Abst	tract vector spaces	87
	5.1	The space \mathbb{C}^n	87
	5.2	Abstract vector spaces	88
	5.3	Linear maps	91
	5.4	Dimension	95
	5.5	Image and kernel	103
	5.6	Secret sharing	111
	5.7	Further exercises	114
6	Linear maps from \mathbb{F}^n to itself		118
	6.1	Linear maps, bases and matrices	118
	6.2	Eigenvectors and eigenvalues	122
	6.3	Diagonalisation and eigenvectors	125
	6.4	Linear maps from \mathbb{C}^2 to itself	127
	6.5	Diagonalising square matrices	132
	6.6	Iteration's artful aid	136
	6.7	LU factorisation	141
	6.8	Further exercises	146
7	Distance preserving linear maps		160
	7.1	Orthonormal bases	160
	7.2	Orthogonal maps and matrices	164
	7.3	Rotations and reflections in \mathbb{R}^2 and \mathbb{R}^3	169
	7.4	Reflections in \mathbb{R}^n	174
	7.5	QR factorisation	177
	7.6	Further exercises	182
8	Diagonalisation for orthonormal bases		192
	8.1	Symmetric maps	192
	8.2	Eigenvectors for symmetric linear maps	195
	8.3	Stationary points	201
	8.4	Complex inner product	203
	8.5	Further exercises	207
9	Cartesian tensors		211
	9.1	Physical vectors	211
	9.2	General Cartesian tensors	214
	9.3	More examples	216
	9.4	The vector product	220
	9.5	Further exercises	227

		Contents	ix
10	More	e on tensors	233
	10.1	Some tensorial theorems	233
	10.2	A (very) little mechanics	237
	10.3	Left-hand, right-hand	242
	10.4	General tensors	244
	10.5	Further exercises	247
PART II GENERAL VECTOR SPACES		GENERAL VECTOR SPACES	257
11	Spac	es of linear maps	259
	11.1	A look at $\mathcal{L}(U, V)$	259
	11.2	A look at $\mathcal{L}(U, U)$	266
	11.3	Duals (almost) without using bases	269
	11.4	Duals using bases	276
	11.5	Further exercises	283
12	Polyı	nomials in $\mathcal{L}(U, U)$	291
	12.1	Direct sums	291
	12.2	The Cayley–Hamilton theorem	296
	12.3	Minimal polynomials	301
	12.4	The Jordan normal form	307
	12.5	Applications	312
	12.6	Further exercises	316
13	Vecto	or spaces without distances	329
	13.1	A little philosophy	329
	13.2	Vector spaces over fields	329
	13.3	Error correcting codes	334
	13.4	Further exercises	340
14	Vecto	or spaces with distances	344
	14.1	Orthogonal polynomials	344
	14.2	Inner products and dual spaces	353
	14.3	Complex inner product spaces	359
	14.4	Further exercises	364
15	More distances		369
	15.1	Distance on $\mathcal{L}(U, U)$	369
	15.2	Inner products and triangularisation	376
	15.3	The spectral radius	379
	15.4	Normal maps	383
	15.5	Further exercises	387

x	Contents		
16	Quad	dratic forms and their relatives	399
	16.1	Bilinear forms	399
	16.2	Rank and signature	407
	16.3	Positive definiteness	414
	16.4	Antisymmetric bilinear forms	421
	16.5	Further exercises	425
	References		438
	Index	c	440

Introduction

There exist several fine books on vectors which achieve concision by only looking at vectors from a single point of view, be it that of algebra, analysis, physics or numerical analysis (see, for example, [18], [19], [23] and [28]). This book is written in the belief that it is helpful for the future mathematician to see all these points of view. It is based on those parts of the first and second year Cambridge courses which deal with vectors (omitting the material on multidimensional calculus and analysis) and contains roughly 60 to 70 hours of lectured material.

The first part of the book contains first year material and the second part contains second year material. Thus concepts reappear in increasingly sophisticated forms. In the first part of the book, the inner product starts as a tool in two and three dimensional geometry and is then extended to \mathbb{R}^n and later to \mathbb{C}^n . In the second part, it reappears as an object satisfying certain axioms. I expect my readers to read, or skip, rapidly through familiar material, only settling down to work when they reach new results. The index is provided mainly to help such readers who come upon an unfamiliar term which has been discussed earlier. Where the index gives a page number in a different font (like **389**, rather than 389) this refers to an exercise. Sometimes I discuss the relation between the subject of the book and topics from other parts of mathematics. If the reader has not met the topic (morphisms, normal distributions, partial derivatives or whatever), she should simply ignore the discussion.

Random browsers are informed that, in statements involving \mathbb{F} , they may take $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, that z^* is the complex conjugate of z and that 'self-adjoint' and 'Hermitian' are synonyms. If $T : A \to B$ is a function we sometimes write T(a) and sometimes Ta.

There are two sorts of exercises. The first form part of the text and provide the reader with an opportunity to think about what has just been done. There are sketch solutions to most of these on my home page www.dpmms.cam.ac.uk/~twk/.

These exercises are intended to be straightforward. If the reader does not wish to attack them, she should simply read through them. If she does attack them, she should remember to state reasons for her answers, whether she is asked to or not. Some of the results are used later, but no harm should come to any reader who simply accepts my word that they are true.

The second type of exercise occurs at the end of each chapter. Some provide extra background, but most are intended to strengthen the reader's ability to use the results of the

xii

Introduction

preceding chapter. If the reader finds all these exercises easy or all of them impossible, she is reading the wrong book. If the reader studies the entire book, there are many more exercises than she needs. If she only studies an individual chapter, she should find sufficiently many to test and reinforce her understanding.

My thanks go to several student readers and two anonymous referees for removing errors and improving the clarity of my exposition. It has been a pleasure to work with Cambridge University Press.

I dedicate this book to the Faculty Board of Mathematics of the University of Cambridge. My reasons for doing this follow in increasing order of importance.

- (1) No one else is likely to dedicate a book to it.
- (2) No other body could produce Minute 39 (a) of its meeting of 18th February 2010 in which it is laid down that a basis is not an *ordered* set but an *indexed* set.
- (3) This book is based on syllabuses approved by the Faculty Board and takes many of its exercises from Cambridge exams.
- (4) I need to thank the Faculty Board and everyone else concerned for nearly 50 years spent as student and teacher under its benign rule. Long may it flourish.