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Introduction

Although almost all quantum mechanics textbooks consider absorption and emis-

sion, the discussion is usually limited to hydrogen-like atoms. This gives a some-

what limited view of the process. This book deals with aborption of high-energy

X-rays. Let us look at a particular example to demonstrate the concepts that we

will be dealing with throughout the book. Figure 1.1 shows a calculation of the

L-edge of a divalent cobalt ion in a solid. In X-ray terminology, L-edge stands for

the excitation of an electron from a 2p orbital into a 3d one. In fact, the calculated

spectrum resembles closely the experimental X-ray absorption on CoO. Simply

by looking at this spectrum, a number of salient features are apparent that will

hopefully become clearer throughout the book.

First, one can start by asking the very basic question: what is a spectrum?

Apparently, it is the absorption intensity as a function of energy. This implies that

energy is a good quantum number. Therefore, in an absorption process energy is

conserved. We therefore have to understand why certain quantities are conserved.

We shall see that this is inherently related to the symmetry properties of the system.

It is important to understand these properties since they tell us what quantities are

exchanged between the incoming photon field and the material. By studying the

changes in the photon field (in this case, how many photons are absorbed by the

material), we can learn something about the material. We shall see that energy is not

the only quantity that can be exchanged between the photons and the atoms. Linear

and angular momentum are other examples of quantities that can be conserved in

a spectroscopy experiment.

We already identified the spectrum in Fig. 1.1 as arising from a 2p ³ 3d

transition. This implies that the basic atomic structure is still valid. We shall

therefore review some aspects of the hydrogen-like atom in Chapter 2. The absolute

energy scale for this transition is of the order of hundreds of electronvolts. This

is directly related to the large binding energy of the 2p electron and the reason

why X-rays are necessary to excite electrons from core-levels into the empty 3d
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Figure 1.1 The isotropic (solid) and circular dichroic (dashed) spectra of divalent
cobalt in an octahedral crystal field.

states. This is significantly larger than the 13.6 eV binding energy for the hydrogen

atom. However, excitations within the 3d orbital are only of the order of a few

electronvolts. These transitions can be observed using visible light. We shall not

look at absorption in the visible region which is the subject of many other textbooks.

However, we shall touch upon these transitions when discussing resonant inelastic

X-ray scattering.

Another important aspect of spectroscopy is the strengths of the transitions

between the initial and final states. This gives rise to the different intensities

observed in the spectrum in Fig. 1.1. This is a surprisingly difficult topic. L-edges

are dipolar transitions due to the p · A interaction, where p is the momentum of

the electron that is excited and A the vector potential describing the X-ray field.

Therefore, the different components of the vector potential couple to different

directions of the momentum of the electron. For dipolar transitions, there are

three components. However, in addition the p and d orbitals are six- and tenfold

degenerate, respectively. This gives a total of 180 matrix elements for the single-

particle transitions in the dipole limit. In addition, the transitions matrix elements

have radial and angular components. The latter can often be evaluated analyically

and have many symmetry properties. To gain insight into these aspects, we look at

the underlying tensor algebra in Chapter 3.

Looking again at the spectrum, we see that there are in fact two edges, known as

the L3- and L2-edges. These correspond respectively to the j = 3/2 and 1/2 total

angular momenta of the 2p core-level. This is another major difference with the

hydrogen atom. In contrast to the hydrogen atom where the spin–orbit interaction

is less than a milli-electronvolt, the spin–orbit interaction strength can be tens to

hundreds of electronvolts for the core-levels of heavy atoms/ions. This has another

important consequence. Whereas for the hydrogen atom the spin–orbit interaction
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can generally be treated within perturbation theory, it is often the dominant in-

teraction for X-ray absorption final states. This implies that the orbital and spin

moments are no longer good quantum numbers.

A more detailed look at the spectrum in Fig. 1.1 reveals a significant amount

of fine structure. In the hydrogen atom, the fine structure is due to the interaction

of the electron with the nucleus. However, for many-electron atoms, the additional

structure is for a large part due to the Coulomb interaction between the electrons

in the open shells (the closed shells only give rise to a shift in the energy). For the

L-edges this means the 2p–3d and 3d–3d Coulomb interactions. The Coulomb

interaction splits the spectrum into distinct Coulomb multiplets. An aspect of

Coulomb multiplets is Hund’s rule that tells us which is the lowest Coulomb

multiplet in the ground state. This brings us into the complex realm of many-body

physics. Let us consider the ground state. For 3d transition-metal ions, we have

n electrons in the 3d shell (with n = 7 for divalent cobalt). We can denote these

as 3dn configurations (implicitly assuming that all the other shells are completely

full or empty). In the absence of electron–electron interactions, this is simply

a problem of n independent electrons in the 3d shell. However, with Coulomb

interactions, different states are no longer independent and we have to deal with

N = 10!/n!(10 2 n)! states, which are the number of different ways of putting

n electrons into the ten 3d orbitals. For example, for divalent cobalt (n = 7),

N = 120. Although analytical results can be obtained, we also need to consider

the numerical evaluation of the problem. This will be done in Chapter 5.

As mentioned above, the spectrum in Fig. 1.1 closely resembles that of a divalent

cobalt ion in cobalt oxide (CoO). Therefore, the spectrum of a divalent cobalt ion in

a solid is different from that of a free divalent cobalt ion. There is a variety of ways

to include solid-state effects. Unfortunately, due to the presence of strong many-

body effects, it is generally not possible to consider the entire solid. One therefore

often resorts to the incorporation of solid-state effects in an approximate way,

either by including crystal/ligand field effects in an ionic model or by evaluating

the spectral lineshape for small clusters. The presence of solid-state effects also

lowers the symmetry of the problem, which is discussed in Chapter 4.

Another peculiar aspect of the spectrum in Fig. 1.1 is the unusual intensity

ratio of the two spin–orbit split edges. Naively, one would expect the intensities

to be proportional to the 2j + 1 degeneracies of the 2pj core-levels. In this case,

there should be a 2:1 intensity ratio between the L3- and L2-edges. Some aspects

of this change can be evaluated analytically. By integrating over the absorption

intensity (either the total spectrum or the edges separately), the details of the final

states can be removed and one can relate the integrated intensities to ground-

state properties. These are generally called X-ray absorption sum rules, which

are derived in Chapter 6. This chapter also discusses a number of effects that
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occur when including the effects of polarization. Figure 1.1 shows the calculated

difference between left and right circularly polarized light. This is known as X-ray

magnetic circular dichroism. Since we are measuring/calculating a difference, the

intensity can also be negative. In addition, the integrated intensity can also be

nonzero. Using sum rules we can relate this quantity to ground-state expectation

values of the orbital and spin moments. X-ray circular dichroism is therefore

sensitive to magnetism. Note that we are only able to observe this if the material is

ferromagnetic (which CoO is not), otherwise the dichroism intensities from sites

with opposite moments cancel.

Although there is a strong interaction between the core-hole (created by exciting

a 2p electron in our example) and the valence shell, its effects on the X-ray

absorption spectrum are often small. This is because the excited electron is still on

the same ion and therefore the charge has not changed. However, when exciting

further above the edge, the ion becomes effectively more positively charged. This

results in a flow of electrons to that site in an attempt to screen the additional

positive charge. These screening effects are important for the understanding of the

lineshape of X-ray spectroscopy and in particular X-ray photoelectron spectroscopy

and (K-edge) resonant inelastic X-ray scattering. They lead to the presence of

satellite features close to the main lines. The inclusion of such screening effects is

a complex many-body problem, which is described in Chapter 7.

Chapter 8 describes the trends in the X-ray absorption lineshape for various

elements and the effects of different interactions, such as spin–orbit coupling,

crystal fields, and Coulomb interactions. The focus is on general trends and creating

a better understanding. The spectra are evaluated numerically. There are good

books, review articles, and papers that provide additional spectra.

The final chapter focuses on inelastic X-ray scattering both on and off resonance.

Here, one looks at the inelastic scattering of an X-ray from a molecule or a solid. In-

elastic X-ray scattering is directly due to the two-photon A2 term. Resonant inelastic

X-ray scattering is a two-step process, where the absorption is followed by a ra-

diative decay. One subsequently measures the energy and sometimes momentum/

polarization of the outgoing X-ray. Although the decay can occur between two

core-levels, we focus here on decay between the two shells that were involved in

the absorption. This leads to final-state excitations of the order of several elec-

tronvolts. Since we can measure the scattering angle of the X-rays, we are also

able to determine the momentum dependence of the excitations. This allows us to

measure spin and orbital excitations, charge-transfer excitations, local crystal-field

excitation, etc.
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Background

This chapter reviews several basic concepts from quantum mechanics that are

needed for the interpretation of spectroscopy. We start with a review of conservation

laws in quantum mechanics. Essentially, one can view a spectroscopy experiment

as an exchange of physical quantities, such as energy, momentum, and angular

momentum between the photon field and the system that we want to study. We then

review the results for the solution of the Schrödinger equation for hydrogen-like

atoms, which is an independent electron solution. Many-body wave functions for

many-electron atoms are then constructed from the single-electron solutions.

2.1 Symmetry and conservation laws

The purpose of spectroscopy is to extract information from a particular system

through its interaction with electromagnetic radiation. Obviously, this is a complex

problem that includes many different aspects. First, there is the system that we are

trying to study, which can, for example, be an atom, a molecule, or a solid. One of

the main reasons why spectroscopy is complicated is because it directly probes the

electronic structure. The interpretation of spectroscopy therefore generally requires

the development of a model of the electronic structure of the system that we are

studying. The electronic structure of the system is described by the Schrödinger

equation that describes how the many-particle wave function � depends on time

and space,

H� = ih̄
"�

"t
, (2.1)

where H is the Hamiltonian of the system,

H =
�

i

p2
i

2mi

+
�

i

H1(ri) +
�

i,j

H2(ri, rj ), (2.2)

www.cambridge.org/9781107033559
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-03355-9 — Theory of Inelastic Scattering and Absorption of X-rays
Michel van Veenendaal
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 Background

and where the summations go over the particles in the system. The first term is

the kinetic energy where mi is the mass of the particle and pi its momentum; H1

describes the potential landscape with ri the position of the particle; H2 describes

the interaction between the particles. A successful theoretical interpretation of

a spectroscopy experiment generally requires an understanding of the electronic

structure of the system. This model is then used to calculate a spectrum, which

is then compared to experimental results. This should be contrasted with many

structural probes. For example, for X-ray diffraction, interpreting the data generally

involves an inversion problem from reciprocal (momentum) to real space.

However, before we can even think about studying the electronic structure, we

have to understand what effect the spectroscopy experiment has on the system.

One can view a spectroscopy experiment as the exchange of physical quantities,

such as energy, momentum, and/or angular momentum, between the photon field

and the system. The reason this allows us to learn something about the system is

that many of these quantities are (often) conserved. For example, when an X-ray

scatters inelastically in a solid, the energy and momentum gained by the system

equal those lost by the X-ray. From the probability of this scattering process for a

particular energy and momentum, we can extract information regarding the elec-

tronic, magnetic, and structural properties of the material. It is therefore important

to understand these conservation laws and how they arise. When conservation laws

become more complex, they are often called selection rules. This is the convention,

for example, for conservation of angular momentum. Both terms shall be used

throughout the book.

The underlying reason why certain observables are constants of motion is the

symmetry of the physical system under consideration. The treatment of conserva-

tion and symmetry in quantum mechanics differs from that in classical mechanics

due to the involvement of operators and wave functions. If an operator is a constant

of motion, its expectation value does not change as a function of time. The time

dependence of the wave function

|�(t)� = e2 i
h̄
Ht |�� (2.3)

follows directly from the Schrödinger equation (2.1). We can move the time de-

pendence from the wave function to the operator via

��(t)|A|�(t)� = ��|e
i
h̄
HtAe2 i

h̄
Ht |�� = ��|A(t)|��, (2.4)

using roman letters for operators working in Hilbert space, by defining the Heisen-

berg operator

A(t) = e
i
h̄
HtAe2 i

h̄
Ht . (2.5)
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2.1 Symmetry and conservation laws 7

The time dependence of the operator A(t) is given by

"A(t)

"t
=

i

h̄
[H, A(t)], (2.6)

where the commutation relation is defined as

[H, A(t)] = HA(t) 2 A(t)H. (2.7)

Now if A(t) is a constant as a function of time, then its derivative with respect to

time is zero, implying that A and H commute with each other. This commutation

relation has important consequences. Let us denote the eigenfunctions of H as ×k

with eigenenergies Ek,

H×k = Ek×k, (2.8)

where k is a generic index labeling the eigenstates. Now let us operate the

Hamiltonian on A×k:

H (A×k) = AH×k = AEk×k = Ek(A×k), (2.9)

where use has been made of the commutation relation [H, A] = 0. The above

equation implies that A×k is also an eigenfunction of H with eigenvalue Ek. The

vector A×k must therefore be proportional to ×k; hence ×k is also an eigenfunction

of A.

Now we must ask ourselves: what makes an operator a constant of motion? An

operator becomes a constant of motion if it is related to the symmetry of the system

under consideration. Often the action of the operator corresponds to a symmetry

operation of the system. Let us consider two very important examples.

2.1.1 Invariance in time

An operator is a constant of motion if it commutes with the Hamiltonian. Since

an operator commutes with itself, the Hamiltonian is a constant of motion, and

its eigenvalues (i.e. energy) are good quantum numbers. This directly implies that

energy is conserved. Energy is obviously a key variable in spectroscopy. Let us

define the operator

U (t) = e2 i
h̄
Ht . (2.10)

U (t) is known as a unitary transformation. From the solution of the time-dependent

part of the Schrödinger equation (see Eq. (2.3)), it directly follows that this operator

causes a displacement in time of the wave function

U (�t)�(t) = �(t + �t). (2.11)
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8 Background

The invariance of the Hamiltonian in time therefore leads to the law of conservation

of energy. We now look at conservation laws that follow from symmetries in the

spatial coordinates.

2.1.2 Translational symmetry

Translational symmetry imposes restrictions on the Hamiltonian in Eq. (2.2), since

it cannot directly depend on the position r in space. This implies that H1(r) can

only be constant. However, we can still have interactions between particles since

these generally only depend on the relative position ri 2 rj of the particles, which

is independent of the absolute position. In classical mechanics, a translation of the

coordinates can easily be made by adding a translation vector τ to the position

vector, giving r� = r + τ . In quantum mechanics, one needs to find the operator

U (τ ) that gives a translation of the wave function in space. Therefore, operating

U (τ ) on a one-particle time-independent wave function Ë(r) should give

U (τ )Ë(r) = Ë(r + τ ). (2.12)

The right-hand side can be expanded in a Taylor series and subsequently re-summed

as

Ë(r + τ ) = Ë(r) + (τ · ')Ë +
1

2!
(τ · ')2Ë + · · · = eτ'Ë(r). (2.13)

We can always add some constant factors and define p = 2ih̄' where h̄ = h/2Ã

with h as Planck’s constant. Recognizing p as the operator for the momentum, we

can write the translation operator as

U (τ ) = exp

�

i

h̄
p · τ

�

. (2.14)

Obviously, if we can shift everything by τ , we should be able to shift it back again

with 2τ . Therefore, the inverse of U is given by

U21(τ ) = U (2τ ) = e2 i
h̄

p·τ = (e
i
h̄

p·τ )† = U †(τ ), (2.15)

where † stands for the Hermitian conjugate. The last two steps are only possible if the

momentum is a Hermitian operator, i.e. p† = p. In this case, the transformation is

unitary meaning that the inverse of an operator is equal to its Hermitian conjugate:

U21 = U †. In addition, we have U †U = U21U = 1. The terms Hermitian and

unitary might at first sight appear as purely mathematical concepts, but they have

important physical consequences, which we shall now discuss.
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2.1 Symmetry and conservation laws 9

The Hermitian (or adjoint) of an operator A is defined such that its expectation

value for any wave function Ë is
�

drË7AË =
�

dr(A†Ë)7Ë. (2.16)

For the momentum operator, the Hermitian can be obtained via integration by parts:
�

drË7(2ih̄')Ë =
"

2ih̄|Ë |2
"

+
�

dr(ih̄')Ë7Ë =
�

dr (2ih̄'Ë)7 Ë,

where the integrand vanishes as long as the integration volume is large enough that

the wave function is zero on its surface. We see from the definition in Eq. (2.16)

that the momentum operator is Hermitian. What does that physically imply? Let us

assume that Ë is an eigenfunction of a Hermitian operator A with eigenvalue q, i.e.

A× = q×. Since A† = A, Eq. (2.16) directly gives that q = q7. This implies that

the eigenvalue q is real, which is exactly what we expect for a physical quantity. If

q was complex, the transformations would no longer be unitary but evanescent (or

worse, divergent). The commutation relation between U and H can be combined

with the unitarity relation U †U = 1 to give

UH = HU =ó U †UH = U †HU =ó H = U †HU. (2.17)

This implies that the Hamiltonian is invariant under the unitary transformation

U †HU .

We have found above that the momentum operator p = 2ih̄' is a proper sym-

metry operator for a system with translational symmetry. Since p commutes with

the Hamiltonian, the one-particle eigenfunctions of p are also eigenfunctions of the

Hamiltonian. Since from the de Broglie relationship, we know that the eigenvalues

of p are equal to h̄k, where k is the wave vector, the eigenvectors can be found

from

p×k(r) = 2ih̄'×k(r) = h̄k×k(r), (2.18)

which gives

×k(r) =
1

:
V

eik·r, (2.19)

where V is the volume of the system ensuring normalization of the wave func-

tion. Note that the entire wave function is determined by the symmetry of the

problem.

The eigenfunctions in free space have great advantages and are often used even

when they are not true eigenfunctions. In this case, they are known as basis-

functions. We shall use ×k(r) when using the plane waves as basisfunctions. An

arbitrary wave function can always be expressed in terms of a complete set of
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basisfunctions

Ë(r) =
�

k

ck×k(r), (2.20)

where ck is a coefficient giving the amount of the basisfunction ×k(r) in the wave

function. Since we have chosen a finite normalization volume V , the k values are

discretized and we use a summation instead of an integral. The basisfunctions

satisfy orthonormality via
�

dr×7
k�(r)×k(r) =

1

V

�

drei(k2k�)·r = ·k,k�, (2.21)

using the definition of the · function. However, once we have established this

relationship, there is no need to perform an integration over space every time we

need to determine if two basisfunctions are orthogonal. Everything is determined

by the k values. This leads to the concept of function spaces, where one no longer

keeps track of the detailed spatial dependence of the wave function, but only of

how much of each basisfunction is present in the wave function. The basisfunctions

are then unit vectors |k� in an infinite-dimensional function space, also known as a

Hilbert space,

|k� =

»

¼

¼

¼

¼

½

.

0

1

0

.

¾

¿

¿

¿

¿

À

± k and �k| = (|k�)† = (. . . , 0, 1, 0, . . .), (2.22)

where the components are zero except for the element that we have chosen to

correspond to k. The right-hand side of the equation gives the Hermitian conjugate

�k| of a vector. How to set up the unit vectors is our choice, as long as we do it

consistently. The unit vectors satisfy the exact same orthonormality relationship as

in Eq. (2.21),

�k�|k� = ·k,k�, (2.23)

without the need to perform an integration. In addition, from Eq. (2.18), we also

know that the basisfunctions are eigenfunctions of the momentum operator and

therefore

p|k� = h̄k|k�. (2.24)

Therefore all the properties of the basisfunctions have now become numbers,

known as matrix elements. However, in order to determine these matrix elements,

we generally need the spatial dependence of the wave functions, although often
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