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1. Graph theory

This section presents the basic definitions, terminology and notation of graph theory,
along with some fundamental results. Further information can be found in the many
standard books on the subject – for example, Bondy and Murty [1], Chartrand,
Lesniak and Zhang [2], Gross and Yellen [3] and West [5], or, for a simpler treatment,
Marcus [4] and Wilson [6].

Graphs

A graph G is a pair of sets (V , E), where V is a finite non-empty set of elements
called vertices, and E is a finite set of elements called edges, each of which has two
associated vertices. The sets V and E are the vertex-set and edge-set of G, and are
sometimes denoted by V(G) and E(G). The number of vertices in G is called the
order of G and is usually denoted by n (but sometimes by |G|); the number of edges
is denoted by m. A graph with only one vertex is called trivial.

An edge whose vertices coincide is a loop, and if two edges have the same pair
of associated vertices, they are called multiple edges. In this book, unless otherwise
specified, graphs are assumed to have neither loops nor multiple edges; that is, they
are taken to be simple. Hence, an edge e can be considered as its associated pair of
vertices, e={v, w}, usually shortened to vw. An example of a graph of order 5 is
shown in Fig. 1(a).

The complement G of a graph G has the same vertices as G, but two vertices
are adjacent in G if and only if they are not adjacent in G. Figure 1(b) shows the
complement of the graph in Fig. 1(a).
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2 Lowell W. Beineke and Robin J. Wilson
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Fig. 1.

Adjacency and degrees

The vertices of an edge are its endpoints and the edge is said to join these vertices.
An endpoint v of an edge e = vw and the edge e are incident with each other. Two
vertices that are joined by an edge are called neighbours and are said to be adjacent; if
v and w are adjacent vertices we sometimes write v ∼ w, and if they are not adjacent
we write v�w. Two edges are adjacent if they have a vertex in common.

The set N(v) of neighbours of a vertex v is called its neighbourhood. If X ⊆ V ,
then N(X) denotes the set of vertices that are adjacent to some vertex of X.

The degree deg v, or d(v), of a vertex v is the number of its neighbours; in a non-
simple graph, it is the number of occurrences of the vertex as an endpoint of an edge,
with loops counted twice. A vertex of degree 0 is an isolated vertex and one of degree
1 is an end-vertex or leaf. A graph is regular if all of its vertices have the same degree,
and is k-regular if that degree is k; a 3-regular graph is sometimes called cubic. The
maximum degree in a graph G is denoted by �(G), or just �, and the minimum
degree by δ(G) or δ.

An isomorphism between two graphs G and H is a bijection between their vertex-
sets that preserves both adjacency and non-adjacency. The graphs G and H are
isomorphic, written G ∼= H, if there exists an isomorphism between them.

Independent sets and cliques

A set of vertices of a graph G is an independent set (or stable set) if no two vertices
are adjacent. The independence number (or stability number) α(G) is the size of the
largest such set.

A set of vertices is a clique if all pairs of vertices are adjacent. The clique number
ω(G) is the size of a largest clique.

Walks, paths and cycles

A walk in a graph is a sequence of vertices and edges v0, e1, v1, . . . , ek, vk, in which
the edge ei joins the vertices vi−1 and vi. This walk is said to go from v0 to vk or to
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Preliminaries 3

connect v0 and vk, and is called a v0–vk walk. It is frequently shortened to v0v1 · · · vk,
since the edges can be inferred from this. A walk is closed if the first and last vertices
are the same. Some important types of walk are the following:

• a path is a walk in which no vertex is repeated
• a cycle is a non-trivial closed walk in which no vertex is repeated, except the first

and last
• a trail is a walk in which no edge is repeated
• a circuit is a non-trivial closed trail.

Connectedness and distance

A graph is connected if it has a path connecting each pair of vertices, and
disconnected otherwise. A (connected) component of a graph is a maximal connected
subgraph.

The number of occurrences of edges in a walk is called its length, and in a
connected graph the distance d(v, w) from v to w is the length of a shortest v–w path.
It is easy to check that distance satisfies the properties of a metric. The diameter of
a connected graph G is the greatest distance between any pair of vertices in G. If G
has a cycle, the girth of G is the length of a shortest cycle.

A connected graph is Eulerian if it has a closed trail containing all of its edges;
such a trail is an Eulerian trail. A connected graph G is Eulerian if and only if every
vertex of G has even degree. This means that the edge-set of G can be partitioned into
cycles.

A graph of order n is Hamiltonian if it has a cycle of length n, and is pancyclic if
it has a cycle of every length from 3 to n. It is traceable if it has a path through all
vertices. No ‘good’ characterizations of these properties are known.

Bipartite graphs and trees

If the set of vertices of a graph G can be partitioned into two non-empty subsets
so that no edge joins two vertices in the same subset, then G is bipartite. The two
subsets are called partite sets, and if they have orders r and s, G is said to be an r× s
bipartite graph. (For convenience, the graph with one vertex and no edges is also
called bipartite.) Bipartite graphs are characterized by having no cycles of odd length.

Among the bipartite graphs are trees, those connected graphs with no cycles. Any
graph without cycles is a forest; thus, each component of a forest is a tree. Trees have
been characterized in many ways, some of which we give here. For a graph G of
order n, the following statements are equivalent:

• G is connected and has no cycles
• G is connected and has n − 1 edges
• G has no cycles and has n − 1 edges
• G has exactly one path between any two vertices.
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4 Lowell W. Beineke and Robin J. Wilson

The set of trees can also be defined inductively: a single vertex is a tree; and for
n ≥ 1, the trees with n + 1 vertices are those graphs obtainable from some tree with
n vertices by adding a new vertex adjacent to precisely one of its vertices.

This definition has a natural extension to higher dimensions. The k-dimensional
trees, or k-trees for short, are defined as follows: the complete graph on k vertices is a
k-tree, and for n ≥ k, the k-trees with n+ 1 vertices are those graphs obtainable from
some k-tree with n vertices by adding a new vertex adjacent to k mutually adjacent
vertices in the k-tree. Figure 2 shows a tree and a 2-tree.

Fig. 2.

An important concept in the study of graph minors (introduced later) is the tree-
width of a graph G, the minimum dimension of any k-tree that contains G as a
subgraph.

Special graphs

We now introduce some individual types of graph:

• the complete graph Kn has n vertices, each adjacent to all the others
• the null graph Kn has n vertices and no edges
• the path graph Pn consists of the vertices and edges of a path of length n − 1
• the cycle graph Cn consists of the vertices and edges of a cycle of length n
• the complete bipartite graph Kr,s is the r × s bipartite graph in which each vertex

is adjacent to all of the vertices in the other partite set
• the complete k-partite graph Kr1,r2,...,rk has its vertices in k sets with orders

r1, r2, . . . , rk, and every vertex is adjacent to all of the vertices in the other sets;
if the k sets all have order r, the graph is denoted by Kk(r).

Examples of these graphs are given in Fig. 3.

Operations on graphs

Let G and H be graphs with disjoint vertex-sets V(G)={v1, v2, . . . , vr} and
V(H)={w1, w2, . . . , ws}.
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Preliminaries 5
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Fig. 3.

The union G ∪H has vertex-set V(G) ∪ V(H) and edge-set E(G) ∪ E(H). The union
of k graphs isomorphic to G is denoted by kG.
The join G + H is obtained from G ∪ H by adding an edge from each vertex in G to
each vertex in H.
The Cartesian product G × H (or G � H) has vertex-set V(G)× V(H), with (vi, wj)

adjacent to (vh, wk) if either vi is adjacent to vh in G and wj =wk, or vi = vh and wj is
adjacent to wk in H; in less formal terms, G × H can be obtained by taking n copies
of H and joining corresponding vertices in different copies whenever there is an edge
in G.

Examples of these binary operations are given in Fig. 4.

Subgraphs and minors

If G and H are graphs with V(H) ⊆ V(G) and E(H) ⊆ E(G), then H is a subgraph of
G, and is a spanning subgraph if V(H)=V(G). The subgraph 〈S〉 (or G[S]) induced
by a non-empty set of S of vertices of G is the subgraph H whose vertex-set is S and
whose edge-set consists of those edges of G that join two vertices in S. A subgraph
H of G is called an induced subgraph if H=〈V(H)〉. In Fig. 5, H1 is a spanning
subgraph of G, and H2 is an induced subgraph.

The deletion of a vertex v from a graph G results in the subgraph obtained by
removing v and all of its incident edges; it is denoted by G − v and is the subgraph
induced by V − {v}. More generally, if S is any set of vertices in G, then G− S is the
graph obtained from G by deleting all of the vertices in S and their incident edges;
that is, G−S = 〈V(G)−S〉. Similarly, the deletion of an edge e results in the subgraph
G− e and, for any set X of edges, G−X is the graph obtained from G by deleting all
the edges in X.
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6 Lowell W. Beineke and Robin J. Wilson
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Fig. 4.
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Fig. 5.

If the edge e joins vertices v and w, then the subdivision of e replaces e by a new
vertex u and two new edges vu and uw. Two graphs are homeomorphic if there is
some graph from which each can be obtained by a sequence of subdivisions. The
contraction of e replaces its vertices v and w by a new vertex u, with an edge ux
if v or w is adjacent to x in G. The operations of subdivision and contraction are
illustrated in Fig. 6.

If H can be obtained from G by a sequence of edge-contractions and the removal
of isolated vertices, then G is contractible to H. A minor of G is any graph that can
be obtained from G by a sequence of edge-deletions and edge-contractions, along
with deletions of isolated vertices. Note that if G has a subgraph homeomorphic to
H, then H is a minor of G.

Digraphs

Digraphs are directed analogues of graphs, and thus have many similarities, as well as
some important differences. A digraph (or directed graph) D is a pair of sets (V , A),
where V is a finite non-empty set of elements called vertices, and A is a set of ordered
pairs of distinct elements of V called arcs. Note that the elements of A are ordered,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-03350-4 - Topics in Chromatic Graph Theory
Edited by Lowell W. Beineke, Robin J. Wilson and Bjarne Toft
Excerpt
More information

Index

http://www.cambridge.org/9781107033504
http://www.cambridge.org
http://www.cambridge.org


Preliminaries 7
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which gives each of them a direction. An example of a digraph, with the directions
indicated by arrows, is shown in Fig. 7.

v3
v2

v1
v4

Fig. 7.

Because of the similarities between graphs and digraphs, we mention only the
main differences here and do not redefine those concepts that carry over easily. An
arc (v, w) in a digraph may be written as vw, and is said to go from v to w, or to go
out of v and into w. In the context of digraphs, walks, paths, cycles, trails and circuits
are all understood to be directed, unless otherwise indicated. A digraph D is strongly
connected or strong if there is a path from each vertex to each of the others; note that
the digraph in Fig. 7 is strong. A strong component is a maximal strongly connected
subgraph. Every vertex is in at least one strong component, and an edge is in a strong
component if and only if it is on a directed cycle.

The out-degree d+(v) of a vertex v in a digraph D is the number of arcs out of v,
and the in-degree d−(v) is the number of arcs into v. The minimum out-degree in a
digraph is denoted by δ+, the minimum in-degree δ−, and the minimum of the two is
denoted by δ.

Connectivity

In this section, we give the primary definitions and some of the basic results on
connectivity, including two versions of the most important one of all, Menger’s
theorem.
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8 Lowell W. Beineke and Robin J. Wilson

A vertex v in a graph G is a cut-vertex if G− v has more components than G. For a
connected graph, this is equivalent to saying that G−v is disconnected, and that there
exist vertices u and w, different from v, for which v is on every u–w path. It is easy to
see that every non-trivial graph has at least two vertices that are not cut-vertices.

A non-trivial graph is non-separable if it is connected and has no cut-vertices.
Note that under this definition the graph K2 is non-separable. There are many
characterizations of the other non-separable graphs, as the following statements are
all equivalent for a connected graph G with at least three vertices:

• G is non-separable
• every two vertices of G share a cycle
• every two edges of G share a cycle
• for any three vertices u, v and w in G, there is a v–w path that contains u
• for any three vertices u, v and w in G, there is a v–w path that does not contain u.

A block in a graph is a maximal non-separable subgraph. Each edge of a graph
lies in exactly one block, while each vertex that is not an isolated vertex lies in at
least one block, those that are in more than one block being cut-vertices. The graph
in Fig. 8 has four blocks.

Fig. 8.

The basic idea of non-separability has a natural generalization: a graph G is
k-connected if the removal of fewer than k vertices always leaves a non-trivial
connected graph. The main result on graph connectivity – indeed, it might well
be called the Fundamental theorem of connectivity – is Menger’s theorem, first
published in 1927. It has many equivalent forms, and the first that we give here is the
vertex version. Paths joining the same pair of vertices are called internally disjoint if
they have no other vertices in common.

Menger’s theorem (vertex version) A graph is k-connected if and only if every pair
of vertices are joined by k internally disjoint paths.

The connectivity κ(G) of a graph G is the maximum non-negative integer k for
which G is k-connected; for example, the connectivity of the complete graph Kn is
n − 1, and a graph has connectivity 0 if and only if it is trivial or disconnected.
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Preliminaries 9

There is an analogous body of material that involves edges rather than vertices,
and because of the similarities, we treat it in less detail.

An edge e is a cut-edge (or bridge) of a graph G if G−e has more components than
G. (In contrast to the situation with vertices, the removal of an edge cannot increase
the number of components by more than 1.) An edge e is a cut-edge if and only if
there exist vertices v and w for which e is on every v–w path. The cut-edges in a graph
are also characterized by the property of not lying on a cycle; thus, a graph is a forest
if and only if every edge is a cut-edge. Graphs with no cut-edges can be characterized
in a variety of ways similar to those having no cut-vertices – that is, non-separable
graphs. The concepts corresponding to cycles and paths for vertices are circuits and
trails for edges.

Moving beyond cut-edges, we have the following definitions. A graph G is l-edge-
connected if the removal of fewer than l edges always leaves a connected graph. Here
is another version of Menger’s theorem.

Menger’s theorem (edge version) A graph is l-edge-connected if and only if each
pair of its vertices is joined by l edge-disjoint paths.

The edge-connectivity λ(G) of a graph G is the greatest non-negative integer l for
which G is l-edge-connected. Obviously, λ(G) cannot exceed the minimum degree
of a vertex of G; furthermore, it is at least as large as the connectivity – that is,

κ(G) ≤ λ(G) ≤ δ(G).

Along with the undirected versions of Menger’s theorem, there are correspond-
ing directed versions (with directed paths and strong connectivity) and weighted
versions.

2. Graph colourings

The origins of chromatic graph theory lie in the colouring of maps, a story that is
well known. In this section we present some of the definitions and basic results of
chromatic graph theory.

Vertex-colourings

A colouring of a graph G is an assignment of a colour to each vertex of G so that
adjacent vertices always have different colours, and G is said to be k-colourable if it
has a colouring with k colours. The chromatic number χ(G) is the smallest value of
k for which G has a k-colouring.

The fact that computing the chromatic number of a graph is an NP-complete
problem has contributed to the attraction of this area of mathematics – in fact,
determining whether a graph is 3-colourable is itself NP-complete.
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10 Lowell W. Beineke and Robin J. Wilson

We note that the complete graph Kn has chromatic number n and that a bipartite
graph with at least one edge has chromatic number 2, and consequently χ(G) ≥ 3 if
and only if G contains an odd cycle of odd length. An interesting and useful upper
bound on the chromatic number of graphs in general was published by L. Brooks in
1941.

Theorem 2.1 If G is a connected graph with maximum degree �, then

χ(G) ≤ �+ 1,

with equality if and only if G is a complete graph or a cycle of odd length.

There is also an upper bound on the chromatic number that is in terms of minimum
degrees; it is easily proved by induction.

Theorem 2.2 If G and each of its subgraphs has a vertex of degree δ∗ or less, then

χ(G) ≤ δ∗ + 1.

As far as lower bounds are concerned, the obvious one is the clique number:
χ(G) ≥ ω(G). However, as was first shown by Blanche Descartes, there are triangle-
free graphs with arbitrarily large chromatic numbers. More generally, Paul Erdős
proved the following result.

Theorem 2.3 For all k ≥ 2 and all g, there exists a k-chromatic graph with girth
greater than g.

We conclude our discussion of bounds with a pair that involve the independence
number, the dual concept to the clique number.

Theorem 2.4 If G is a graph of order n and independence number α, then

n

α
≤ χ(G) ≤ n − α + 1.

Critical graphs

In the study of the chromatic number, one type of graph that arises quite naturally
is that of a critical graph, a graph G for which each proper subgraph has chromatic
number less than that of G. If χ(G) = k, they are often called k-critical; they were
first studied by G. A. Dirac. Here are two of his results.

Theorem 2.5 For k ≥ 2, every k-critical graph is (k − 1)-edge-connected.

Theorem 2.6 Every k-critical graph is either Hamiltonian or has a cycle of length
at least 2k − 2.
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