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ORDINAL DEFINABILITY IN MODELS OF DETERMINACY
INTRODUCTION TO PART V

JOHN R. STEEL

Five of the papers in this section were written in 1977–1983, and published in
the original Cabal Seminar volumes. The other three papers describe work done
1993–2007. ([Ste16B] was written in 1996, and is published for the first time
here, while [Nee16] and [SW16] have just been written.) Although the three
new papers are separated from the older ones by as much as 30 years, they build
on themes first developed in the older papers. All the papers are concerned,
in one way or another, with ordinal definability in models of determinacy.
The earlier papers focus on restricted fragments of HOD, perhaps because
the basic tools needed to analyze the full HOD in a determinacy model were
not available then. The most important of those tools are definable scales and
canonical inner models for large cardinal hypotheses. The advances we have
made in constructing definable scales and canonical inner models since then
have made it more reasonable to attempt an analysis of the fullHODM , forM
a model of AD+. Such an analysis is important, because HODM is a model of
ZFC that, in a sense, has the same information asM .
A fine-structural analysis of HODM in the caseM = L(R) is presented in

[SW16], the last paper in our group. In this case,HOD is indeed the higher-level
analog of L envisaged in our earliest papers. This analysis has been carried
significantly further in [Sar09]1, but it is not known how to do it in general.
Whether HOD satisfies the GCH is a central test question, identified in our
earliest papers.
We begin by describing some of the history that set the stage for these papers.

We then discuss the individual papers, focusing mainly on putting the older
papers in a modern context.

§1. Some history.
1.1. Definitions and constructions. Effective descriptive set theory is the
marriage of descriptive set theory with recursion theory. Perhaps the first
theorems of the subject are Kleene’s results:

Partially supported by National Science Foundation Grant No. DMS-0855692.
1ForM a bit past the minimal model of ADR + “Θ is regular”.
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4 JOHN R. STEEL

Theorem 1.1 (Kleene [Kle55A, Kle55B, Kle55C]).
(1) For any real x, x is Δ11 if and only if x is hyperarithmetic.
(2) Every nonempty Σ11 set of reals has a member that is recursive in O.
Here and below, real is an infinite sequence of natural numbers, considered
as an element of the Baire space. We call a set of reals thin just in case it has
no nonempty perfect subsets. J. Harrison strengthened the first of Kleene’s
theorems by showing:

Theorem 1.2 (Harrison [Har66]). Every thin Σ11 set of reals can be enumer-
ated by a hyperarithmetic real.

Such theorems, and others like them, are consequences of a constructive
analysis of some level of second order truth. In order to extend them to
higher levels of truth, for example Σ12 and beyond, we must use more general
constructions, and for this, the basic notions of recursion theory are no longer
adequate. We must move upward into inner model theory, and what was
effective descriptive set theory becomes descriptive inner model theory.2

The theorems of Kleene and Harrison can be seen in this light, when we
recall that a real is hyperarithmetic iff it belongs to L�CK1 . Moving upward, to
Σ12 and full L, we have

Theorem 1.3.
(1) For any real x, x is Δ12 if and only if x ∈ Lα , where α is least such that Lα
is a Σ1 elementary submodel of L. (Shoenfield [Sho61].)

(2) For any real x, x is Δ12 in a countable ordinal iff x ∈ L. (Solovay; see
[KM72].)

(3) Every nonempty Σ12 set of reals has a Δ
1
2 member. (Shoenfield [Sho61].)

(4) Every thin Σ12 set of reals is contained in L. (Mansfield [Man70], Solovay
[Sol66].)

1.2. Definable scales. Underlying these theorems, and pretty much every-
thing else in pure descriptive set theory, is the construction of definable Suslin
representations (equivalently, scales). We have

Theorem 1.4.
(1) A set B of reals is Σ11 iff B = p[T ], for some recursive tree T on � × �.
(Kleene [Kle55C].)

(2) A set B of reals is Σ12 iff B = p[T ], for some tree T on � ×�V1 such that T
is Σ1-definable over L. (Shoenfield [Sho61].)

In order fully generalize the theorems of Kleene and Harrison to Σ13 and
beyond, we must reach Suslin representations for Σ13 sets of reals, and beyond,
via some constructive process. This requires axioms beyond those of ZFC.

2The term is due to Grigor Sargsyan.
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INTRODUCTION TO PART V 5

The game method for obtaining optimally definable Suslin representations
makes direct use of determinacy. It was discovered in 1971 by Moschovakis,
who used it to extend the Novikoff–Kondô–Addison theorems to the higher
levels of the projective hierarchy. (The original paper is [Mos71]; see also
[KM78B] and [Mos09, Chapter 6].) As part of this work, Moschovakis
introduced the basic notion of a scale, which we now describe.
Let T be a tree on � × �, and A = p[T ]. One can get a “small” subtree
of T which still projects to A by considering only ordinals < � which appear
in some leftmost branch. The scale of T does this, then records the resulting
subtree as a sequence of norms, i.e., ordinal-valued functions, on A. More
precisely, for x ∈ A and n < �, put

ϕn(x) = |〈�x(0), . . . , �x(n)〉|lex,

where for u ∈ �n+1, |u|lex is the ordinal rank of u in the lexicographic order
on �n. Then

�ϕ = 〈ϕn : n < �〉

is the scale of T . It has the properties:

(a) Suppose that xi ∈ A for all i < �, and xi → x as i → ∞, and for all n,
ϕn(xi) is eventually constant as n → ∞, then
(i) (limit property) x ∈ A, and
(ii) (lower semi-continuity) for all n, ϕn(x) ≤ the eventual value of
ϕn(xi) as i → ∞.

(b) (refinement property) ifx, y ∈ A andϕn(x) < ϕn(y), thenϕm(x) < ϕm(y)
for all m > n.

A sequence of norms onA with property (a) is called a scale onA. Any scale
on A can be easily transformed into a scale on A with the refinement property.
If �ϕ is a scale on A, then we define the tree of �ϕ to be

T�ϕ =
{
(〈x(0), . . . , x(n − 1)〉, 〈ϕ0(x), . . . , ϕn−1(x)〉) : n < � and x ∈ A

}
.

It is not hard to see that p[T�ϕ] = A. If �ϕ has the refinement property, and �� is
the scale of T�ϕ , then �� is equivalent to �ϕ, in the sense that for all n, x and y,
�n(x) ≤ �n(y) iff ϕn(x) ≤ ϕn(y). The reader should see [KM78B, 6B] and
[Jac08] for more on the relationship between scales and Suslin representations.
There are at least two benefits to considering the scale of a tree: first, it
becomes easier to state and prove optimal definability results, and second,
the construction of Suslin representations using comparison games becomes
clearer. Concerning definability, we have:

Definition 1.5. Let Γ be a pointclass, and �ϕ a scale on A, where A ∈ Γ;
then we call �ϕ a Γ-scale on A just in case the relations

R(n, x, y)⇔ x ∈ A ∧ (y /∈ A ∨ ϕn(x) ≤ ϕn(y)),
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6 JOHN R. STEEL

and

S(n, x, y)⇔ x ∈ A ∧ (y /∈ A ∨ ϕn(x) < ϕ(y))
are each in Γ. We say Γ has the scale property just in case every set in Γ admits
a Γ-scale, and write Scale(Γ) in this case.

Moschovakis showed that if Γ is a pointclass which is closed under universal
real quantification, has othermild closure properties, and has the scale property,
then every Γ relation has a Γ uniformization, and the Γ singletons are a basis
for Γ [KM78B, 3A-1]. He also showed

Theorem 1.6 (Moschovakis 1971). Let n < �, and assumeΔ˜12n-determinacy;then the pointclasses Π12n+1 and Σ
1
2n+2 have the scale property.

(See [KM78B, 3B, 3C].) From this, one gets the natural generalization of
Novikoff–Kondô–Addison to the higher levels of the projective hierarchy.
Around 1977, Moschovakis showed that the pointclass ΣLκ(R)1 has the scale
property, where κ is least such that Lκ(R) � KP.3 In late 1979, Moschovakis
showed that sets in the dual pointclass admit definable scales as well, and
Martin and Steel very quickly extended his result to:

Theorem 1.7 (Martin, Steel 1979). Assume ADL(R); then
(a) The pointclass (Σ21)

L(R) has the scale property.
(b) In L(R), the sets of reals admitting scales are precisely the Σ˜21 sets.
See [Mos78, Mos83, MS83]. Part (b) makes use of an earlier proof by

Kechris and Solovay that in L(R), every set admitting a scale of any complexity
is Σ˜21.4 In 1980, Martin [Mar83] found a much subtler limitation on thedefinability of scales, and Steel [Ste83A] knitted the work just described into a
thorough description of the pattern of pointclasses with the scale property in
L(R).
As Solovay observed some time in the 1970s, in L(R), every nonempty Σ21
collection of sets of reals has a Δ˜21 member. (Applying Theorem 1.7, we get alightface Δ21 member.) This fact is often used in the following form:

Corollary 1.8 (Solovay, 1970s). Assume AD+ V=L(R). Let B ⊆ ℘(R)
be Π1-definable from a real, and suppose that every Suslin-co-Suslin sets of
reals is in B; then every set of reals is in B.

Theorem 1.7 lets us calibrate precisely the correctness ofM = HODL(R).
The key is that if T is the tree of a ΣL(R)1 scale on a universal ΣL(R)1 set of reals,
then T ∈M . Using that, we get
Theorem 1.9. Assume AD+ V=L(R); then

3Here and below, our Σ1 formulae are always allowed a name for R itself.
4In L(R), a set of reals is Σ21 just in case it is Σ1.
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INTRODUCTION TO PART V 7

(a) There is an α such that Lα(R)HOD ≺Σ1 L(R).
(b) HOD � “Every real is ODL(R)”.
(c) HOD � “There is a ΔL(R)1 wellorder of R of order type �1”.

Thus CH holds in HODL(R).
Much of the work in the 1977–83 papers in this block was done before
the late 1979–early 1980 work on the existence of scales in L(R). In any
case, the scale-existence work was quite recent. It was therefore natural for
the authors of those papers to focus strongly on projectively definable sets.
Without definable scales, it’s hard to get very far. The full HODL(R) was not
an object of concern in the 1977–83 papers.
1.3. ∞-Borel codes. An∞-Borel code for a set A ⊆ R is a triple 〈α, S, ϕ〉
such that α ∈ Ord, S ⊆ α, and A = {x : Lα[S, x] � ϕ[x]}. Any such A is
built up from open sets via wellordered unions and complementation, and we
can always take S to be a set of ordinals recording the history of how that was
done. Every Suslin representation yields an∞-Borel code, but not conversely.5
Clearly, if M is a proper class having an ∞-Borel code for A, then for all
reals x, A ∩M [x] is definable overM [x] from this∞-Borel code, uniformly
in x. However, in contrast to Suslin representations, it can happen that A is
nonempty, but A ∩M = ∅.
A still weaker notion is term capturing. If M is a transitive model of a
reasonable fragment of ZFC, P is a poset inM , and A ⊆ R, then we sayM
captures A at P just in case there is a term 
 ∈ M such that whenever g is
M -generic over P, then 
g = A ∩M [g]. If M has an ∞-Borel code for A,
then it captures A at all P ∈ M . The converse is false: any transitive model
M of ZFC closed under sharps captures {〈x, n〉 : x ∈ R ∧ n ∈ x#}, but if
M is countable, it only has ∞-Borel codes for Borel sets. If M captures A
at P, and every real is P-generic overM , thenM has an∞-Borel code for A.
(Any S ⊆ Ord coding the regular open algebra of P will do.) Amazingly,
there are important examples of M and P such that every real is P-generic
overM . One isM = HOD and P the Vopěnka algebra, and another isM a
fully backgrounded extender model, and P the extender algebra at a Woodin
cardinal ofM . (See [Ste10B, Section 7].)
It follows from Theorem 1.7 that in L(R), every Σ˜21 set of reals is∞-Borel.6Woodin showed in 1981

Theorem 1.10 (Woodin 1981). Assume AD+ V=L(R); then
(1) Every set of reals is∞-Borel.
(2) Every OD set of reals has an∞-Borel code in HOD.
(3) For all reals x, HOD[x] = HODx ; that is, HOD relativizes by adjunction.

5The notion of an∞-Borel code is introduced and used in [KM78B, Section 10], where it is
called an∞-Boolean code. We do not know whether it appears anywhere else earlier.
6We assume ADL(R) here.
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8 JOHN R. STEEL

With regard to part (3), note that every real is generic over HOD, by
Vopěnka’s theorem. One proof of (2) and (3) goes by showing that HOD
captures all OD sets of reals at the Vopěnka algebra. At about the same time,
Kechris and Woodin had shown

Theorem 1.11 (Kechris, Woodin 1981). Assume AD+ V=L(R); then
(1) there is a partial order P ∈ HOD and a recursive function t such that

V � ϕ[x]⇔ HOD � 1 � t(ϕ)(x̌),
for all formulae ϕ(v) and all x ∈ HOD,

(2) HOD = L[P], for some P ⊆ Θ.
Here P is a variant of the Vopěnka poset. See [Ste08C, Section 3] for the
proof of an extension of this theorem. According to the theorem, HOD can
determine truth in the full V, by consulting the forcing relation for P.
Thus by 1982, the degree of correctness of HODL(R), as well as what sets
of reals it has ∞-Borel codes for, was known. But again, this work either
post-dated the 1977–1983 papers, or was quite recent. Those papers focused
lower down, below the full HODL(R).
1.4. Definability theory under determinacy assumptions. Much of the de-
scriptive set theory of the first two levels of the projective hierarchy can be
generalized to higher levels, and beyond, without any use of the fine hierarchy
provided by inner model theory. Determinacy is enough to go pretty far;
one need not have a proof of it from large cardinals, or reach the strategies
one is assuming to exist in some construction. For example, Moschovakis’
scale-existence results yield at once a basis theorem at the even levels of the
projective hierarchy:

Theorem 1.12 (Moschovakis). Assume Δ˜12n-determinacy, where 0 ≤ n < �;then every Σ12n+2 set of reals has a Δ
1
2n+2 member.

The parallel generalization of the Kleene basis theorem for Σ11 to all Σ
1
2n+1

is more subtle. It was discovered by Martin and Solovay in 1975, and is the
beginning of “Q-theory”. We shall discuss it when we come to the paper on
Q-theory in this block.
There are partial generalizations of the the thin-set theorems for Σ11 and Σ

1
2

as well. At the odd levels, we need Moschovakis’ “third periodicity” theorem,
on the existence of definable winning strategies for games with definably scaled
payoff sets. (See [Mos09, 6E].) With this in hand, we get

Theorem 1.13. Let 0 ≤ n < �, and assume Δ˜12n-determinacy; then
(1) Every thin Σ12n+1 set of reals is enumerated by a Δ

1
2n+1 real.

(2) There is a largest thin Π12n+1 set, which we call C2n+1.
(3) Letting C2n+2 = {x : ∃y ∈ C2n+1(x ≤T y)}, we have that every thin Σ12n+2
set of reals is contained in C2n+2.
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INTRODUCTION TO PART V 9

(4) If Π˜ 12n+1-determinacy holds, then C2n+2 is the largest countable Σ12n+2 setof reals.

Item (1) is due to Kechris. Item (2) is due to Kechris, Guaspari, Sacks for
n = 0, Kechris for n > 0. See [Kec75B]. Items (3) and (4) are joint work of
Kechris and Moschovakis from the early ’70s; see [KM72]. Kechris developed
the theory of countable analytical sets in [Kec75A], and [Kec78B]. Combining
his work with 1977 work of Harrington and Kechris [HK81], we have

Theorem 1.14 (Kechris, Harrington–Kechris). Assume PD, let 1 ≤ n < �;
and let T be the tree of a Π12n−1-scale on a universal Π

1
2n−1 set. For any real x,

the following are equivalent:
(1) x ∈ C2n,
(2) x ∈ L[T ],
(3) x is Δ12n in some ordinal < �˜12n−1,(4) x is Δ12n in a countable ordinal.

The equivalence of (1),(3), and (4) is due to Kechris (see [Kec75A]).
Moschovakis had shown that if n = 1, then T ∈ L, and the n = 1 case of
Theorem 1.14 follows from that and Solovay’s theorem cited above. (See
[KM78B, Section 9].) For n = 2, the equivalence of (1) and (2) was first
proved by Kechris and Martin in [KM16].
Kechris also showed that C2n+1 is prewellordered by Δ12n+1-degree, a struc-
tural feature suggestive of the master code levels of canonical inner models.
Indeed, Guaspari, Kechris, and Sacks showed C1 consists of those reals having
the same Δ11-degree as a master code in L.

7 C2 is the set of reals in L. Moscho-
vakis showed that for all n, C2n+2 is the set of reals in L[C2n+2]. These results
suggested that there would be higher-level analogs of L, canonical models
related to Σ12n the way L is related to Σ

1
2.

Theorem 1.13(1) implies there is no largest countable Σ12n+1 set, and using
Theorem 1.12, it is easy to see that there is no largest countable Π12n set. There
are largest countable sets in many pointclasses beyond the projective hierarchy,
in fact:

Theorem 1.15 (Kechris, Moschovakis). Suppose Γ is adequate,
�-parametrized, has the scale property, and is closed under ∃R, and sup-
pose all Γ˜ games are determined; then there is a largest countable Γ set ofreals.

The theorem is implicit in the proof of [KM78B, Theorem 11B-2], which
proves the existence of C2n. When it exists, the largest countable Γ set is
called CΓ. It is natural to look at the largest pointclass Γ ⊆ L(R) satisfying the

7Equivalently, x ∈ C1 iff for some α, x has the same Δ11 degree as the first order theory (without
parameters) of Lα .
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10 JOHN R. STEEL

hypothesis of Theorem 1.15, namely ΣL(R)1 . In this case, the closure properties
of ΣL(R)1 make the counterpart of Theorem 1.14 an easy exercise:

Theorem 1.16. Assume ADL(R), and let T be the tree of a ΣL(R)1 -scale on a
universal ΣL(R)1 set. For any real x, the following are equivalent:

(1) x ∈ CΓ, for Γ = ΣL(R)1 ,
(2) x ∈ L[T ],
(3) x is ordinal definable in L(R),
(4) x is ΔL(R)1 in a countable ordinal.

1.5. Inner model theory. In order to fully generalize the theorems of Kleene,
Harrison, and Mansfield–Solovay, one needs to do more than define Suslin
representations or ∞-Borel codes for more complicated sets of reals. One
must construct such representations. The Shoenfield tree is not just definable,
it is in L. Definable Suslin representations and ∞-Borel codes let us pack
the information in a set of reals into a set of ordinals, but there remains the
problem of reaching that set of ordinals via a constructive process, that is, in a
canonical inner model. Unfortunately, when the papers in our first block were
written, it was not known how to construct canonical inner models significantly
more correct than L.
By 1977, the work of Silver, Kunen, and Mitchell had extended the basic
theory of L to canonical inner models with many measurable cardinals. (See
[Sil71A, Sil71B, Kun70, Mit74].) Although this work is full of beautiful
ideas and powerful tools of permanent value, it does not go very far beyond
G’́odel’s work on L in descriptive set theoretic terms. The canonical inner
models studied in [Sil71A, Kun70, Mit74] fail to be even Σ13 correct. Indeed,
the set of reals in the union of these models is a countable Σ13 set, and so if
Δ˜12-determinacy holds, it is enumerated by a single Δ13 real. A related fact isthat each of the models satisfies “there is a Δ13 wellorder of the reals”, and
therefore Δ12-determinacy fails to hold in any of them.
In an important 1978 breakthrough, Mitchell discovered the central features

of the first order form of canonical inner models, all the way up to inner models
with superstrong cardinals. (See [Mit79].) His idea of models constructed from
coherent sequences of extenders has been the basis of all further work in inner
model theory. Mitchell himself used it to construct inner models satisfying
“there is a κ that is (κ + 2)-strong”, a large cardinal hypothesis significantly
beyond the existence of measurables, and seemingly well on the way to the
existence of superstrongs, and even supercompacts.

Theorem 1.17 (Mitchell, 1978). Suppose there is a cardinal κ such that κ is
(κ + 3)-strong; then there is a modelM constructed from a coherent sequence
of extenders such that
(1) M � ZFC+ ∃κ(κ is κ + 2-strong),
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