Cambridge University Press & Assessment 978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance W. J. Wouter Botzen Frontmatter <u>More Information</u>

Managing Extreme Climate Change Risks through Insurance

In recent years, the damage caused by natural disasters has increased worldwide; this trend will only continue with the impact of climate change. Despite this, the role for the most common mechanism for managing risk – insurance – has received little attention. This book considers the contribution that insurance arrangements can make to society's management of the risks of natural hazards in a changing climate. It also looks at the potential impacts of climate change on the insurance sector, and insurers' responses to climate change. The author combines theory with evidence from the rich experience of the Netherlands together with examples from around the world. He recognizes the role of the individual in preparing for disasters, as well as the difficulties individuals have in understanding and dealing with infrequent risks. Written in plain language, this book will appeal to researchers and policy makers alike.

W. J. WOUTER BOTZEN is Assistant Professor at the Department of Environmental Economics of the Institute for Environmental Studies, VU University Amsterdam and a visiting scholar at the Risk Management and Decision Processes Center of the Wharton School, University of Pennsylvania. Cambridge University Press & Assessment 978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance W. J. Wouter Botzen Frontmatter <u>More Information</u>

Managing Extreme Climate Change Risks through Insurance

W. J. WOUTER BOTZEN

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107033276

© W. J. Wouter Botzen 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013 First paperback edition 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Botzen, W. J. Wouter
Managing extreme climate change risks through insurance / Wouter Botzen.
pages cm
Includes bibliographical references and index.
ISBN 978-1-107-03327-6 (hbk.)
1. Risk management. 2. Natural disasters. 3. Climatic changes – Environmental aspects. I. Title.
HD61.B6578 2013
363.347-dc23
2012040697

ISBN 978-1-107-03327-6 Hardback ISBN 978-1-316-60088-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Lisi	t of fig	gures	page x
Lisi	t of ta	bles	xiii
Pre	face		xvii
Ack	rnowl	edgements	xix
	Intro	oduction	1
1	Clin	nate change and natural disaster risk management	3
	1.1	Background	3
	1.2	Future natural disaster risks under climate and	
		socio-economic change	6
	1.3	Assessing natural catastrophe risk	13
	1.4	Managing natural disaster risks	20
	1.5	The role of insurance in adaptation	
		to natural disasters	26
	1.6	Outline of this book	31
2	Clin	nate change impacts on the insurance sector	36
	2.1	Introduction	36
	2.2	The relevance of climate change for the	
		(international) insurance sector	39
	2.3	Observed climate change and projections	
		for the Netherlands	46
	2.4	Risk-sharing arrangements for weather	
		risks in the Netherlands	50
	2.5	International case studies of the impacts	
		of climate change on the insurance sector	67
	2.6	Possible and actual responses by the	
		international insurance industry to climate change	82
	2.7	Conclusions	87

v

Cambridge University Press & Assessment 978-1-107-03227-6 — Managing Extreme Climate Change Risks through Insurance
W. J. Wouter Botzen
Frontmatter
More Information

vi		Со	ntents
3	Clin	nate change and future costs of natural disasters	90
	3.1	Introduction	90
	3.2	International studies on the potential	
		impacts of climate change on the risks	
		of convective weather	93
	3.3	Hailstorm damage insurance and data used	
		in the analysis	96
	3.4	Estimation results	105
	3.5	Extrapolations of hailstorm damage	
		using climate change scenarios	117
	3.6	Economic implications: Adaptation by	
		agricultural and insurance sectors to the	
		projected increase in hailstorm damage	121
	3.7	International studies on the potential impacts	
		of climate and socio-economic change on	
	• •	natural disaster damage	124
	3.8	Conclusions	128
	App	endix 3A Descriptive statistics	131
	App	endix 3B Statistical methods	131
	App	endix 3C Estimation results for high-damage months	132
	Арр	endix 3D Estimation results for various specifications	133
4	Clin	nate change adaptation through insurance	
	agai	nst flooding	137
	4.1	Introduction	137
	4.2	Current risk-sharing arrangements for	
		flood damage in the Netherlands	140
	4.3	Suggestions for managing risk with private	
		flood insurance	142
	4.4	Problems associated with private flood	
		insurance arrangements and suggestions for	
		possible solutions	146
	4.5	International experience of flood insurance	
		arrangements	153
	4.6	Conclusions	162
5	Deal	ling with uncertainty in flood risk management	165
	5.1	Introduction	165
	5.2	Flood risk management in the Netherlands	167
	5.3	The framework of modern portfolio theory	172

Co	ntents		vii
	5.4	Application of modern portfolio theory to	
		flood risk management	176
	5.5	Conclusions	187
6	Dan	nage mitigation measures at the household	
	level	and climate change adaptation	189
	6.1	Introduction	189
	6.2	International studies on the effectiveness	
		of flood mitigation measures	191
	6.3	Elevating buildings as a sustainable long-run	
		water management strategy	196
	6.4	Willingness of households to invest in	
		elevating houses	198
	6.5	Conclusions	206
7	Insu	rance incentives for homeowners to	
	inve	st in adaptation	208
	7.1	Introduction	208
	7.2	International experience of the undertaking	
		of voluntary mitigation measures and the role	
		of insurance in encouraging mitigation	211
	7.3	Damage mitigation measures and flood risk	
		management in the Netherlands	219
	7.4	Explanation of the survey	220
	7.5	Descriptive statistics for willingness to	
		undertake mitigation measures and an	
		analysis of their effectiveness	224
	7.6	Statistical model of the decision to mitigate	
		by buying sandbags as a water barrier	236
	7.7	Conclusions	242
	App	endix 7A Questions about mitigation and insurance	244
	App	endix 7B The statistical model and overview of the	
		variables and descriptive statistics	246
8	Bou	nded rationality and demand for flood insurance	250
	8.1	Introduction	250
	8.2	Insurance purchases for low-probability	
		natural hazard risk, and the theoretical implications	253
	8.3	Climate change and the risk of flooding	255

Cambridge University Press & Assessment
978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance
W. J. Wouter Botzen
Frontmatter
More Information

viii	C	ontents
	8.4 Estimating demand for flood insurance	255
	8.5 Conclusions	266
	Appendix 8A Mathematical derivations	268
9	Individual perceptions of flood risk	269
	9.1 Introduction	269
	9.2 Flood risk and perceptions in the Netherlands	272
	9.3 The psychology of the formation of risk perceptions9.4 Explaining the survey and variables used	274
	in modelling risk perception	276
	9.5 An examination of perceptions of flood risk	
	in the Netherlands	278
	9.6 Results of statistical analyses of factors	
	determining risk perception	286
	9.7 Conclusions and policy implications	299
	Appendix 9A Questions used to elicit risk perception	302
10	Willingness-to-pay (WTP) for insurance against	
	low-probability flood risks	305
	10.1 Introduction	305
	10.2 International studies on household demand	
	for flood insurance	308
	10.3 Household survey on the demand for flood	
	insurance in the Netherlands	316
	10.4 Results of the survey	322
	10.5 Conclusions	334
	Appendix 10A Determination of risk using a risk ladder	336
	Appendix 10B Payment card	337
	Appendix 10C Explanatory variables and descriptive	
	statistics	338
11	Market shares for insurance against flood risk	
	under different climate change scenarios	341
	11.1 Introduction	341
	11.2 Explanation of the questionnaires	344
	11.3 Experimental design and estimation methods	346
	11.4 Estimation results of the choice models for	
	flood insurance demand	350

Cor	ntents	ix
	11.5 Market penetration and WTP for flood	
	insurance under various climate change and	
	socio-economic scenarios	359
	11.6 Policy implications and conclusions	364
	Appendix 11A Overview of attributes and levels of the	
	choice experiment	368
	Appendix 11B Explanatory variables and descriptive	
	statistics	369
12	Conclusions	372
	12.1 Introduction	372
	12.2 Managing risks in a changing climate	372
	12.3 Climate change impacts on insurers and insurers'	
	responses to climate change	374
	12.4 Insurance arrangements for natural disaster	
	risks and a comprehensive climate change	
	adaptation strategy	377
	12.5 Individual behaviour under risk and demand	
	for natural disaster insurance in a changing climate	381
	12.6 An agenda for future research	386
Ref	ferences	389
Ind	lex	428

Figures

1.1	Overall and insured losses caused by great natural	
	disasters between 1950 and 2011 (in 2011 values)	page 4
1.2	Historical and projected cumulative CO_2 emissions	
	from 1900 until 2080 using the EIA (2007)	
	reference scenario	13
1.3	Main components of catastrophe models	14
1.4	Projected annual flood damage in a Dutch polder area	l
	in the year 2040 compared with 2000 under scenarios	6
	of climate and socio-economic change, assuming no	
	adaptation	17
1.5	Schematic overview of the chapters in the book	34
2.1	Maps that show the projected development of land	
	use in the Netherlands according to a land use model	
	(land use scanner) between 2000 and 2100 under a	
	scenario of high (GE) and low (RC) economic growth	51
2.2	Assessment of future flood risk in the Netherlands	
	under a range of climate change and socio-economic	
	scenarios	52
2.3	A multilayered insurance programme	55
2.4	Insured weather-related catastrophe losses	
	compared with the development of insurance	
	premiums, GDP and population in the USA	71
3.1	Logarithm of the normalized hailstorm damage to	
	agriculture between January 1990 and June 2006	101
3.2	Logarithm of the normalized hailstorm damage to	
	greenhouse horticulture (Inside) and to outdoor	
	farming (Outside), summed per month for the period	
	Ianuary 1990 to September 2005	102
3.3	Map of the Netherlands with the locations of the ten	102
5.5	meteorological stations	103
	increoi oi ogicai stations	105

х

List of figures

3.4	Scatter plot of total agricultural hailstorm	
	damage, HD _{total} , versus minimum temperature	104
3.5	Scatter plots of hailstorm damage to greenhouse	
	horticulture, HD _{inside} (left), and to outdoor farming,	
	HD _{outside} (right), versus minimum temperature	105
5.1	Safety standards for dike-ring areas in the Netherlands	169
5.2	Peak discharge at Lobith (m ³ /s) and the probability	
	of dike failure	172
5.3	The curved lines are 'efficient frontiers' showing	
	the most optimal risk-return values against the variation	
	in return for different portfolios of two assets	176
5.4	Schematic overview of the possible flood	
	protection investments in dike-ring area 43 in the	
	central part of the Netherlands	177
5.5	Portfolio return and variance for portfolios	
	consisting of two assets (D+ and Cp) under the	
	current climate scenario	183
5.6	Portfolio return and variance for two- (D+ and Cp),	
	three- (D+, Cp and Fp) and all four-asset portfolios	
	under the current climate scenario	184
5.7	Portfolio return and variance for portfolios	
	consisting of four assets under the current,	
	CC1 and CC2 climate scenarios	184
6.1	Expected flood damage in the UK in relation to	
	flood depth and implemented mitigation measures	194
6.2	Location of the respondents to the survey on a	
	map of the Netherlands	200
6.3	Respondents' expected negative effects of	
	climate change for the Netherlands ($p = 0.05$)	204
7.1	Location of the respondents to the survey in the	
	dike-ring areas	222
9.1	Respondents' perceived return period of	
	flooding (in years)	284
9.2	Respondents' perceived flood damage (€ per flood event)	285
10.A1	Risk ladder that compares the current flood	
	probability with other risks	337
10.B1	The payment card included with the contingent	
	valuation questions	337

Cambridge University Press & Assessment
978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance
W. J. Wouter Botzen
Frontmatter
More Information

xii	1	List of figures
44.4		
11.1	Effects of climate change on the choice of	
	flood insurance	358
11.2	Demand curves for insurance products under	
	100 per cent coverage (top), 75 per cent coverage	2
	(bottom), and with or without government	
	compensation for damage (with/without WTS)	361
11.A1	Attributes and levels used in the choice experime	nt 368
11.A2	Example of a choice card	369

Tables

2.1	Natural disaster losses per decade between	
	1950 and 2005 in billion \$ (2005 values)	page 40
2.2	Review of normalization studies of historical	
	natural disaster damage	42
2.3	Projected climate change for the Netherlands	
	in 2050 relative to 1990	48
2.4	Current risk-sharing arrangements for the	
	main weather risks in the Netherlands	66
2.5	Implications of climate change for insured losses,	
	insurance premiums and capital requirements for	
	inland flooding in the UK (in 2008 £ values)	69
2.6	Examples of projected changes in climate and	
	impacts on the insurance sector	72
3.1	Root mean squared error (RMSE) for models	
	of total agricultural hailstorm damage, HD _{total} ,	
	hailstorm damage to outdoor farming, HD _{outside} ,	
	and to greenhouse horticulture, HD _{inside} , for a	
	range of climate indicators	109
3.2	Tobit results for hailstorm damage to outdoor	
	farming, HD _{outside} (left columns) and hailstorm	
	damage to greenhouse horticulture, HD _{inside}	
	(right columns) of the traditional model and	
	the best prediction model	112
3.3	Mean marginal effects for the Tobit model for	
	hailstorm damage to outdoor farming, HD _{outside}	
	(left columns) and hailstorm damage to greenhouse	
	horticulture, HD _{inside} (right columns) for the	
	traditional and the best prediction models	113
3.4	Climate change projections for mean	
	precipitation and temperature, according to	
	KNMI scenarios for 2050	118

xiii

xiv

Cambridge University Press & Assessment
978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance
W. J. Wouter Botzen
Frontmatter
More Information

List of tables

3.5	Estimated change in hailstorm damage in per cent to outdoor farming (left columns) and to greenhouse horticulture (right columns) under climate change	
	prediction intervals are shown between brackets)	120
36	Results of studies of natural disaster damage in	120
5.0	2040 under scenarios of climate and socio-economic	
	change for a variety of countries	126
3 A 1	Descriptive statistics for temperature and	120
5.111	precipitation indicators	131
3.A2	Correlations between the temperature and	101
0.112	precipitation indicators and hailstorm damage	131
3.A3	Correlations between the temperature indicators	101
01110	and precipitation	131
3.C1	Tobit results for the traditional and best prediction	
	models of hailstorm damage to outdoor farming,	
	HD _{outeide} (left columns), and hailstorm damage to	
	greenhouse horticulture, HD _{inside} (right columns),	
	using observations from April to September	132
3.D1	Tobit results for total agricultural hailstorm damage,	
	HD_{total} , for three models with the temperature	
	variables T_{min} , $T_{average}$ and T_{max}	133
3.D2	Tobit results for hailstorm damage to outdoor	
	farming, HD _{outside} (left columns), and hailstorm	
	damage to greenhouse horticulture, HD _{inside}	
	(right columns), for two models with the temperature	
	variables T_{min} and $T_{average}$	134
3.D3	Mean marginal effects (MME) for the Tobit model	
	for hailstorm damage to outdoor farming, HD _{outside}	
	(left columns), and hailstorm damage to greenhouse	
	horticulture, HD _{inside} (right columns), for two models	
	with the temperature variables T_{min} and $T_{average}$	135
3.D4	Tobit results for total agricultural hailstorm damage,	
	HD_{total} , for three models with the temperature	
	variables T_{min} , $T_{average}$ and T_{max} , using observations	
	from April to September	135
3.D5	Tobit results for hailstorm damage to outdoor farming,	
	HD _{outside} (left columns), and hailstorm damage to	
	greenhouse horticulture, HD _{inside} (right columns),	

List of tables

х	v

	for two models with the temperature variables T_{min} and	
	$T_{avarage}$, using observations from April to September	136
4.1	The stakeholders of the National Flood Insurance	
	Program (NFIP) and their main responsibilities	154
4.2	Characteristics of financial arrangements for	
	flood damage in different countries	161
5.1	Probabilities of the different states of nature.	101
011	i e possible river discharges under three different	
	climate scenarios: current low climate change	
	and high climate change	179
5.2	Expected return variance and standard deviation (SD)	1.1.2
0.2	per asset under the current climate scenario	182
5.3	Correlation coefficients between pairs of assets	186
6.1	Differences in state requirements for local government	100
011	building code enforcement and comprehensive plans	
	for urban development that consider natural disaster	
	risks in US states, and mean per capita flood insurance	
	claim payments between 1978 and 2002	192
6.2	Correlation coefficients for the decision to	1/2
0	eliminate flood risk through elevation	203
7.1	Estimates of flood insurance premiums between	200
/ • •	2015 and 2040 in the Netherlands for LTI contracts	
	with durations of 5, 10 and 15 years	218
7.2	Responses to the mitigation questions	229
7.3	Estimates of prevented damage by mitigation in	/
	dike-ring area 36	233
7.4	Expected value (EV) of prevented loss (in €1.000)	
	by mitigation under climate change for all 1 in	
	1.250 norm dike-ring areas	235
7.5	Estimation results of a probit model of the	
	willingness to buy sandbags	238
7.B1	Overview of the variables used in the	
	statistical analysis	247
7.B2	Descriptive statistics for the variables in the survey	248
8.1	Average risk premiums per residence	261
8.2	Values of α for which expected utility risk	
	premiums are equivalent to estimates under	
	rank-dependent utility or prospect theory	265
9.1	Comparison of the experiential and analytical systems	275

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance
W. J. Wouter Botzen
Frontmatter
More Information

xvi List of tables 9.2 Risk ratings for various hazards (as a percentage of total respondents) 280 9.3 Respondents' perceived flood probability 282 9.4 Mean, standard deviation and description of the dependent variables 287 Mean, standard deviation and description 9.5 of the explanatory variables 292 9.6 Parameters of factors shaping risk perception estimated by four statistical models with varying indicators of flood risk beliefs 293 10.1 Main studies about flood insurance demand in the USA ('+' indicates a positive relation with demand and '-'a negative relation) 309 Descriptive statistics of willingness-to-insure 10.2 (WTI), mean willingness-to-pay (WTP) and mean conditional willingness-to-pay (CWTP) 323 10.3 Estimation results of a random effects Tobit model of ln(WTP) 329 Summary overview of the variables used in 10.C1 the statistical analysis 338 10.C2 Descriptive statistics for the explanatory variables 339 11.1 Results of logit models without heterogeneity 352 11.2 Coefficients, elasticities and marginal effects (ME) of the choice models 356 11.3 Potential market penetration (as a percentage) for flood insurance under climate change and socio-economic scenarios with premiums adjusted to reflect changes in risk 363 11.4 Mean willingness-to-pay (WTP), conditional willingness-to-pay (CWTP) and risk premiums for flood insurance with high or low coverage levels, under varying conditions of flood risk and availability of government relief (in € per year) 365 Summary overview of the variables used in the 11.B1 statistical analysis 369 11.B2 Descriptive statistics for the explanatory variables 371

Preface

The importance of the topical theme of climate change and related natural disaster risks in the scientific and policy-making debate has increased considerably since I started my work on this theme in 2006. This debate has been fuelled by images of catastrophes which travelled around the globe and entered the homes of many people via mass media. The immense human suffering caused by Hurricane Katrina in the USA, the severe floods in Pakistan and Thailand, and the earthquake and tsunami-related flooding in Japan readily come to people's minds as recent examples of the potentially destructive force of nature. Even though large natural disasters are low-probability events, such disasters happen almost every year on a global scale, and many smaller extreme weather events that cause significant losses occur regularly. Records by insurers show that natural disaster losses have been trending upwards over the last decades, and it has been projected that these trends will continue in the future as a result of climate change.

Our societies are still learning about how to adequately prepare for disasters and about how to manage the economic risks that extreme weather events pose. Research can speed up this learning process and with this book I hope to make my own contribution to the expanding literature on this topic. While there have been a lot of discussions among insurers and public policy makers about the challenges posed by natural disasters and climate change, progress in the implementation of practical solutions to address these risks has sometimes been cumbersome. Nevertheless, encouraging steps can be observed. For example, in July 2012 President Obama signed the Biggert–Waters Flood Insurance Reform Act of 2012 which reauthorizes and reforms the National Flood Insurance Program (NFIP) in the USA. Among other changes, this reform implies that the NFIP has to move to actuarial insurance rates and improve its financial risk management and policies for flood risk mitigation, which should improve the ability

xvii

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-03327-6 — Managing Extreme Climate Change Risks through Insurance W. J. Wouter Botzen Frontmatter <u>More Information</u>

xviii

Preface

of the Program to cope with future flood disasters. Several academics in the USA who have conducted and published extensive studies on the operation of the Program have provided an important knowledge base for the NFIP reform. Another example comes from the Netherlands where - partly motivated by the research conducted for this book - the introduction of an insurance arrangement for flood damage has been discussed extensively over the last few years. After this book went to press, a Dutch insurer introduced a catastrophe risk insurance policy that covers flood damage. This is an important step forward for the insurability of flood damage in the Netherlands, where insurers have excluded flood coverage from property insurance for the past 60 years. The design of the new insurance product follows some of the proposals made in this book, such as premiums that reflect actual flood risk and combining the insurance policy with incentives for policyholders to limit risk. Homeowners who implement measures that mitigate flood risks are eligible for a discount on their flood insurance premium. However, it remains to be seen whether or not this new catastrophe insurance can achieve a broad nationwide insurance coverage for flood risk, because of its relatively high premium and limited coverage. Exploring a public-private flood insurance scheme, as has been outlined in this book, could be a way forward to arrive at more extensive and affordable coverage for the risk of flooding. These recent developments in the USA and the Netherlands can be seen as an encouragement for bringing together academics and policy makers with the objective of increasing the resilience of our societies to future disasters.

Acknowledgements

This book is the culmination of seven years of research during which I collaborated intensively with Jeroen van den Bergh, Jeroen Aerts and Laurens Bouwer. I am very grateful to Jeroen van den Bergh, who encouraged me to write this book and who has been a source of inspiration for my work. He provided numerous comments and advice on its various chapters. My several pleasant stays with him at Universitat Autònoma de Barcelona (UAB) resulted in a useful exchange of ideas. I am thankful to Jeroen Aerts for initiating several of the projects that provided the basis for this book, as well as for his support of my work and comments on various chapters. I also gained a great deal from collaborating with Laurens Bouwer.

Many other people have supported the work involved in this book. Several colleagues at the Institute for Environmental Studies (IVM) provided feedback on the surveys that I conducted. In particular, I am grateful to Joop de Boer, Roy Brouwer, Sebastiaan Hess, Vincent Linderhof and Marije Schaafsma. I would also like to thank the interviewers and participants in the surveys. Alfred Wagtendonk helped in preparing GIS data. I had helpful discussions with Anna Alberini, Ada Ferrer-i-Carbonell, Thijs Dekker, and Frédéric Reynes regarding econometric analyses. The insurance companies Hagelunie and Interpolis provided data for this book, and I thank Gijs Kloek and Roy Kluitman (Eureko Re) for their assistance in preparing and interpreting the resulting database. I have had many insightful discussions with experts from insurance companies and policy makers over the past few years. In addition, this book has benefited from comments by, and discussions with, a number of other people, notably Frans Berkhout, Marija Bočkarjova, Philip Bubeck, Hans de Moel, John Gowdy, Geert Groen, Chris Harrison, Maarten Heeneman, Dave Huitema, Ekko van Ierland, Heidi Kreibich, Howard Kunreuther, André Lucas, Tim McDaniels, Erwann Michel-Kerjan, Youbaraj Paudel, Boris Porfiriev,

xix

xx

Acknowledgements

Jennifer Poussin, Piet Rietveld, Isabel Seifert, Oleg Sheremet, Richard Tol, Pieter van Beukering, Peter Wakker and various anonymous referees.

This research was funded by the Dutch national research programmes 'Climate Change Spatial Planning' and 'Knowledge for Climate'. In addition, I received generous financial support through a Veni grant from the Netherlands Organization for Scientific Research (NWO).