

Abrahamson, D., 325, 330–331, 363 absolute accuracy, 71 absolutist epistemology, 444 abstract concepts, 360–361 abstract formalisms, 32	norms of interaction and, 137 practice concepts in, 128–129 properties hypothesis, 139–140 role of subject in, 132–133 situated perspective, 143–144
abstraction in geometric thinking, 550 as simulated action, 360–362	student participation in, 137–139 task analysis example, 131 ACT-R Theory, 256
abstract knowledge, 11, 25	Adams, M. M., 678–679
abstract vs. embodied understanding, 353–354	adaptive expertise, 688
academically productive talk, 129-130	adaptive learning offerings, 731–732
Academic Talk, 449	addition strategy, 174–175, 187
accessible fabrication, 341	additive strategy, in history learning, 596
accountability, 739-740	administrators, 4
accountable talk, 129-130, 196, 197	adult literacy, 606
accuracy, in calibration research, 71	"The Adventures of Jasper Woodbury," 21-22,
achievement	34–35, 218
assessment of, 234	AERA/APA/NCME Standards, 240–241
levels of, 238–239	African American Rhetorical Tradition, 694
motivation and, 671–672	Agamanolis, S., 349
prediction of, 71	age-graded classrooms, 731–732
of student performance, 243	agent-based modeling (ABM), 324, 330-331
acquisitionism framework, 546–547	agent-environment dynamics, 361
acquisition metaphor, 495–496	Ainley, J., 676–677
activation-elaboration hypothesis, 302	Ainley, M., 673, 676–677
activity structures, 51, 403	Algebra Project (AP), 698–699
activity systems	Alibali, M. W., 28, 36, 178
classroom examples, 137	alignment, 101
cognitive trail in, 142	Allen, S., 464
communities of practice in, 128–129, 130	Alridge, D. P., 598
conceptual domain, 141	alternate reality games (ARGs), 388.
contextualizing in, 133	See also videogames
defined, 128	Alvarez, H., 692
development of, 130–131	Amabile, T. M., 638
distributed cognition in, 138–139	American pragmatism, 26–27
expansive framing, 133, 138	Amershi, S., 258–259
expansivity notion in, 131–132	analysis
forms of, 136	in geometric thinking, 550
functional/formal concept distinction,	levels of, 28–29
140–141	analytical strategy, in history learning, 596
general model of, 131	analytics. See educational data mining (EDM);
for individual learners, 136–138	learning analytics (LA)
learning object in, 133–135	anchoring upward, 133
mechanisms of phenomena, 139	anchors, 141
modes of movement, 142–143	Anderson, N. C., 129–130

Andriessen, J., 446	argument maps, 450–453
Angelillo, C., 688	argument schema, 444-445
nimated pedagogical agents (APAs), 536–537	Argunaut (learning system), 451–453
inthropological methods, influence of, 14	Arici, A., 385–386
Antle, A., 350	Aristotle, 440
Apache Hadoop, 255	Arroyo, I., 263–264
applications/app stores, 726	articulation
Appollonia, S., 326	argumentation and, 442
apprenticeship. See also cognitive	in cognitive apprenticeship, 112t6.1, 114
apprenticeship	educational value of, 9-10
schooling as replacement for, 109	in PBL, 306
teaching methods of, 113	reflection and, 10-11, 48, 49
traditional vs. cognitive, 109-111	research on, 121-123
Arcavi, A., 172, 179–180	artifacts
Arduino microprocessor, 341, 342, 343–344	in arts learning, 631
Arena, D. A., 382	conceptual change and, 362-363
ArgueGraph, 511	development of, 289-291, 346-347
arguing to learn	embedded activity structures, 51
asynchronous forums in, 450	in mathematics education, 553
as collaborative process, 439-440, 455	mediating activity in, 362-363
computer-mediated communication in,	physical, 346-347, 631
449–450	artificial intelligence
in cultural/social context, 446-447	CAI systems, 11
dialogical space in, 442	conferences on, 15
dialogue game theory and, 448-449	CSCL and, 484–486
in electronic environments, 447-448	disillusionment with, 25-26
framing activities, 446–447	distributed cognition emphasis in, 26
learning mechanisms in, 442	"Artificial Intelligence in Education" (AIED
medium types, 456	conferences, 14–15
reasoning skills in, 443-444	arts learning
research requirements, 455	assessment in, 638-639
role adoption in, 449	audiences' role, 637
scaffolding in, 447–448, 455	constructivism in, 631
schema use, 455	creativity in, 634–636
scientific education and, 453-455	critique in, 637–638
in small groups, 444–445	dance training, 630
teachers' role in, 451-453, 456	"design fixation" in, 636
theoretical forums, 450	design thinking in, 634–636
user interfaces in, 456	detypification in, 633, 640
visual argument maps in, 450–453	digital media in, 630–631, 634
rgumentation	disciplinary research, 629–631
articulation and, 442	drama/process-oriented drama, 629-630
collaborative, 33–34, 445–446	expert approach in, 628
commitments in, 445–446	features of, 626
conceptual change and, 442	history of, 626, 627–629
critical discussion in, 445	identity processes in, 632-633, 640
as dialogue, 441	in informal settings, 636
elements of, 440–441	in K-12 environments, 626
epistemological theories and, 444, 456	language development in, 633
explanation opportunities in, 442	learning environments for, 636
explanatory inquiry in, 445	learning outcomes, 626–627
learning and, 447	learning sciences and, 639–641
in learning sciences, 439	as multi-disciplinary, 627
in literary criticism, 617–618	musical training, 630
pseudoevidence in, 443–444	narrative arts production, 629, 634
school-based forms of, 446-447	neuroimaging data and, 628
skill development, 442–443	representations in, 628, 631-632, 640

role playing opportunities, 639	authentic practices, 4–6
sociocultural perspective, 639-640	authentic problems, 403
studio structures in, 636	authoritative information, 401–402
transfer studies, 628	Autistic Spectrum (ASD), 351
visual arts development, 629, 636	automated procedural knowledge, 65-66
Arts Propel, 124	avatar log visualizer (ALV), 533
Ash, D., 226	Azevedo, F., 77
assessment	
accountability and, 739–740	backing, in argumentation, 440–441
in arts learning, 638–639	Baker, M., 421, 442
to assist learning, 233–234	Baker, R. S. J. d., 254, 255–257, 259, 260,
balanced system of, 245–247	263–264
for classrooms, 241–243	Ball, A., 633, 694
cognition corner in, 236	Ball, D., 707–708, 716
coherence in, 247	Bang, M., 659–660
comprehensiveness in, 246–247	Baquedano-Lopez, P, 692
as continuous, 247	Barab, S. A., 152, 153–154, 385–386
as controversial issue, 233	Barber, Michael, 727–728
design of, 239–240, 249	Barrett, C. B., 159
as evidentiary reasoning, 235–237	Barron, B., 204–205, 225
formative use of, 233–234	Barrows, H. S., 303, 309
future research suggestions for, 249	Barth-Cohen, L. A., 323
of individual achievement, 234	Bartle, R., 384–385
individualized, 738	Bartlett, E. J., 611, 614
interpretation vertex in, 237	Batson, Gregory, 216
large-scale, 243–244	Bayesian Knowledge Tracing (BKT), 258, 262,
learning progression in, 237–239	264–265
in learning sciences research, 248–250	bay odyans discourse practice, 693
mandated curriculum and, 242	BCCI (Building Cultural Capacity for
measurement models, 244–245	Innovation), 411–412
observation vertex in, 236–237	BEAR assessment system (Wilson and
preservice/professional development and,	Sloane), 247
242–243	Beck, I. L., 611–612
of problem-based learning, 310	Beers, P. J., 421
of programs/institutions, 234	behaviorist theories
proximity of, 234–235	in CAI systems, 11
psychometric models, 244–245	in instructionist curricula/design, 9, 47
purpose/context of, 233, 234–235	Beitzel B. D., 218, 224–225
standardized, 738	belief change, 99
summative use of, 234	Bell, B. S., 72–73
triangle of, 235–237	Bell, Philip, 454
validity of, 240–241 ASSISTments, 717–718	Belmont, M. J., 673 belonging, sense of, 690
association rule mining, 260	Belvedere (learning system), 450–451
Asterhan, C. S., 451–452	Ben-Naim, D., 260
Asthma in My Community (science	Bereiter, C., 113–114, 196, 483, 496
module), 581	Berman, P., 655
asynchronous forums, 450	Bermudez, A., 599
ATLAS.ti TM , 221–222	Berthouze, N., 349
audiences' role, in arts education, 637	Bielaczyk, K., 403
Augmented Reality (AR), 288, 346–347, 512	Binks, M., 361–362
Australian Council for Educational	biological knowledge, emergence of, 97–98,
Research, 247	103–104
Ausubel, D. P., 44n1	Biology Guided Inquiry Learning Environment
authentic assessment, 638–639	(BGuILE), 122
authentic disciplinary practices, 34–35	Blachman, B. A., 609–610
authentic knowledge creation, 398	Blackboard, 263

blocked practice, 30-31	CAT (consensual assessment technique), 638
Blumenfeld, P. C., 673	Catán, L., 173
Blumer, H. G., 27	causal data mining, 260
bodily action, 361	Center for Assessment and Evaluation of
body augmentation, 346–347	Student Learning (CAESL), 247
body of scientific knowledge. See science/	Center for Connected Learning and
scientific knowledge	Computer-Based Modeling
Boekaerts, M., 681	(Northwestern), 324
Bol, L., 71	Center for Learning and Technology
Booth, W., 616	in Urban Schools (LeTUS), 14-15,
Borko, H., 710	280, 709
Boshuizen, H, 421	Chan, C. K. K., 412
Bowers, J., 136–137, 138, 140–141	change in practice, 554–555
Brabham, E. G., 610-611	change in view, 442
Bradley, L., 608, 609	Change Laboratory, 134–135
Bredin, N., 591	Chapin, S. H., 129–130
Brereiter, C., 122	Charles, E. S., 326
Breuleux, A., 712	Chavajay, P., 225
Bridges, S. M., 303, 313–314	Chèche Konnen Center, 698
Britton, B. K., 614	CHENE (learning system), 450–451
Brophy, J., 591	Cheng, B. H., 161
Brown, A. L., 113, 119–120, 154, 164, 403, 570,	Chernobilsky, E., 218, 224–225
612, 718	Chi, M. T. H., 100, 323
Brown, D. E., 331	child centered pedagogy, 26–27
Brown, John Seely, 14–15	Child Internet Protection Act (CIPA), 527
Bruner, J. S., 44, 121, 501	children
Bryan, W. L., 610	in Autistic Spectrum (ASD), 351
Bryant, P., 608, 609	craft activities of, 343–344, 346–347
Bryk, A. S., 661–662	disruptive activity of, 513–514
Buckland, L. A., 177	mathematical development of, 217–218
Building Cultural Capacity for Innovation	metacognitive control in, 67
(BCCI), 411–412	tool use by, 351
Buridan, Jon, 95	use of strategies by, 174–175
24114411, 0011, 30	Ching, D., 388
CAI (Computer Assisted Instruction), 11	Chinn, C.A., 177
Cai, M, 678–679	Chiu, M., 692
calibration studies	choreography, in arts learning, 630
accuracy in, 68–69, 71	citizen science, 379–380, 514
achievement prediction in, 71	City of Men (film), 135
basis for judgments in, 70	claims, in argumentation, 440–441
of group interactions, 70–71	Clark, R. E., 386, 387
hard/easy effect in, 69	Clarke, J., 536
on incentives, 69–70	classifier prediction models, 258
key questions in, 69–71	classrooms
cameras/sensors, 345	age-graded, 731–732
Campione, J., 119–120, 403, 718	argumentation in, 439–440
Carey, S., 97–98, 99	assessment procedures, 241–243
Carnegie Foundation for the Advancement of	computers in, 480
Teaching, 661–662	disruptive activity in, 513–514
Carretero, M, 593–594, 596–597, 599	learning outcomes and, 27–28
Cary, Susan, 94, 95	as learning sciences project, 21–22
Casasanto, D., 362	sensory experiences in, 503
Case, R., 137, 138	social context of, 677–678
CASES (Curriculum Access System for	state of knowledge in, 399–400
Elementary Science), 716–717	class sessions, contribution of, 14
Castañer, M., 349–350	Clement, J., 94
Caswell, B., 403	clustering, 258–259
Caswell, D., 703	Ciustofilig, 250–259

coaching	cognitive sciences
in cognitive apprenticeship, 112t 6.1,	findings on deep learning, 5–18t1.1
113	as influential theory of learning, 23-24
guided participation in, 110	study of knowledge work, 8
in teacher learning, 713	cognitive skills, in literacy learning, 618–619
coaching, in PBL, 306	cognitive systems, coordination of, 359–360
Cobb, P., 136–137, 151, 196–197, 217–218,	cognitive trail, 142
554–555, 653	Cognitive Tutors, 258, 264–265, 717–718
Coburn, C. E., 536	Cognos, 263
cognition. See also metacognition	Cohen, D. K., 716
distributed, 24, 128, 138–140, 204	coherence, 91–93, 98, 99, 103–104
embodied, 24, 347–348	coherence-building, 402
group, 397, 412, 491	cohesion, in collaborative learning, 423
mutually shared, 420–422, 425, 426	Cole, M., 483
situated, 24, 29	Colella, V., 505–506, 579, 582
Cognition and Technology Group, 117, 218	collaboration
cognitive apprenticeship	constructivism and, 206
articulation in, 114, 121–123	conversation analysis, 206
coaching in, 113	CSCL and, 480–481
communities of learners in, 119–120	definitions of, 191, 420–421, 481–482
communities of practice in, 116, 118	dimensions/categories of, 191–193
content dimension, 111–112	distal learning outcomes and, 194–198
control strategies, 111–112	distributed/endogenous approach to, 204–207
exploiting cooperation in, 116	effect-oriented research in, 195
exploration in, 114–115	ethnomethodology, 206
global vs. local skills in, 115	explanation building in, 402–403
,	- ·
goal-based scenarios, 117	factoring assumption in, 197
heuristic strategies, 111	in formal schooling, 207
increasing complexity in, 115	interactional constructs in, 198
increasing diversity in, 115	as learning approach, 206
intrinsic motivation in, 116	in non-school contexts, 205
metacognitive strategies, 111–112	norms/social norms in, 196–197
method dimension, 113–115	in problem-based learning, 309
modeling in, 113	process-product method, 197
as pedagogical approach, 35	on proximal outcomes, 199–203
principles of, 112t 6.1	reasons to study, 193
reflection, 123–124	revoicing in, 195–196, 198
reflection in, 114	as window-on-thinking, 193–194
scaffolding in, 113–114, 120–121	collaboration support, in CSCL, 485–486
sequencing dimension, 115	collaborative argumentation, 439.
situated learning in, 116, 117–118	See also arguing to learn
sociology dimension, 115–116	collaborative discourse/argumentation, 33–34
vs. traditional apprenticeship, 109–111	collaborative learning. See also computer-
cognitive conflict, 548	supported collaborative learning (CSCL)
cognitive demand management, 31	cognitive side of, 426
cognitive development, 8–9	cohesion in, 423
cognitive ethnography, 217	construction of meaning, 421
"cognitive-historical analysis," 95	constructive conflict in, 421–422
cognitive load, 31	criticism in, 431
Cognitively Guided Instruction program,	in CSCL, 491–492
242–243	function-mechanism hierarchy, 430
cognitive psychology	group potency in, 423–424
vs. activity systems research, 128	implementations, 432–433
arts education and, 627-628	interactive dimensions of, 429-430
individual learner and, 135-136	interdependence in, 423
sociocultural approach to, 26	interpersonal context, 422, 425
sociocultural observations on, 25-26	jigsaw method in, 433-434

752 Index

collaborative learning (cont.) pedagogical research into, 323-327 model of/model testing, 420-426, 427-429 research needs, 327-328 monitors' role in, 431-432 in science standards, 331-332 mutually shared cognition, 420-422, 425, 426 spatial-dynamic cues in, 325 negotiation process, 421 student understanding of, 326 protocol analysis, 431-432 theory impacts/integration, 320-321 psychological safety, 422 top-down understanding of, 326 social aspects of, 418-419 comprehension monitoring, 612-613 social side of, 426-427 computation supported learning in, 434 complex systems and, 319-320 team effectiveness, 427-428 defined, 23-24 collaborative reasoning, 444-445 computational crafts, 343-344, 346-347 collective learning, in mathematics education, computationally-enriched spaces, 344 554-555 computational media, 493 Collegiate Learning Assessment (CLA), 734 computational tools in complex systems, 329-330 Collins, A., 15, 154, 156, 164, 573-574, 733 for scaffolding, 51-52 Collins, B. P., 218 commitments, in argumentation, 445-446 computer-aided composition Common Core Standards, 606 ("CSCWriting"), 482 common ground, 141 Computer Assisted Instruction (CAI), 11 communication process, in PBL, 305-306 computer-based learning environments communications technologies, 711-712 (CBLEs), 77 communities of learners computer-mediated communication characteristics of, 119 environment, 493 guiding principles and, 403 computer mediated communication forums, research on, 119-120 449-450 communities of practice computers/computer software in activity systems, 128-129, 130 in classrooms, 480 in cognitive apprenticeship, 112t 6.1, 116 in education, 484-485 in literacy learning, 616-618 evolution of, 339 research on, 118 in future of learning, 734-735 in teacher learning, 710-711 Piaget's insights and, 11 community building, 742-743 in schools, 11-13, 511 community knowledge, 397-398, 399-400, computer-supported collaborative learning 606-607 (CSCL) analysis of, 491-492 competence trajectories, 691 competency education, 733-734 argumentation and, 33-34 complex environments artificial intelligence and, 484-486 deep learning in, 13-14 collaboration in, 447-448, 480-481, 485-486 intelligent behavior in, 25-26 description of, 479, 491 complexity, design-based research and, 154 descriptive analyses, 494, 495 complexity, increasing, 115 education and, 479 e-learning and, 480-481 complex systems agent-based modeling in, 323-324, 330-331 ethnomethodology in, 494 bottom-up understanding of, 326 experimental paradigm, 493-494 classroom interactions and, 326 F2F collaboration in, 481 cognitive challenges and, 321-323 group learning in, 481-482 computational tools in, 329-330, 331 history of, 482-483 computation and, 319-320, 327-328 individual learning in, 482, 486-487 interacting groups and, 486-487 curriculum and, 327-328 described, 319 interactional meaning making, 487, 491 in education, 321 for intersubjective meaning, 490, 492-493 emergent patterning concept, 324 iterative design tradition, 494-495 emergent phenomena and, 319-320 learning and, 488-489 learning sciences and, 328-331 learning groups and, 418 mid-level thinking in, 326 meaning making in, 489-491 participatory simulations in, 324-325 mental representations in, 487

motivation and, 678 multi-disciplinarity of, 493–495 predictive regularities in, 496 quantitative comparisons, 487–488 research trends/methods, 495–496 small groups and, 492 software design for, 490 technology in, 488–491 workshops/conferences on, 483–484 Computer Supported Intentional Learning	cognitive structure of, 275 in collaborative learning, 420–421 of complex concepts, 2 complex systems expertise and, 322 deep knowledge and, 14 games and, 380, 468 importance of, 2–3, 402 learning concepts and, 140 learning environments and, 3 learning technologies and, 470
Environment (CSILE), 404, 483	in microgenetic methods, 176–177
computer technology. See also computer-	in mutually shared cognition, 420–421
supported collaborative learning (CSCL); digital video research; tangible/full-body interfaces; videogames; virtual worlds	of quantitative meanings, 136–137 scaffolding in, 673 of science, 567, 570
in AI approaches, 485	in situated learning, 278
collaboration and, 447	strategy use and, 176–177
developments in, 340	concrete knowledge, 11
in digital media arts, 632	conditional knowledge, 64, 66
educational, 339	conditional probabilities, examination of,
for knowledge building, 404–406	186–187
in learning environments, xvii	conflict, constructive, 421–422
in school transformation, 730	"confounding variables," 153
in science education, 578–579	Confrey, J., 93, 151, 155–156
for teacher learning, 711–712	CONNECT (learning system), 450–451
uses of, 117	Connected Mathematics 2, 37, 652–654
Conant, F., 129–130	Connell, J. P., 159n1
Conati, C., 258–259	consensual assessment technique (CAT), 638
conceptual change	consolidation phase, in learning design,
argumentation and, 442	122–123
characterization of, 88–89	Consortium for Renovating Education of the
coherence vs. fragmentation debate, 91–93,	Future (CoREF), 433
98, 103–104	Constellations TM , 214
components/systems in, 99–100	construction, of meaning, 421
coordination classes in, 100	constructionism, in arts learning, 631
defined, 88	constructive conflict, 421–422 constructive interaction, 429–430
force, as example of, 89–90	constructivism
future research suggestions for, 104–105 history of science and, 91–93, 94–95	
	conceptual change and, 91 as influential theory of learning, 24–25
idea improvement in, 400	
implications for instruction, 101–103 KiP perspective, 98–99, 100, 101–103	learning sciences as foundation of, 9 in mathematics education, 547
misconceptions movement and, 93–94, 96–97	content
nested view of, 99–100	in cognitive apprenticeship, 111–112,
ontologies in, 100	112t 6.1
in particular domains, 97–98	interactions informed by, 680–681
Piaget's work and, 91	parallelism in, 95
rational models of, 96, 101	pedagogical content knowledge (PCK),
"theory theory" in, 95–96, 98	707–708
"conceptual ecology," 96	scaffolding of, 674–675
conceptual learning, student participation in,	in videogames, 379–380
137–138	Context Awareness Activity Recognition, 515
Conceptual Metaphor Theory, 363	continuing education, 733
conceptual understanding	control. See metacognitive control
assessment design and, 310, 733–734, 740	control strategies, 111–112, 112t 6.1
in Augmented Reality, 288 bodily experience and, 370–371	conversation analysis, 27, 200, 206, 462–463 co-occurring processes/events, 182

cooperation	"box problem" in, 688
in cognitive apprenticeship, 112t 6.1	competence trajectories, 691
exploiting, 116	design principles for, 695–699
cooperative learning, in groups, 481–482	diversity and, 699
coordination classes, 100	domain structure in, 690–691
Cordova, D. I., 384	essentialization in, 688
CoREF (Consortium for Renovating Education	feedback in, 691–692
of the Future), 433	human needs and, 690
Cornelius, L. L., 196–197	language practices, 690–691
correlation mining, 260	learning as, 686, 700
cost, of data gathering/analysis, 184	learning environments and, 700
counting practices, 552	literacy practices, 691, 694
Coursera, 254	mathematics intersections, 694–695
coverage, of topics, 736	models of competence in, 697–698
Cox, B. D., 177	normative view challenge, 688
craft technology, 352	out-of-school learning, 689
creative knowledge, 399	psychological safety and, 690
creative work, with ideas, 407–410	repertoires of, 687–688
creativity	scaffolding in, 689
in arts education research, 629	school-based interventions, 696
assessment techniques for, 638	science practices, 692–693
bodily movement and, 630	sense of belonging, 690
in classrooms, 737	stigmatization and, 688
computer interfaces and, 348-349	cultural psychology, as activity system,
design thinking and, 634–636	128 <i>see also</i> activity systems
evaluation of, 638	curriculum
in hands-on activities, 468	for arts education, 626
as 21st-century skill, 411, 734	assessment of, 242
critical discussion, 445	complex systems theory in, 320–321, 326–328
critical thinking	in future of learning, 735–736
idea improvement in, 400	game implementations in, 386
IRE and, 195	Paidaia curriculum, 581
problem design and, 304	problem-based learning in, 300, 314
in science education, 570–571, 575	for science education, 331–332, 736
self-reporting on, 74	teacher learning and, 716
standardized testing and, 160	Curriculum Access System for Elementary
as 21st century skill, 567	Science (CASES), 716–717
critique, in arts learning, 637–638	Cussins, A., 142
cross-sectional developmental studies, 172	customization, 743
crowdsourcing, 515	customized learning, 738
Crowley, K., 464	customized projection, 342–343
CSCL (computer-supported collaborative	
learning). See computer-supported	Dalehefte, I. M., 221
collaborative learning (CSCL)	dance training, 630
Csikszentmihalyi, M, 634–636	data, in argumentation, 440–441
CSILE (Computer Supported Intentional	data visualization methods, 260-261
Learning Environment), 404, 483	Davidson, D., 384
Cuban, Larry, 12, 735	Davidson, J. W., 630
"cultural data sets," 697	Davis, E. A., 120, 716
cultural-historical activity theory (CHAT).	Davydov, V., 141
See also activity systems	DBR. See design-based research
as activity system, 128	DC (argumentation computer game), 448
complex systems and, 29	De Bry, T., 593–594
Cultural Modeling, 696–698	decision-making problems, in PBL, 304
cultural processes	declarative knowledge, 64–65
adaptive expertise in, 688	decoding fluency, 609-610. See also literacy
bay odyans discourse practice, 693	learning

decomposable systems, 35–38 Dede, C., 536	Developmental Assessment Resource for Teachers (Forster and Masters), 247
deduction, in geometric thinking, 550 deep knowledge	developmental psychology, microgenetic methods in, 174–175
authentic practices focus in, 4–6	devices, in tangible/full-body interfaces,
class session contributions to, 14	340–341
vs. surface knowledge, 4	Dewey, John, 276–277, 359, 489, 504
deep learning	DeZutter, S., 635
in complex environments, 13–14	diagnostic problems, in PBL, 304
computers' role in, 12–13	dialectics, formal, 441
scaffolding in, 9	dialogical space, 442
vs. traditional classroom practices, 4,	dialogue theory, 441, 445–446, 448–449
5–18t1.1	differentiated scaffolding, 53.
deliberate reasoning, 360	See also scaffolding
Derry, S. J., 218, 220, 222, 224–225	digital learning games. See videogames
design	digital media arts, 630–631
of children's learning places, 348–351	digital teaching platforms (DTPs), 718
of tangible/full-body interfaces, 348	digital video research
design-based research	analysis technologies/tools, 221–223
challenges for, 158	on classroom learning, 223–224
in classrooms, 730	cognitive studies and, 218–219
cognition in, 155	on complex environments, 224
complexity and, 154	data collection, 219–220
core elements of, 156	experimental field research and, 215
credibility of claims, 164	eye-tracking data in, 226
critics/criticisms of, 152-153	in family learning, 225
defining, 156–158	foundational resources for, 214-215
experiments and, 164	future of, 227
"factoring assumption" in, 154-155	historical roots of, 215–216
goal of, 151	innovators in, 215–219
implementation context, 161–162, 165	Learning Constellations TM , 214
for learning environments, 13	mathematics/science education and,
local gains in, 153–154	217–218
methodological rigor in, 158	methods/tools for, 219
notion of praxis in, 155–156	on museum visitor behavior, 225–226
optimized systems in, 160–162	sociology/ethnography and, 216-217
outcomes vs. outputs, 158–160, 164–165	software programs, 221–222
practical steps for, 165–166	on student interactions, 224
vs. psychology experiment, 157t8.1.	teacher education/professional development,
quadrant model and, 151–152	224–225
real-world practice in, 153–154	use of, 213–214
situative perspective and, 155	video recording/capturing, 220–221
storied truths in, 152, 155, 162–163, 165,	Dillenbourg, P., 481, 486–487
166–167	disciplinary core ideas. See science/scientific
to study of learning, 23	knowledge
as systemic methodology, 33	disciplinary matrix, 92
in teacher learning, 709–710, 718–719	disciplinary practices, 34–35, 50–51
theory-in-context, 155, 156, 167	discourse
theory of change and, 159, 159n1	collaborative, 33–34
design experiments, 730. See also design-based	in mathematics education, 558–560
research	practices of, 129–130, 305, 365, 693
"design fixation," in engineering, 636	discovery with models, 261
Design Principles Database (DPD), 580	discussion, critical, 445
design problems, in PBL, 304	disengaged behaviors, 263–264
design thinking, 634–636	diSessa, A. A., 97, 98, 99, 151, 173
detypification, 633, 640	disruptive activity, 513–514
development, as Piagetian term, 552	distal learning outcomes, 194–198

756 Index

distributed cognition, 24, 25-26, 128, 138-140, disengaged behaviors, 263-264 204. See also activity systems domain structure discovery, 259 distributed knowledge, 738 factor analysis, 259 distributed model-based reasoning, 139-140 future trends in, 265-266 impacts on practice, 264-265 distributed scaffolding, 52-54. See also scaffolding knowledge engineering in, 262 diversity latent knowledge estimation in, 258 increasing, 112t 6.1, 115 learning sciences and, 263-264 of knowledge sources, 738 methodologies of, 257 as pedagogical asset, 699 microgenetic methods and, 179 in science education, 574 online discussion forum participation, 264 DIVER/WebDIVERTM, 222 prediction methods/models, 257-258 DIY community, 354-355 regressors in, 258 Dogan, N., 614 relationship mining, 260 Dolman, D. H. J. M., 302 research communities, 255-257 domain general metacognitive abilities, 76 research questions, 266 domain knowledge sequential pattern mining, 260 in cognitive apprenticeship, 112t 6.1. social learning and, 265 examples of, 111 social network analysis (SNA), 259 domain structure discovery, 259 structure discovery in, 258 Donnelly, Katelyn, 727-728 tools/tool development, 262-263 double-loop learning, 132-133 educational institutions. See museums educational software, 11-13, 731-732. drama, learning and, 629-630 Driver, R., 93-94 See also specific software driving question, in project based learning, educational technology, 339. See also tangible/ 281-282 full-body interfaces Dropbox, 514 education entrepreneurs, learning sciences Dukas, G., 533 and, 4 Dunbar, K, 401 education researchers Duncan, R. G., 120, 177 AI technologies and, 15 Dyer, R., 330-331 learning sciences and, 4 Dvke, G., 264 sociocultural approach of, 26 Dynabook, 501 education technology, 11-13. Dyson, A. H., 629 See also technology edX, 254 Early, S, 386, 387 effect-oriented research, 195 ease of learning (EOL), 75 effortless intuition, 360 Eccles, J. S., 671-672 Ehri, L. C., 609-610 EcoMUVE, 526-527 e-learning, 480-481. See also computer-Edelson, D., 120 supported collaborative learning (CSCL) edfuture (open online course), 265 electronic environments, arguing to learn in, "edifying philosophers," 489 447-448 Edmondson, A. C., 422 elemental learning education active construction of meaning/ complex systems in, 321 knowledge, 31-32 cognitive demand management, 31 computers in, 484-485 goals of, 4-6 metacognitive awareness, 32 scientific approaches to, 15-16 repetition/practice, 30-31 educational data mining (EDM). elemental research. See also evidence-based See also learning analytics (LA) principles of learning association rule mining, 260 re-integration process in, 37 causal data mining, 260 time scales of, 30 classification methods, 258 Elementary and Secondary Teacher Education clustering, 258-259 Program (eSTEP), 715 collaborative behaviors, 264 Ellis, A., 193-194 correlation mining, 260 Ellucian, 263 discovery with models, 261 embedded cognition, 24

embedded computing, 341 embedded tracking, 76–78	epistemology absolutist, 444
embodied cognition, 24, 347–348	argumentation and, 444, 456
embodied design	cognitive structures and, 323
activities for, 364	conceptual change and, 88
Conceptual Metaphor Theory in, 363	disciplinary practices and, 34, 50
facilitation of, 365	evaluative, 381–382, 444
future directions for, 370–371	genetic, 91
in learning sciences, 371	of Piaget, 91
materials for, 364–365	of Posner, 96
in mathematics education, 365–368	of science/scientific knowledge, 7
principles of, 364	theories of, 444
in science education, 368–370	E-rate, 11–12
Embodied Design Research Laboratory,	e-readers, 726
366–368	Ericcson, K. A., 184-185
embodied metaphors, 350	Ericksen, G., 712
embodied vs. abstract understanding,	Erickson, F., 688
353–354	Ernst, K. L., 678–679
embodiment	eSTEP (Elementary and Secondary Teacher
abstract concepts and, 360-361	Education Program), 715
artifact-mediating activity in, 362–363	Esterly, J., 99
cognitive systems coordination, 359–360	ethnomethodology, 27, 29, 206
conceptual reasoning and, 360–362	evaluative epistemology, 381–382, 444
gestures in, 361–362	Evernote, 514
image schemas and, 361	evidence-based principles of learning
intuition vs. reasoning in, 360	active construction of meaning/
principles of, 359	knowledge, 31–32
of STEM knowledge, 358	authentic disciplinary practices, 34–35
truncated action, 361	cognitive demand management, 31
emergent planamena, in complex systems	collaborative discourse/argumentation, 33–34
emergent phenomena, in complex systems, 319–320	guided inquiry, 35 metacognitive awareness, 32
emooc (open online course), 265	project-based learning, 35
ENFI project, 482	repetition/practice, 30–31
engagement	systemic research findings, 33
in classrooms, 677–678	Evidence Centered Design, 239–240
concept of, 673–674	evidence of learning, 733–734
content-informed interactions in, 680–681	excitement, vs. interest, 670–671
CSCL and, 678	exertion interfaces, 349
design principles for, 679-680	"exit exams," 734
large-scale assessments, 676–677	expansive framing, 133, 138
learners and, 668-669	expansive learning, theory of, 132, 143
learning environment and, 674-675	expansivity, notion of, 131-132
learning sciences and, 669	expectancy-value theory, 671-672
online workshops and, 678–679	experience-distance significance, 162
role of, 668	experience-near meanings, 162
scaffolding in, 674–675, 681	experimental design, 13
in science center visits, 675–676	expert knowledge
studies on, 675–679	in arts learning, 628
Engeström, Y., 130–132, 141, 165, 197, 496	of knowledge workers, 5–6
engineering approaches	new view of, 7
to project-based learning, 285–288t14.2.	transition from novice to, 8
to study of learning, 22–23	explanations
Engle, R., 129–130, 133, 137–138, 556	collaborative building of, 402–403
English in Action (EIA), 502–503	expert example of, 89
"epistemic agency," 403, 405–406	novice example of, 89
epistemic games, 412	explanatory coherence, 402-403, 411-412

758 Index

explanatory inquiry, 445 Foucault, M., 558 exploiting cooperation, in cognitive Four-Phase Model of Interest apprenticeship, 116 Development, 670 exploration, in cognitive apprenticeship, 112t fragmentation, vs. coherence, 98, 99, 103-104 6.1, 114-115 Framework for K-12 Science Education, exploratory approach, to learning, 72-73 279-280, 283, 650-651 exploratory talk, 129-130, 196 framework theories, of conceptual change, extended cognition, 24 99-100 Francisco, J. M., 218 externalization, educational value of, 9-10 externalized representations, 306-309 Frederiksen, J. R., 124 extrinsic motivators, 671-672 Fredricks, J. A., 673 free choice learning settings, 461-462, 675-676 face-to-face (F2F) collaboration, 481 Fretz, E., 120 Friedrichs, A. G., 67 facets, intuitive ideas as, 98 factor analysis, 259 Fuchs, D., 609 factoring assumption, 28, 29, 197 fully decomposable systems, 36 "functional" concepts, 140-141 facts, defined, 1 Fahnestock, J., 617 functional metaphors, 365 failure, productive, 122-123 function-mechanism hierarchy, 430 Falk, J. H., 675-676 Funds of Knowledge, 135 future of learning false beliefs, 65, 93-94 accountability, 739-740 family learning, in museums, 463-466 Faulkner, R., 630 adaptive learning offerings, 731-732 favelas, learning object example in, 135 applications/app stores, 726 assessment, 739-740 FCL (Fostering Communities of Learners) model, 119-120 community building, 742-743 Fechner, G., 627 competency education, 733-734 feedback continuing education, 733 cultural processes and, 691-692 curriculum and, 735-736 learning benefits of, 30-31 customization, 743 in project-based learning, 290-291 design experiment in, 730 educational software, 731-732 Feiner, D., 633 Felton, M., 444 elemental approaches, 738-739 Fernández, A. P., 72 e-readers, 726 Festinger, L., 423 evidence of learning, 733-734 "exit exams," 734 Fifth Dimension (5thD) Project, 385, 483 filmmaking, longitudinal, 216 flipped classrooms, 727 Finkelstein, M., 309 governmental reports on, 729 Fischer, F., 218-219, 225 high-stakes testing, 729 Fischer, G., 494 instructionism, emergence from, 737 Fishman, B., 161, 661-662 learning environments, 730 Flaherty, Robert, 216 learning management systems (LMS), Flavell, J. H., 67 726-727 Fleetwood, N., 637 market models in, 728 flipped classrooms, 727 MOOCs, 726, 729 museums/libraries in, 732-733 Flora, 341 flow, as creative concept, 634-635 neighborhood learning clubs, 736 Flower, L. S., 613, 620 new methodologies, 740-742 Ford, J., 72 online college degrees, 727 "formal" concepts, 140-141 online virtual schools, 731 formal dialectics, 441 open-market competition, 732 path to, 743-744 formalisms, 32 formal schooling. See schools/schooling private sector involvement, 728-729 for-profit charter schools, 732 for-profit charter schools, 732 for-profit tutoring centers, 732 for-profit tutoring centers, 732 forward-reaching transfer, 63 smartphones, 726 Fostering Communities of Learners (FCL) systemic approaches, 738-739 model, 21-22, 34-35, 119-120, 129-130 tablet computers, 726

teacher education/professional	'Great Debate' on reading, 25
development, 744	Greene, D., 116
teachers and, 737	Greeno, James, 14-15, 139, 141, 197
textbooks, 743	Griffin, P. L., 608–609
topic coverage, 736	Grootendorst, R., 441
transformational innovation, 727–728	Grossman, P., 711
	group cognition, 397, 412, 491
Galanter, E., 67	groups. See also collaboration; computer-
Galileo, 95	supported collaborative learning (CSCL)
gameplay, motivations for, 384–385	arguing to learn in, 444–445
games. See also videogames	cooperative learning in, 481–482
as assessment, 382–383	interaction analysis of, 70–71
as bait, 380–382	knowledge construction in, 420
as content, 379–380	literacy learning and, 617
social aspect of, 349	microgenetic methods and, 177
social context of, 384	potency of, 423–424
"gamification," 385	as social systems, 419–420, 422
Gardner, H., 628	Grudin, J., 348–349
Gardner, W. L., 73	guided inquiry, 35
Garfinkel, H, 27, 217, 491	Guided Inquiry supporting Multiple Literacies
Geary, D. C., 606	(GIsML) project, 711
Gee, J., 152, 162, 382–383, 694	guided participation, 110
Geertz, C. J., 162, 217, 227	Guidelines for Video Research in Education:
general knowledge, in literacy learning, 606–607 generation phase, in learning design, 122–123	Recommendations from an Expert Panel (Derry), 215
genetic epistemology, 91	guiding principles, vs. procedures, 403
geometric thinking, 549–550	Gully, S. M., 72, 423–424
Gershenfeld, N., 341	Gutiérrez, K. D., 135, 692
Gertzog, W. A., 96	Gutwill, G. P., 464
gestalt switches, 92, 93	Guzdial, M., 51–52, 494
gestures, use of, 361–362	
Getzels, J. W., 635–636	Hacker, D., 70
Gibbons, D., 637–638	Hakkarainen, K., 496
Gidder project, 469	Hall, R., 217, 226
Gijselaers, W. H., 421	Hallden, O., 597
Gillespie, N., 99	Halverson, E. R., 632, 633, 637-638
Ginnett, R. C., 132–133	Halverson, R., 383, 733
GIsML (Guided Inquiry supporting Multiple	Hammer, D., 331
Literacies) project, 711	hand movements, 361-362
Glaser, B., 163	handwriting training, 614
global/local skills, 112t 6.1	Handy Board, 341
global positioning system (GPS) technologies,	Hanna, J. L., 630
342–343	Hansen, J., 612
Glynn, S. M., 614	Harackiewicz, J. M., 675
Goeze, A., 218–219, 225	hard-easy effect, 69
Goldman, S., 217, 454	Harter, N., 610
Gomez, L. M, 661–662	Hatala, M., 465–466
González, N., 593–594	Hatano, Giyoo, 97–98, 101, 103–104, 361–362
Goodman, N., 627–628, 631	Hawkins, D., 94
Goodwin, C., 217	Hayes, J. R., 613, 620
Google Docs, 514 Gopnik, Allison, 95, 101	Hazzard, E., 325
* '	Heath, C., 226 Heath, S. B., 633, 634
Gough, P. B., 608–609 Gould, J. D., 613, 614	Heathcote, Dorothy, 629–630
governmental reports, 729	heat maps, 261
Graesser, A. C., 35	Hedberg, J. G., 152
Grapher software, 179–180	Heidegger, M., 489
graphical analyses, 187	Herrenkohl, L. R., 196–197
U 1	. ,, == ,

Hetland, L., 628, 635–636, 637	Huey, E. B., 607–608
heuristic strategies, 111, 112t 6.1	Hughes, E., 556
Hewson, P. W., 96	Hulleman, C. S., 675
Hidi, S., 670	human-computer interaction (HCI), 348–349
high-leverage instructional routines, 557–558	human judgment, distillation of data for,
high-performance optics, 342–343	260–261
high-stakes testing, 729	human needs, 690
Hijzen, D., 681	Human Understanding (Toulmin), 92–93
Hill, H. C., 556–557	Hutchins, Ed, 14, 24, 131, 138–139, 204, 217
Hillocks, G., 615, 616	hypermediation, 55
historical simulation games, 379	HyperVideo [™] , 215, 222 Hypothesis-Experiment instruction (HEI), 432
Historical Thinking Project, 591 history learning	Hypothesis-Experiment histruction (HEI), 432
abstract concepts in, 588	IBM education tools, 255, 263
additive strategy in, 596	idea improvement, 400–401
analytical strategy in, 596	Idea Thread Mapper, 410
biases in, 598	identity, learning and, 118
cause in, 596–597	identity processes, in arts learning, 632–633
conceptual development in, 589–590	IF-THEN-ELSE representation, 68
contextualization heuristic in, 592	IF-THEN representation, 64
corroboration in, 592	image schemas, 361
diverse meanings in, 589	immersive simulations, 578–579
educational standards for, 4	"implementation mind set," 658
empathy in, 594	"improvable ideas," 403, 411–412
evidence evaluation, 592–594	Inagaki, K., 97–98, 101, 103–104
expert knowledge in, 7	inclusive design process, 659–660
first/second order concepts in, 588, 591,	incommensurability, 92, 93, 94, 100–101
600–601	increasing complexity, 112t 6.1, 115
historical accounts, 594	increasing diversity, 112t 6.1, 115
individual narratives, 598	indexicality, notion of, 217
misconceptions research and, 587–588	indigenous communities, 659–660
narrative construction, 597–600	individual interest, 670
narrative strategy in, 596	individual interest, 676 individualized guidance system (IGS), 534
national narratives, 598	individual learning
production-consumption processes, 599	in CSCL, 482
requirements of, 591–592	environment and, 674–675
schemaic templates in, 599	system-level hypotheses and, 136–138
school historical narratives, 599–600	individual narratives, 598
simplistic view of, 587	inference making, 612. See also literacy
sourcing heuristic in, 592	learning
students' age and, 591	informal learning, 26. See also museums
teaching implications, 600–601	infrastructure redesign, 651–652, 654
testing causal explanations, 596	Ingold, T., 142–143
time dimension in, 593	Initiation, Response, Evaluation (IRE) episode,
understanding substantive concepts, 588–592	129–130, 195
Hmelo-Silver, C., 218, 224–225, 303, 309,	Initiation, Response, Feedback (IRF) episode,
311, 313	129–130
Hockings, Paul, 213	Innovating to Learn, Learning to Innovate
Hodgkinson, S., 196	(2008), 729
Horn, I., 714	innovation age, 727
Horn, M. S., 326–327	Innovative Learning Environments (2013), 729
"How a Cockpit Remembers Speed"	inquiry
(Hutchins), 204	explanatory, 445
Howley, I., 191	importance of, 26–27
How People Learn project, 600, 729	inquiry-based learning, 328
Hoyt, J. D., 67	inquiry games, 464
HubNet (simulation architecture), 324–325	inquiry teaching, 114

instantiated properties/entities, 28–29	intuition vs. reasoning, 360
Institute for Research on Learning	Investigating and Questioning our World
(IRL), 14–15	through Science and Technology (IQWST),
Institute of the Learning Sciences (ILS), 14–15	280, 283
institute review boards (IRBs), 227	Investigators Club (I-Club), 690-691
instructional experiments, 172-173	Ioannides, C., 100, 101
instructionism	IRE (Initiation, Response, Evaluation) episode,
vs. deep learning, 5–18t. 1.1.	129–130, 195, 467
emergence of, 737	IRF (Initiation, Response, Feedback) episode,
flaws of, 2–3	129–130
in knowledge building, 412–413	iSpot application, 515
vs. learning community approach, 120	Israel, M., 379
as traditional vision of schooling, 2, 727	Itakura method, 121–122
instructionist curricula, behaviorist	
assumptions in, 9	Jackson, C, 385–386
integrated understanding, 277	Jackson, E. A., 329–330
Intel, 515	Jackson, K., 653
interaction, norms of, 137	Jacobs, J., 710
interaction analysis, 14, 33	Jacobson, M. J., 326, 329, 331
interactions, expansive framing of, 133	James, W., 489, 627
Interactive Slide, 349–350	Järvelä, S., 678
Interactive White Board (IWB), 300, 313.	Jasmin, K., 362
See also whiteboards, in PBL	Jasper series (Cognition and Technology
interdependence, in collaborative learning, 423	Group), 117, 218
interest	Jeffersonian transcript analysis, 200,
in classrooms, 677–678	201–202t10.2.
conceptualization of, 669-671	Jenkins, E., 174–175, 179–180, 181, 182, 185,
content-informed interactions in, 680–681	186–187
CSCL and, 678	Johnson, M., 350
curiosity questions, 671	Journal of the Learning Sciences, 1, 15
design principles for, 679–680	judgment of learning (JOL), 75
engaged learners and, 668–669	Juel, C., 608–609
vs. excitement, 670–671	Juslin, P., 69
four-phase model of, 670	Juul, J., 388
individual, 670	,,
large-scale assessments, 676–677	K-12 curriculum
learning environment and, 674–675	for arts education, 626
learning sciences and, 669	complex systems theory in, 320–321, 326–327
online workshops and, 678–679	in future of learning, 736
predictive nature of, 671	game implementations in, 386
role of, 668	problem-based learning in, 314
scaffolding in, 674–675, 681	science standards in, 331–332
in science center visits, 675–676	Kahn Academy, 727
situational, 670	Kahneman, D., 360
studies on, 675–679	Kane, M. T., 241
interfaces. See tangible/full-body interfaces	Kaplan. A., 677–678
interleaving, benefits of, 30–31	Kapur, M., 122–123, 329, 331
International Journal of Computer Supported	Karmiloff-Smith, A., 95, 628
Collaborative Learning (iJCSCL), 15	Kauffman, S., 328–329
International Society of the Learning Sciences	Kay, Alan, 501, 729
(ISLS), 15	KB-Dex, 410
Internet	Ke, F., 386, 387
protection of children on, 527	Kearns, David, 14–15
schools' connection to, 11–12	Keefer, M. W., 445
wireless devices and, 507	KEEL, 262
intersubjective learning, 490, 491, 492	Keil, Frank, 97–98, 103–104
intrinsic motivation, 112t 6.1, 116, 671–672	Kempler-Rogart, T. M., 681
	r

Kessler, Andy, 731 "Kids as Global Scientists," 34–35	Knowledge Forum, 21–22, 122, 404–406, 407–410, 432, 454, 483
Kirschner, P. A., 421	knowledge in pieces (KiP) perspective, 98-99,
Klausen, T., 138–139	100, 101–103
Klem, A. M., 159n1	Knowledge Networks on the Web
Klopfer, E., 388	(KNOW), 717
Knewton (adaptive learning company),	Knowledge Society Network, 713
731–732	knowledge work/workers
"know how/know why," 402-403. See also	expert knowledge concept in, 5–6
procedural knowledge	expert performance, transition to, 8
knowledge. See also deep knowledge	nature of, 6–7
active construction of, 31–32	"situativity" view of, 6
co-elaboration of, 442	Knutson, K., 462, 464
conditional, 64, 66	Kochman, T., 617
declarative, 64–65	Koellner, K., 710
in the head, 738	Kolodner, Janet, 15, 121, 580–581
in literacy learning, 606–607	Korkel, J., 72
made explicit, 442	Koschmann, T., 217, 484, 491, 492
nature of, 4–6	Kozlowski, S. W. J., 72–73
procedural, 64, 65–66	Krajcik, J., 120, 290–291, 716
scaffolding in construction of, 9	Krakowski, M., 187
state of, 399–400	Kreinjs, K., 418
knowledge building	Kuhn, D., 173, 443–444
authoritative information use, 401–402	Kuhn, Thomas, 91–93, 96, 103–104
community knowledge advancement,	Kurio (game), 465–466
399–400	Kyza, E., 120
current directions in, 411–412	1 121 / 711
discourse practices in, 401	LabNet, 711
domain of, 397	Laboratory Life, 693
educational activities in, 398	Laferrière, T., 712
group cognition and, 397	lag analysis, 187
human development and, 399	Lakatos, I., 401
idea improvement in, 400–401	Lakoff, G., 350
instructionist approaches and, 412–413 vs. learning, 397	Lakotas, I., 96 LaMarchand, R., 384
pedagogy for, 399–400, 403–404	Lampert, M., 121, 714
principles vs. procedures, 403	Landy, David, 360
scaffolding in, 404–406	Lange, G., 72
sustained creative work in, 407–410	language
technology for, 404–406	cultural processes and, 690–691
"21st century skills," 398, 411	development of, 633
knowledge building communities, 483, 712–713	metaphor use and, 350
Knowledge Building International, 411	language learning
Knowledge Building Teacher Network, 713	contextual, 514
knowledge construction, groups in, 420	videogames and, 380
Knowledge Constructive Jigsaw, 433–434	large-scale assessments, 243–244
knowledge creation	latent knowledge estimation, 258
coherence-building in, 402	Latour, B., 163, 693
explanation building in, 402–403	"launcher units," 121
metaphor of, 496	Laurillard, D., 580
in organizations, 397–398	Lave, Jean, 14, 32, 109–110, 118, 155
as socio-cognitive process, 397	learner mobility, 502. See also mobile learning
knowledge economy	learners
conceptual understanding in, 2–3	observations of, 175
educational needs in, 2	prior knowledge of, 3
knowledge engineering, 262	learning. See also deep learning; future
knowledge estimation algorithms, 258	of learning; problem-based learning;

project-based learning; self-regulated learning (SRL)	learning sciences and, 263–264 methodologies of, 257
argumentation and, 439–440, 447 artifact-mediating activity in, 362	online discussion forum participation, 264 potential of, 253
beliefs about, 171–172	prediction methods/models, 257–258
as change in discourse, 558–560	quantity of data, 254
as cognitive systems coordination, 359–360	regressors in, 258
consensus/facts about, 2–3	research communities, 255–257
externalization/articulation in, 9–10	social learning and, 265
guided inquiry, 35	social network analysis (SNA), 259
vs. knowledge building, 397	structure discovery in, 258
in museums, 462	tools/tool development, 255, 262–263
natural progression of, 11	learning behaviors, scope of
non-linear nature of, 551	elemental research in, 28
processes involved in, 8	levels of analysis, 28–29
reflection and, 10–11	supervenience in, 28–29
research approaches, 28	systemic research, 29
scaffolding in promotion of, 9	time scales in, 27–28
social dimensions of, 265	Learning by Design, 432
strategies for, 112t 6.1	learning-by-doing, 50
2	
student participation in, 3	learning communities. See communities of learners
traditional conception of, 488–489 uniform vs. customized, 738	
· · · · · · · · · · · · · · · · · · ·	Learning Constellations TM , 214
use of prior knowledge in, 8–9	learning curves, 261
videogames in, 378–379	learning environments activity systems in, 130–131
learning, evidence-based principles	
active construction of meaning/	for arts education, 636
knowledge, 31–32	"confounding variables" in, 153
authentic disciplinary practices, 34–35	contribution of, 8
cognitive demand management, 31	design of, 13, 27–28
collaborative discourse/argumentation, 33–34	embedding scaffolding in, 50
guided inquiry, 35	functional decomposition in, 37
metacognitive awareness, 32	in future of learning, 730 future trends in, 730
project-based learning, 35	
repetition/practice, 30–31	naturally occurring, 418–419
systemic research findings, 33	psychological characteristics of, 28
learning, influential theories of	scaffolding in, 9
American pragmatism, 26–27	systemic research in, 33
cognitive science, 23–24 constructivism, 24–25	"tacit knowledge" in, 35 learning goals, in learning progression
situated cognition, 24	model, 238
sociocultural theory, 25	
learning activities, sequencing of, 115	Learning Management System (Moodle), 300 learning management systems (LMS), 726–727
	learning management systems (LWS), 720–72.
learning analytics (LA) classification methods, 258	
classification methods, 238 clustering, 258–259	learning pathways, 533–534 learning performances, 239, 282–288, 284t14.1
collaborative behaviors, 264	learning process methodologies
computational power, 255	cross-sectional developmental studies, 172
data formats, 254	instructional experiments, 172–173
disengaged behaviors, 263–264	longitudinal studies, 172
domain structure discovery, 259	learning progressions (LP), 237–239, 289,
emergence of, 253–254	570–571, 736. <i>See also</i> learning trajectoric learning sciences
factor analysis, 259	
future trends in, 265–266 human judgment in, 260–261	adapting microgenetic methods for, 175–176
	argumentation in, 439
impacts on practice, 264–265	on articulation process, 10
latent knowledge estimation in, 258	arts education and, 639–641

764 Index

learning sciences (cont.) Lindaeur, B. K., 612 authentic practices focus in, 4-6 linear system heuristics, 325 bridging research/practice, 21-22 Lingnau, A., 494 on computer use in schools, 12 Linn, Marcia, 99, 454 Linnenbrink-Garcia, L., 681 conferences on, 15 elemental research, 28 Lipponen, L., 496 elemental view, 30-32 literacy learning embodied design and, 371 argumentative practices, 616-617 emergence of, 14-15 cognitive skills in, 618-619 engineering ethos and, 23 communities of practice in, 619 as foundation of constructivism, 9 community-specific knowledge, 606-607, influential theories, 23-27 616-618 as interdisciplinary field, 1, 3, 38 cultural groups and, 617 knowledge building in, 397 cultural processes and, 694 levels of analysis, 28-29 decoding fluency, 609-610 literacy learning and, 618-619 enabling strategies, 615 microgenetic method example, 179-180 etymological origins, 605 problem-based learning and, 315 evolution of, 605 research projects in, 14 general knowledge, 606-607 on role of learning environment, 8 inference making, 612 scale-up interventions/initiatives, 22 intermediality in, 605 schools' incompatibilities with, 738 knowledge types, 606-607 scientific/engineering approaches, 22-23 learning sciences and, 618-619 systemic research, 29 legal brief writing, 618 systemic view, 32-35 literary criticism, 617-618 tangible/full-body interfaces and, 351-353 literate performance concept, 605 theoretical foundations of, 38 metacognitive knowledge, 612-613 time scales of learning, 27-28 phoneme recognition, 608-609 learning scientists, commitment of, 16 planning, 613 learning technologies, in project-based prior knowledge use, 611-612 learning, 279 prose structure, 612 Learning: The microgenetic analysis of one reading comprehension, 611 student's understanding of a complex reading fluency, 607-608 subject matter domain (Schoenfeld, Smith, reviewing, 614 and Arcavi), 179-180 societal expectations, 606 learning trajectories, 182-183, 470-471, 736. task-specific knowledge, 606-607, 614-616 translating, 613-614 See also learning progressions (LP) learnograms, 261 word meaning access, 610-611 Leary, H., 305 writing/writing systems, 605-606, 613-614 LeBaron, C., 490 literacy practices, 7, 402 Lee, C. D., 694, 697 literary criticism, 617-618 Lee, V. R., 187 Liu, Alan, 402 legal brief writing, 618 local knowledge, 217 legitimate peripheral participation, 118 logical empiricism, 7 Lehrer, R., 37, 151, 740 LOGO programming language, 25, 485 Leinhardt, G., 462 Lohman, M., 309 Leinonen, P., 678 Longenecker, S., 325 Lemke, J., 216, 330 longitudinal filmmaking research, 216 Lepper, M. R., 116, 384 longitudinal studies, 172 "lethal mutations," 403, 718 Looi, C.-K., 504 LeTUS (Center for Learning and Technology Lowenstein, D., 388 in Urban Schools), 14-15, 280, 709 Luria, A., 173 Levin, J. A., 330-331 Lynch, M., 693 Levy, S. T., 326, 582-583 Lynch-Brown, C., 610-611 Lewis, M. C., 678-679 LilyPad, 341, 342, 343-344 Mackenzie, J. D., 448 Lin, X., 311 Maher, C. A., 218

Index 765

"maker movement," 354-355 McLaren, P., 160 Malone, T. W., 384 McLaughlin, M., 632-633, 655 McNeill, K. L., 290-291 ManyScripts software, 511 MapReduce, 255 McPherson, G. E., 630 market models, in future of learning, 728 MCSCL (Mobile Computer Supported Markham, E., 613 Collaborative Learning), 507-508 Marton, F., 133-134 Mead, G. H., 27 Marty, P., 468 Mead, Margaret, 213, 216 Massive Online Open Courses (MOOCs), 254, meaning 353, 514, 726, 729 active construction of, 31-32 mastery goal orientation, 72 analysis of, 490-491 mastery learning, 264-265 construction of, 421 Mathematical Imagery Trainer for Proportion meaning making, in CSCL, 487, 489-491 (MIT-P), 366-368 Measures of Effective Teaching Project, 223 mathematics education Mendelson, A., 133 acquisitionism framework, 546-547 mentoring, in teacher learning, 713 Algebra Project (AP), 698-699 Mercer, N., 129-130, 196 Mesler, D., 361 artifacts in, 553 bodily intuition in, 354 metacognition classroom interactions, 554-555 articulation and, 10-11 cognitive conflict in, 548 calibration and, 68-71 collective learning in, 554-555 conditional knowledge in, 64, 66 constructing conceptions, 549-551 declarative knowledge, 64-65 counting practices, 552 domain general abilities, 76 cultural processes and, 694-695 embedded tracking, 76-78 design experiment methodology, 555 forms of knowledge in, 64-66 development of, 217-218 forms of thinking in, 66-68 discursive nature/methods, 559-560 future topics for, 78-79 embodied perspective, 358, 365-368 key findings, 79-80 future developments in, 560 meaning of, 63-64 geometric thinking, 549-550 misconception in, 63-64 motivation and, 72-74, 75 high-leverage instructional routines, 557-558 historical overview of, 545-547 occurrence of, 63 learners' conceptions, 547-549 procedural knowledge, 64, 65-66 MEteor project, 368-370 self-regulated learning (SRL), 75-76 self-regulated learning (SRL) in, 67-68 misconception studies, 547-549 MIST Project, 652-654 metacognitive awareness, 32 numerical thinking, 551–552 metacognitive control, 66, 67 participationist approach, 546-547, 551-553, metacognitive knowledge, 612-613. 554-555 See also literacy learning proportional progression, 366 metacognitive monitoring, 66, 67 student development, 555-556 meta-cognitive skills, in PBL, 311 teacher learning, 557-558 metacognitive strategies, 111-112 teachers' role in, 552-553, 556-557 metaphors, embodied, 350 teaching experiments in, 550-551 metarepresentational competence (MRC), 632 Math Forum, 678-679, 712 MetaTutor, 77-78 "Math Wars," 25 MEteor, 368-370 Mayer, L., 221 methodologically individualist approaches, 28 Mayer, R. E., 608 methods, in cognitive apprenticeship, 112t 6.1, Mayfield, E., 191 113-115 McAlister, S., 449 Michaels, S., 129-130, 195-196, 694 McCarthey, S. J., 620 microgenetic methods McClain, K., 136-137, 140-141 addition strategy example, 174-175 McDermott, R., 217 aim/goal of, 171 McGrath, C., 313-314 challenges to, 183-186 McGraw-Hill, 254 in collaborative groups, 177 McKinsey and Company, 159 conceptual understanding in, 176-177

766 Index

microgenetic methods (cont.) characteristics of, 504 conditional probabilities in, 186-187 citizen science and, 514 co-occurring processes/events, 182 in classrooms, 505-508 craft knowledge, 188 in context, 504-505, 516-517 data gathering/analysis costs, 184 contextual language learning, 514 in developmental psychology, 174-175 control of data, 516 distortions introduced by, 184-185 crowdsourced, 515 diversity of topics/ages, 176 disruptive activity, 513-514 educational data mining (EDM) and, 179 ethical issues, 515-516 essential features of, 174 future trends in, 514-515 experimental design in, 178 large-scale services, 502-503 formal analytic methods in, 186-188 learner mobility, 502 Grapher software and, 179-180 learning patterns, 514 graphical analyses in, 187 modern era of, 501 historical survey of, 173 orchestration concept in, 511 for individual learning, 177 outside classrooms, 508-510 inferring strategies/knowledge, 185 personalized toolsets, 517 instructional support, 177-178 in practice, 505 lag analysis in, 187 science of, 517 learning sciences example of, 179-180 as seamless, 503-505 learning sequences in, 185–186 sensemaking activities, 510 learning trajectories in, 182-183 sociocultural perspective, 512 narrative-based accounts, 187-188 teacher challenges in, 507 overview of, 172-173 technological perspective, 516 precipitating events and, 181-182 theory of, 511 qualitative case studies, 187 ubiquitous learning, 512-513 rate of learning and, 183 "virtual tourist trails," 512 research questions, 180-183 virus game example, 506, 579 sample size/duration in, 178-179 wearable devices, 506 strategy development, 176-177 modeling, in cognitive apprenticeship, 112t variability/stability in, 176-179, 181 6.1, 113 Microsoft Excel, 255 Molden, D. C., 73 Microsoft Kinect™, 342-343, 345, 350 Moll, Luis, 135 Middle School Mathematics and the monitoring. See metacognitive monitoring Institutional Setting of Teaching (MIST) monitors, role of, 431-432 project, 652-654 MOOCs (Massive Online Open Courses), 254, Miller, G. A., 67 353, 514, 726, 729 Mindstorms (Papert), 735 Moodle (Learning Management System), 300 "more knowledgeable other" (tutor), 46 Minecraft, 531 mini-conference format, 581-582 Moses, Robert, 699 min strategy, 174-175, 181, 182, 186-187 Moshirnia, A., 379 Minstrell, J, 94 Moss, J., 137, 138 misconceptions movement, 93-94, 96-97 motions, in protocol analysis, 431-432 misconceptions research, 547-549 Motivated Strategies for Learning Mislevy, R. J., 241 Questionnaire, 72 MIST (Middle School Mathematics and the motivation Institutional Setting of Teaching) project, achievement and, 671-672 652-654 in classrooms, 677-678 Mistrell, S., 98, 103 in cognitive apprenticeship, 116 Miyake, N., 361-362, 429-430, 431 concept of, 671-673 Mobilearn, 501-502 content-informed interactions in, 680-681 mobile-assisted seamless learning (MSL), 504 CSCL and, 678 mobile devices design principles for, 679-680 in classrooms, 505-508, 513-514 engaged learners and, 668-669 in museums, 465, 468-470 expectancy-value theory, 671-672 mobile learning large-scale assessments, 676-677 augmentation in, 512-513 learning environment and, 674-675 challenges for, 515–516 learning sciences and, 669

metacognition and, 72-74	Nasir, N., 694–695
online workshops and, 678–679	Nathan, M. J., 28, 36, 738–739
personal characteristics and, 672	National Assessment of Educational Progress
role of, 668	(NAEP), 694
scaffolding in, 49, 673, 674–675, 681	national narratives, 598–599
in science center visits, 675–676	
	National Research Council, 661–662 National Science Education Standards, 4–5, 6
self-regulation and, 672	
studies on, 675–679	The Nature of Learning: Using Research to
Motivational Strategies of Learning Scales, 72	Inspire Practice (2010), 729
Moulton, K., 386, 387	nearly decomposable systems, 36
movement, learning and, 630.	Needham, M. D., 675–676
See also embodied design; embodiment	negotiation
MRC (metarepresentational competence), 632	of meaning, 421
MSL (mobile-assisted seamless learning), 504	process of, 421
Mueller, E., 349	"negotiation" scenario, 446
Mulder, I, 425	neighborhood learning clubs, 736
"multiple realizability," 23–24	Nelson, B., 534
Multi-User Virtual Environments (MUVEs),	Nelson, T. O., 75
578–579	Nersessian, N. J., 139–140
"museum literacy," 466	nested views, of conceptual change, 99-100
museums	NetLogo (agent-based modeling
adults' experiences, 471	environment), 324
behavior tracking in, 462	NetTango (agent-based modeling program),
conversation analysis, 462–463	326–327
dialogic approaches in, 467-468	neuroimaging data, 628
as educational institutions, 461	New London Group, 634
engineering goals in, 465	new methodologies, 740–742
family learning in, 463–466	Next Generation Science Standards (NGSS),
as free choice learning setting, 461–462, 466	331–332
future trends in, 470–471, 732–733	Nguyen, P. D., 133
guided tours, 467–468	Nietfeld, J. L., 71
hands-on activities in, 468	Nintendo Wii TM , 342–343, 345, 349
inquiry games and, 464	Nisbett, E., 446
learning trajectories in, 470–471	No Child Left Behind (NCLB) legislation, 729
"literacy" skills, 466	Nonaka, I., 397
mobile devices in, 465, 468–470	norms
pre-post visit activities, 466	of interaction, 137
school trips to, 466–470	social, 196–197
scientific goals in, 465	sociomathematical, 554-555
signage in, 465	Norris, C., 287–288
social media and, 468–470	novice explanation, example of, 89
sociocultural theory and, 462–463	numerical thinking, 551–552
tangible/full-body interfaces in, 346, 350	Nussbaum, M., 507–508
teachers' role in, 469–470	NViro TM , 221–222
visits to, 675–676	Nystrand, M, 613-614
worksheet use in, 467	•
musical training, 630	obtrusive performance measures, 76–77
Muth, D., 614	O'Connor, C., 129–130
mutually shared cognition, 420–422, 425, 426	O'Connor, M. C., 129–130, 195–196
Muybridge, Eadward, 215–216	Ogata, H., 513
Mystery at the Museum (Boston Museum of	on-demand assessment, 244
Science), 465	online college degrees, 727
	online courses, 265
Nagarajan, A., 218, 224–225	online games. See videogames
naming, 142	online teaching, 480
Naren, L., 75	online tracking data, 534–535
narrative arts production, 629, 634	online virtual schools, 731
narrative construction, 597–600	ontologies, in conceptual change, 100
,	0 / 1

Oort, F. J., 74	Personal Inquiry project, 508–510
open-market competition, 732	personalized fabrication, 340–341
orchestration concept, 511	perspective-dependence (PD), 142
"orchestration scripts," 403	perspectivity framework, 217
organizational learning, 132	PERT (Planning Enactment and Reflection
organizational routines, 656–658	Tool), 718
Organization for Economic Cooperation and	"pervasive" computing, 346–347
Development (OECD), 250, 402	Peterson, M., 380
Orion TM , 222	Phelps, G., 707–708
Ortony, Andrew, 15	phenomena, as complex systems, 319–320
Osterweil, S., 388	phenomenology, in situated cognition, 24
Ostwald, J., 494	phoneme recognition, 608–609. See also literacy
outcome interdependence, 423	learning
out-of-school learning, 689	phonics approach, 609–610
Out There In Here project, 513	phonological awareness, 608–609
Oversold and Underused (Cuban), 735	physical activity platforms, 349–350
Owen, E, 383	physical artifacts, 346–347, 631.
Owell, E, 363	See also artifacts
Pagyala S 406	
Paavola, S., 496	Piaget, Jean
Pagels, H. R., 329–330	conceptual change and, 91, 101
Paidaia curriculum, 581	on concrete/abstract information
Palincsar, A. S., 113	progression, 11
Papert, Seymour, 11, 15, 25, 330, 351, 501,	"embryology of intelligence," 546
640–641, 730, 735	influence of, 26, 173
parallelism, 95	on logical thoughts, 361
parents	numerical thinking, 550, 551–552
importance of, 3	perceptual vs. conceptual knowlege, 360
learning sciences and, 4	schemas of, 24–25
role of, 463–466	theory of learning, 547
Paris, A. H., 673	Pickard, R., 349
Paris, S. G., 612	Pictogram Room project, 351
Parnafes, O., 187	Pierce, S. H., 72
participation, in museums, 462–463	Pieroux, P., 467–468
participationism framework, 546–547	PISA (Programme for International Learner
participation metaphor, 495–496	Assessment) survey, 250, 676–677
participatory simulations, 324–325, 578–579	Pittsburgh Science of Learning Center
Pasteur's Quadrant, 151–152	DataShop, 254, 262
path, to future of learning, 743–744	planning, 613. See also literacy learning
Patrick, H., 677–678, 681	Planning Enactment and Reflection Tool
Pea, R. D., 507, 573–574	(PERT), 718
Pearson (education services), 254	Plans and the Structure of Behavior (Miller,
Pearson, P. D., 612	Galanter, and Pribram), 67
pedagogical approaches, in cognitive	playgrounds, 345, 349–350
apprenticeship, 35	Points of Viewing Children's Thinking: A
pedagogical content knowledge (PCK), 707–708	Digital Ethnographer's Journey (Goldman-
Peng, K., 446	Segall), 214
Penner, D. E., 324	Polanyi, M., 362
Penuel, W., 161, 661–662	policy design
Perera, D., 260	arenas of, 650
performance	challenges for, 660–661
in arts learning, 630	community based, 659-660
learning environment and, 8	entrepreneurs in, 650–651
metacognition and, 68–71	future directions for, 661–662
Performance Factors Analysis (PFA), 258	goals of, 649
performance goal orientation, 72	implementation of, 651, 654-656
peripheral members, of communities of	inclusive design, 659–660
practice, 128–129	infrastructure redesign, 654
Perry, N. E., 673	instructional coherence, 651

MIST Project example, 652-654	meta-cognitive skills and, 311
organizational infrastructures, 651–652	reflection process in, 310
organizational routines, 656–658	representations in, 306–309
policy makers, 650	research directions for, 313–315
power struggles in, 660–661	role of problems in, 304–305
stakeholders in, 658–659	scaffolding in, 305–309
Popper, K. L., 397	self-directed learning (SDL) in, 309, 311
positional sensing, 342–343	situated perspective, 302–303
Posner, G. J., 96, 101	social construction in, 302–303
Powell, A. B., 218	sociocultural perspective, 303
p-prims, 98, 100	structure in, 304
practical knowledge, 402–403	student attitudes towards, 311
practice, strategically regulated, 30–31	technology in, 313
practice-based teacher education, 714	theory of, 301–303
practices, in activity systems, 128–129	transformations/revisions of, 311–312
pragma-dialectics, 441	tutorial process in, 303–304
pragmatism, 26–27	tutoring cycle, 300
Prata, D., 264	procedural approach, to learning, 72–73
praxis, notion of, 155–156	procedural knowledge, 64, 65–66
precipitating events, in microgenetic methods,	procedures, defined, 1
181–182	process-of-change parallelism, 95
prediction, in EDM methods, 257–258	productive failure, 122–123
Pribram, K. H., 67	professional development (PD), features of,
"principled practical knowledge," 402–403	708–709
The Principle of Computational	professionals
Equivalence, 23–24	learning sciences and, 4
Principles of Visual Anthropology	practices of, 5
(Hockings), 213	Programme for International Learner
prior knowledge	Assessment (PISA) survey, 250, 676–677
importance of, 3	progressive formalization, 32
in literacy learning, 611–612	progress variables, 238
use of, 8–9	project-based learning
private sector involvement, 728–729	active construction of, 277
problematizing, 49, 120–121, 492	artifact development, 289–291
problem-based learning	cognitive tools in, 278–279
articulation in, 306	collaborations and, 286–287
assessment of, 310, 311, 314	driving question in, 281–282
characteristics of, 300–301	evidence-based principles in, 35
coaching in, 306	features of, 276, 280–281
cognitive apprenticeship and, 303	feedback in, 290–291
collaboration in, 309	integrated understanding in, 277
communicating process in, 305–306	learning performances in, 282–284
complexity in, 304–305, 328	research foundations of, 276–277
constructivism and, 302	science/scientific practices and, 279–280,
curriculum-level implementation, 300	284–286
defined, 298	as situated learning, 275, 277–278
educational technologies in, 300	social interaction and, 278
effects/effectiveness of, 310–311	technology tools for, 287–289
facilitation strategies, 303, 299–307t15.1.	project-based science (PBS), 279–280
facilitator's role in, 312–313	projection, 342–343
features of, 303–305	prolepsis, 46, 52
history of, 301	prompts, in scaffolding, 52
in K-12 environments, 314	proportional equivalence, 366
knowledge building and, 303, 412	prose structure, 612. See also literacy learning
large-scale use of, 314–315	PSLC Theoretical Framework, 256
learning sciences and, 315	psychological characteristics, of learning
medical example, 298–300	environments, 28
meta-analysis of, 305	psychological safety, 422, 690
	r-,, .22, 0,0

psychology experiment, vs. design-based research, 157t8.1.	"restructurations," 330 retrieval practice, 30–31
psychometric models, 244–245	retrospective confidence (RCJ), 75
Purdue Signals project, 258, 265	reviewing, 614. See also literacy learning
Turuue Signuis project, 236, 203	revoicing, 195–196
Quadrant model of scientific research, 151–152	Reznitskaya, A., 444–445
qualifiers, in argumentation, 440–441	RFID (radio frequency identification sensors)
Quest Atlantis, 22	342–343
Quest Atlantis learning game, 385–386, 524	rigor, in geometric thinking, 550
Quintana, C., 48, 120	Riis, Jacob, 216
	Rittle-Johnson, B., 178
R (education data mining tool), 262–263	River City, 524–525
Rabinowitz, P. J., 616	Rivzi, Saad, 727–728
radical constructivists, 25	Robert B. Davis Institute for Learning
radio frequency identification sensors (RFID),	(RBDIL), 223
342–343 David Landa A. D. 218	Rogers, Y., 513
Ramchandran, A. R., 218	Rogoff, B., 225, 688, 691
randomized controlled trial (RCT), 740–741 Raphael, T. E., 620	role playing opportunities, 639 Rorty, R., 558
RapidMiner, 255, 262–263	Roschelle, J., 97, 199, 217, 481-482, 492, 507
Raspberry Pi, 341	Rose, C., 191
rational models, of conceptual change, 96	Rose, M., 618–619
Ravenscroft, A., 449	Ross, G., 44, 121
reading, 'Great Debate' on, 25	Rouch, Jean, 216
reading comprehension, 611. See also literacy	Roussos, M., 344–345
learning	routines, of organizations, 656–658
reading fluency, 607–608 "realizability," 23–24	RUAnalytic, 223 Rubman, C. N., 613
realized properties/entities, 28–29	Ruiz-Primo, M. A., 234–235
reasoning vs. intuition, 360	Rutgers University, 223
rebuttals, in argumentation, 440–441	Ryan, A., 677–678
reciprocal teaching, 21–22, 51, 113	rejuii, 11., 077 070
reductionist approaches, 28	Sabelli, N., 161, 330
redundant scaffolding, 53	Sadler, R., 242, 577–578
Reeves, T. C., 152	Sagy, O., 581–582
reflection	Salas, E., 72
articulation and, 10-11, 48, 49	Salen, K., 388
in cognitive apprenticeship, 112t 6.1, 114	Sandberg, J., 446
forms of, 123–124	Sandoval, W. A., 122
research on, 123–124	Sannino, A., 132
technology use in, 124	SAS education tools, 255, 263
reflection, in PBL, 310	Sawyer, R. K., 635
Regnault Louis, 216	Saxe, G. B., 691–692
regressor prediction models, 258	"scaffolded knowledge integration," 99
re-integration process, 37 Reiser, B. J., 120–121, 122	in activity structures, 51
Rejeski, D, 388	of argumentation, 447–448
relationship mining, 260	articulation in, 306
relative accuracy, 71	challenges for use of, 54–56
Renninger, A., 670, 678–679	coaching in, 306
repetition, strategically regulated, 30-31	in cognitive apprenticeship, 112t 6.1,
representational redescription, 628	113–114
representational trajectories, 632	communicating process in, 305-306
representation creation, 631-632	in computational tools, 51–52
representations, in scaffolding, 306–309	computer-mediated communication forums
Resnick, L. B., 445	in, 449–450
Resnick, L. R., 129–130	as contextualized approach, 47, 50
Resnick, M., 323–324, 351	cultural climate and, 50-51

Index 771

cultural processes and, 689 incompatibilities with learning sciences, 738 as dialogue game, 448-449 out-of-school learning, 689 differentiated, 53 traditional practices, 4, 5-18t1.1 with disciplinary content, 681 Schrader, J., 218-219, 225 Schraw, G., 70 distributed, 52-54 Schwarz, B., 451-452 engagement and, 674-675 science center visits, 675-676 fading (of supports), 46-47, 55 future outlook for, 56-57 science education helping learning through, 46-47 blended science knowledge in, 569-571 historical roots of, 44-46 coevolution concept in, 565 historical text reading example, 45 comparative standards, 568 hypermediation in, 55 complex project engagement, 587 interest and, 674-675 constructivism in, 570 curriculum materials, 736 in knowledge building, 404-406 in learning environments, 50 design principles for, 579-580 in learning promotion, 9, 10 diversity in, 574 motivation and, 49, 673, 674-675 dual-domain coevolutionary process in, 579-580 during museum visits, 464 problematizing work with, 49 instructionist forces in, 567 in problem-based learning, 305-309 learning outcomes, 568-569 prolepsis in, 46, 52 learning progressions in, 570-571 prompts in, 52 learning sciences and, 565-566 redundant, 53 mini-conference format in, 581-582 representation in, 306-309 national policy and, 566 research on, 120-121 participatory simulations, 582-583 pedagogical practices in, 569-570, 571 in science education, 580-581 performance expectations in, 567-568 of scientific argumentation, 453-455 software-realized, 51-52 personally relevant contexts, 581 synergistic, 53-54 reforms in, 573-574 in teaching/learning interactions, 50-51 repeated interactions, 570 term use, 44n1, 121 research questions on, 569, 573, 575, 579 transformation of tasks in, 48-50 scaffolding in, 580-581 visual argument maps in, 450-453 social activity structures in, 581-582 water quality modeling example, 45 SSIs in, 577-578 zone of proximal development in, 45-46 targeted students/learners, 573-574 Scaffold Meter, 407 templates for, 580-581 scale-free networks, 328 science/scientific knowledge scale-up interventions/initiatives, 22, 35-38 argumentation in, 439 Scanlon, E., 449 blended approach, 569-571 Scardamalia, M., 113-114, 122, 196, 483 body actions and, 368-370 Schank, Roger, 11, 14-15, 730 cultural processes and, 692-693 Schauble, L., 151, 176, 740 educational standards for learning, 4-5 Schegloff, E. A., 129 educational technologies in, 578-579 schemaic templates, 599 epistemology of, 7 schemas, 24-25 experimental design in, 13 Schemer, 341 large-scale assessments, 676–677 Schmidt, H. G., 302 in museum environments, 346 Schneider, W., 72 origins of, 329 Schoenfeld, A. H., 113, 141, 172, 173, 179-180, participation and, 578-579 187-188, 193 project-based learning and, 279-280 Schon, D. A., 123 scaffolding of, 453-455 Schools Council History Project, 591 Science Workshop (inquiry practice), 698 Schools for Thought classrooms, 21-22 situated perspective, 576-577 schools/schooling. See also instructionism sociocultural context, 575-576 assumption of, 1-2 student participation in, 5-6 collaboration in, 207 targeted design strategies, 574 computers in, 11-12 types of, 566-569 videogames and, 379-380 goal of, 1

772 Index

science standards, 331-332 situativity perspective, 6, 132 Science Workshop (inquiry practice), 698 Sitzmann, T., 386, 387 scientific approaches skills, global vs. local, 115 to project-based learning, 285-288t14.2. skills movement, 411 Skinner, B. F., 11, 673, 734-735 to study of learning, 22-23 Sloway, E., 120 scientific revolutions, 92 seamless learning, 503-505 Smagorinsky, P., 606-607 Secor, M., 617 small groups, CSCL and, 492 Sefton-Green, J., 638-639 smartphones, 726 Seidel, T., 221 Smiley, S. S., 612 self-directed learning (SDL), 309 Smith, E., 72 self-regulated learning (SRL), 66, 67-68, Smith, Frank, 118 75-76, 672 Smith, J. P., 97, 172, 179-180 Smith, M., 556, 606-607, 616 self-report measures, of metacognition, 73 SenseMaker, 432, 454 Smitherman, G., 694 SNAPP, 262 sensemaking, scaffolding and, 48 sense of belonging, 690 social cohesion, 423 social comparisons/group interactions, 70-71 Seop, E., 637 sequencing, in cognitive apprenticeship, 112t social constructivists, 25 6.1, 115 social interaction sequential pattern mining, 260 in games, 349 SERP (Strategic Education Research in project-based learning, 278 social knowledge construction, 381 Partnership), 661-662 Sfard, A., 495-496 social learning theory, complex systems and, 29 Shaw, V., 444 social media Shemilt, D., 591, 596 as disruptive activity, 513-514 Sheridan, K. M., 636 museums and, 468-470 Sherin, B. L., 187 social network analysis (SNA), 203-204, Shin, N., 288 259, 410 shortcut sum strategy, 174-175, 182 social systems, groups as, 419-420, 422 Shulman, L. S., 707-708 Society for Learning Analytics Research, 254 Siegler, Robert, 172, 173, 174-175, 178. sociocognitive approach 179-180, 181, 182, 185, 186-187 to arts learning, 631 Siemens, G., 255-257 in museums, 462-463 signifying (ritual insult), 697 sociocultural approach, to mobile learning, 512 SimCalc, 22 socioculturalism, 25 "SimDistrict," 330 sociocultural studies, 25-26 Simon, H. A., 184-185, 197-198 sociology, in cognitive apprenticeship, 112t 6.1, "SimSchool," 330 115-116 simulated action, abstraction as, 360-362 sociomathematical norms, 554-555 socio-scientific issues (SSIs), 577-578 simulation games. See videogames single-loop learning, 132 Socio-technical environment for learning and Sinker, R., 638 learning activity research (STELLAR), situated action, as activity system, 128. See also activity systems software programs. See also specific programs for CSCL, 490 situated cognition complex systems and, 29 educational, 11-13 as influential theory of learning, 24 for video analysis, 221-222 situated learning software-realized scaffolding, 51-52 as activity system, 128. See also activity Soloway, E., 287-288 Solso, R. L., 628 in cognitive apprenticeship, 112t 6.1, 116 Spiro, R. J., 218 project-based learning as, 275 Spolin, Viola, 629-630 SPSS analytic tool, 255 research on, 117-118 Squire, K., 152, 153-154 situational interest, 302, 670 situative studies, on complex stabilization, 142 environments, 25-26 "stage theory" of intelligence, 91

Index 773

Stahl, G., 217, 492 Suárez, J. M., 72 Stake, R., 153, 163, 165 Suchman, Lucy, 14 standardized test administration, 244, 744. summative assessment, 234. See also assessment See also assessment Sungur, S., 73 standards, for learning, 4-6 supervenience, 28-29 Suppes, Patrick, 339 Stanford, Leland, 215-216 StarLogo (agent-based modeling program), surface knowledge, 4 323-324, 326 sustained creative work, 407-410 state of knowledge, 399-400 symbolic interactionism, 27 Stavrianopoulos, K., 73-74 symbols, manipulation of, 360 Steele, C. M., 690 synergistic scaffolding, 53-54 Stein, M. K., 556 systemic approaches, 738-739 Steinbach, R., 113-114 systemic research assumptions of, 29 Steinkuehler, C., 381-382 STELLAR (Socio-technical environment for vs. elemental research, 28 learning and learning activity research), methods of, 33 218, 313 summary findings from, 33 STEM knowledge time scales of, 30 embodied perspective, 358 system-level hypotheses, 136-138 videogame challenge for, 388 Stevens, R., 204, 226 Tableau Software, 255 Stigler, J. W., 224 tablet computers, 726 Stokes, D. E., 152 tacit knowledge, strategic knowledge as, 113 Stokes, Peter, 729 tangible educational design, 343 tangible/full-body interfaces Stone, C. A., 199 "storied truths," 152, 155, 162-163, 165, applications for, 345 166-167 body augmentation, 346-347 Strategic Education Research Partnership cameras/sensors in, 345 (SERP), 661-662 for children's learning places, 348-351 strategic knowledge cognitive limitations of, 353-354 problem solving and, 111-112 computational crafts, 343-344 tacit knowledge as, 113 computationally-enriched spaces, 344 strategic performance problems, in PBL, 304 craft technology in, 352 DIY community and, 354-355 Stratman, J., 618 Strauss, A., 163 educational activity design, 352 "Stretch & Explore," 635–636 embedded computing, 341 Strike, K. A., 96 embodied cognition and, 347-348 Strom, D., 203-204 embodied metaphors in, 350 fabrication/construction technologies, strong coherence, rejection of, 92-93, 98 Stroup, W., 324-325 340-341 structure discovery algorithms, 258 human-computer interaction (HCI) in, The Structure of Scientific Revolutions 348-349 (Kuhn), 92 in informal settings, 352 student achievement measurement, 243. in learning sciences, 341, 351-353 "maker movement" in, 354-355 See also assessment novel materials, 342 student participation, in conceptual learning, 137-138 optics/tracking in, 342-343 student performance, learning environment pedagogic strategies for, 350 and, 8 physical activity platforms, 349-350 students representative devices, 340-341 authentic knowledge creation in, 398 in science museums, 346, 350 authentic practices engagement by, 5 social aspects of, 351 computer use by, 11-12 space-based interaction, 351 learning processes of, 3 in urban playgrounds, 345, 349-350 prior knowledge of, 3, 8-9 virtual learning environments (VLEs), 345 "Studio Habits of Mind," 637 virtual-reality (VR), 344-345 "studio" scenario, 446 Tannen, D., 439

Tapped In, 712	"technomethodology," 495
target performance, in learning progression	textbooks, 743
model, 238	Thagard, P., 411–412
task cohesion, 423	Thai, A, 388
task interdependence, 423	Thames, M., 707–708
task-specific knowledge, 606–607, 614–616	ThEMaT (Thought Experiments in
Tate, E. D., 574	Mathematics Teaching), 716
Taylor, J., 177	theoretical forums, 450
teacher learning	theories of learning
book club model for, 711	American pragmatism, 26–27
career phases, 708	argumentation, 440-442
classroom practice, 709	cognitive science, 23–24
coaching, 713	constructivism, 24–25
cognitive tools in, 717–718	of dialogue, 441
communications technologies in, 711–712	expectancy-value, 671–672
communities of practice, 710–711	situated cognition, 24
content knowledge, 707-708	sociocultural theory, 25
context importance in, 708	"theory theory," 95–96, 98, 99
curriculum materials, 716	thick description/interpretation, 217
DBR in, 709–710	Thinking Tags, 579
digital tools in, 717–718	Third International Mathematics and Science
distributed expertise, 710	Study (TIMSS), 217
future trends in, 718–719, 744	Thomas, M., 385–386
guided inquiry in, 711	Thorndike, Edward, 488–489, 546
knowledge building communities, 712–713	Thought Experiments in Mathematics Teaching
knowledge domains, 707–708	(ThEMaT), 716
LeTUS project, 709	"thought units," 193
on-line courses, 715	3D printers, 342–343
mentoring, 713	three-slot schema, 180
pedagogical knowledge, 707–708	Tiberghien, A., 93–94
practice-based education, 714	TIMSS (Trends in International Mathematics
professional development (PD), 708–709	and Science Study), 224, 736
quality/performance focus, 707	Tinker, R., 287–288
rehearsals, 714	tip-of-the-tongue (TOT) phenomenon, 67
situativity in, 709, 715	Tochon, F., 216
social supports, 710	topic coverage, 736
sociocultural perspective, 713	topic-divergent motions, 431–432
video use, 715	topic-related motions, 431–432
teachers	Torres, C. A., 165
embodied design and, 371	Toulmin, Stephen, 91–93, 96, 98, 103–104, 105,
as experts, 738	241, 440–441, 616–617
future of learning and, 737	trace data, interpretation of, 77–78
job of, 1, 15–16	tracking behavior, in museums, 462
learning by, 557–558	traditional classroom practices, 4, 5–18t1.1
learning sciences and, 4	See also schools/schooling
mobile devices and, 507	Transana™, 222
in museum environments, 466, 469–470	transcript analysis, 200–203, 201t10.2.
PBL training, 312–313	transformational innovation, 727–728
as scaffolds, 306	translating, 613–614. <i>See also</i> literacy learning
teaching	"transliteracy," 402, 413
as argument, 455	"transmission" scenario, 446
experiments in, 550–551, 552–553	transport, 142–143
on-line, 480	Trends in International Mathematics and
procedure use in, 403	Science Study (TIMSS), 224, 736
Teasley, S. D., 481–482	tribal institutions, 659–660
technology. See computer technology	truncated action, 361
Technology Enhanced Learning in Science	Tsoukas, H., 401
(TELS), 574	tutor ("more knowledgeable other"), 46

Index

775

tutoring, 11, 300, 303-304, 732. video technology, uses of, 117. See also digital See also Cognitive Tutors; MetaTutor video research Tuzu, H., 385–386 video use, in teacher learning, 715 "21st century skills," 398, 411, 728-729 Viennot, L., 93-94 two-slot schema, 180 view, change in, 442 Views of the Nature of Science (VNOS), 740 "ubiquitous" computing, 346-347 'virtual graffiti,' 515 ubiquitous learning, 512-513 virtual learning environments (VLEs), 345 Udacity, 254 virtual-reality (VR), 344-345 uniform learning, 738 "virtual tourist trails," 512 United States virtual worlds large-scale testing in, 246 to assess learning, 523, 532-533 science standards in, 331-332 avatars in, 522-523 challenges facing, 531-532 United States National Research Council, 2 Universal Design for Learning (UDL), 289 cheat sites, 530-531 unobtrusive performance measures, 76-77 currency in, 528 definition of, 522 Vanderbilt University, 117, 218 depth in, 536 van der Spek, E. D., 380, 386-387 EcoMUVE, 526-527 van de Sande, B., 139 educational potential of, 522 Van Eemeren, F. H., 441 as engaging/motivating, 523 van Hiele, D., 549-550 evolution in, 536 van Hiele, P., 549-550 expert advice in, 536-537 van Nimwegen, C., 380, 386-387 future research on, 535 van Oostendorp, H., 380, 386-387 guilds in, 522-523 van Rompay, Thomas, 363 hybrid models in, 537-538 VanSledright, B. A., 591 identity exploration and, 522-523 Vedder, P., 681 individualized guidance system (IGS), 534 Veenema, S., 636 inside schools, 524-528 learning pathways, 533-534 Veermans, M, 678 verbal articulation/protocols, 184-185 Minecraft, 531 video data collection, 219-220 number of players, 531 videogames outside schools, 528-532 as assessment, 382-383 persistent nature of, 522-523 as bait, 380-382 Quest Atlantis, 524 challenges for, 388-389 River City, 524-525 scaling of, 535-536 character theory, 384-385 as content, 379-380 science games, 528-530 definition of, 388 security/privacy issues, 527 effects/effectiveness of, 386-388 shift in, 536 social interaction support, 522-523 engaged learning and, 384-386 gameplay motivations, 384-385 spread in, 536 'gamification" techniques, 385 sustainability in, 536 historical simulation, 379 teacher development and, 527 impact of, 377-378 technology infrastructure for, 527 industry growth, 377 tracking participation, 534-535 instructional context of, 389 user path analysis, 533-534 for language learning, 380 visual arts development, 629 pedagogical principles in, 378 visualization, in geometric thinking, 550 role of, 378-379 visualization methods, 260-261 for science learning, 379-380 vitalist biology/vitalism, 98, 103-104 teachers' role in, 388-389 VMCAnalytic, 223 time spent on, 377 Vogel, J. J., 386, 387 Vom Lehn, D., 226 Video Mosaic Collaborative, 223 video recording/capturing, 220-221 Vosniadou, S., 99-100, 101 Video Research in the Learning Sciences Vrugt, A., 74 (Goldman, Pea, Barron and Derry), Vygotsky, Lev, 10, 25, 45-46, 121, 130-131, 173, 214, 222 303, 351, 360, 361, 487, 553

776 Index

Wagner, J. F., 143 Walker, A. E., 305, 312, 449 Walton, D., 441 warrants, in argumentation, 440-441 Waters, H. S., 613 wayfaring, 142-143 ways of knowing. See science/scientific knowledge Web-based Integrated Science Environment (WISE), 22, 454, 714 web-based video, 215. See also digital video research webcams, 221 Web Constellations™, 214 Weinert, F. E., 72 Weissbein, D., 72 Weka, 262-263 Wellman, H., 101 Well Played journal, 384 Wenger, E., 118 Werner, H., 173 Wertsch, J. V., 199 "When Smart Groups Failed" (Barron), 204-205 White, B. Y., 124 whiteboards, in PBL, 306-309 See also Interactive White Board (IWB) Whitehill, T., 313-314 Whitenack, J. W., 218 whole-word approach, 609-610 Whyville, 528-530, 537-538 Wilensky, U., 323-325, 326-327, 330, 582-583 Wiley, L., 633 Wineburg, S., 592, 594, 711

Winner, E., 628, 636

wireless handheld devices. See mobile learning Wireless Internet Learning Devices (WILDs), 507 WISE (Web-based Integrated Science Environment), 22, 432, 454 Wiser, Marianne, 95 Wittgenstein, L., 489 Wong, L.-H., 504 Wood, D., 44, 48, 49, 121 Woolgar, S., 693 Woolworth S., 711 word attack tasks, 609-610 word identification tasks, 609-610 word meaning access, 610-611. See also literacy learning Wouters, P., 380, 386-387 writing/writing systems, 605-606, 613-614. See also literacy learning Yacef, K., 257 Yates, K., 386, 387 Yee, N., 384-385 Yoon, S. A., 326 Young, M. F., 380, 381, 386, 387, 388, 389 Zeitz, C. L., 445 Zemel, A., 217 Zhang, J., 400, 412 Zimmerman, B. J., 673 zone of proximal development (ZPD), 45-46, 50, 121, 464, 487 Zottmann, J., 218-219, 225 Zurita, G., 507-508 Zydeco, 287-288