A CERTAIN UNCERTAINTY:
NATURE’S RANDOM WAYS

Based around a series of real-life scenarios, this vivid introduction to statistical reasoning will teach you how to apply powerful statistical, qualitative, and probabilistic tools in a technical context.

From analysis of electricity bills, baseball statistics, and the movement of stock markets, through to the physics of fermions and bosons, and the effects of climate change, each chapter introduces relevant physical, statistical, and mathematical principles step-by-step in an engaging narrative style, helping to develop practical proficiency in the use of probability and statistical reasoning.

With numerous illustrations, which make it easy to focus on the most important information, and full-color figures available online at www.cambridge.org/silverman, this insightful book is perfect for students and researchers of any discipline interested in the interwoven tapestry of probability, statistics, and physics.

MARK P. SILVERMAN is the G. A. Jarvis Professor of Physics at Trinity College, Connecticut. He received his Ph.D. in Chemical Physics from Harvard University, and has since pursued a wide range of experimental and theoretical studies concerning the structure of matter, the behavior of light, and the dynamics of stars and galaxies.
A CERTAIN UNCERTAINTY: NATURE’S RANDOM WAYS

MARK P. SILVERMAN
Trinity College, Connecticut
To Sue, Chris and Jen
(the only certainties in my life)
Books by Mark P. Silverman

Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Tools of the trade</td>
<td></td>
</tr>
<tr>
<td>1.1 Probability: The calculus of uncertainty</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Rules of engagement</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Probability density function and moments</td>
<td>5</td>
</tr>
<tr>
<td>1.4 The binomial distribution: “bits” [Bin(1, p)] and “pieces” [Bin(n, p)]</td>
<td>7</td>
</tr>
<tr>
<td>1.5 The Poisson distribution: counting the improbable</td>
<td>9</td>
</tr>
<tr>
<td>1.6 The multinomial distribution: histograms</td>
<td>10</td>
</tr>
<tr>
<td>1.7 The Gaussian distribution: measure of normality</td>
<td>12</td>
</tr>
<tr>
<td>1.8 The exponential distribution: Waiting for Godot</td>
<td>14</td>
</tr>
<tr>
<td>1.9 Moment-generating function</td>
<td>16</td>
</tr>
<tr>
<td>1.10 Moment-generating function of a linear combination of variates</td>
<td>17</td>
</tr>
<tr>
<td>1.11 Binomial moment-generating function</td>
<td>20</td>
</tr>
<tr>
<td>1.12 Poisson moment-generating function</td>
<td>22</td>
</tr>
<tr>
<td>1.13 Multinomial moment-generating function</td>
<td>24</td>
</tr>
<tr>
<td>1.14 Gaussian moment-generating function</td>
<td>26</td>
</tr>
<tr>
<td>1.15 Central Limit Theorem: why things seem mostly normal</td>
<td>28</td>
</tr>
<tr>
<td>1.16 Characteristic function</td>
<td>32</td>
</tr>
<tr>
<td>1.17 The uniform distribution</td>
<td>34</td>
</tr>
<tr>
<td>1.18 The chi-square (χ²) distribution</td>
<td>38</td>
</tr>
<tr>
<td>1.19 Student’s t distribution</td>
<td>41</td>
</tr>
<tr>
<td>1.20 Inference and estimation</td>
<td>45</td>
</tr>
<tr>
<td>1.21 The principle of maximum entropy</td>
<td>46</td>
</tr>
<tr>
<td>1.22 Shannon entropy function</td>
<td>49</td>
</tr>
<tr>
<td>1.23 Entropy and prior information</td>
<td>49</td>
</tr>
<tr>
<td>1.24 Method of maximum likelihood</td>
<td>54</td>
</tr>
<tr>
<td>1.25 Goodness of fit: maximum likelihood, chi-square, and P-values</td>
<td>61</td>
</tr>
<tr>
<td>1.26 Order and extremes</td>
<td>72</td>
</tr>
</tbody>
</table>
Contents

1.27 Bayes’ theorem and the meaning of ignorance
 Appendices
1.28 Rules of conditional probability
1.29 Probability density of a sum of uniform variates $U(0,1)$
1.30 Probability density of a χ^2 variate
1.31 Probability density of the order statistic $Y_{(i)}$
1.32 Probability density of Student’s t distribution
2 The “fundamental problem” of a practical physicist
2.1 Bayes’ problem: solution 1 (the uniform prior)
2.2 Bayes’ problem: solution 2 (Jaynes’ prior)
2.3 Comparison of the two solutions
2.4 The Silverman–Bayes experiment
2.5 Variations on a theme of Bayes
3 “Mother of all randomness”
 Part I The random disintegration of matter
3.1 Quantum randomness: is “the force” with us?
3.2 The gamma coincidence experiment
3.3 Delusion of layered histograms
3.4 Elementary statistics of nuclear decay
3.5 Detrending a time series
3.6 Time series: correlations and ergodicity
3.7 Periodicity and the sampling theorem
3.8 Power spectrum and correlation
3.9 Spectral resolution and uncertainty
3.10 The non-elementary statistics of nuclear decay
3.11 Recurrence, autocorrelation, and periodicity
3.12 Limits of detection
3.13 Patterns of randomness: runs
3.14 Patterns of randomness: intervals
3.15 Final test: intervals, runs, and histogram shapes
3.16 Conclusions and surprises: the search goes on
 Appendices
3.17 Power spectrum completeness relation
3.18 Distributions of spectral variables and autocorrelation functions
4 “Mother of all randomness”
 Part II The random creation of light
4.1 The enigma of light
4.2 Quantum vs classical statistics
4.3 Occupancy and probability functions
4.4 Photon fluctuations
Contents

4.5 The split-beam experiment: photon correlations 226
4.6 Bits, secrecy, and photons 236
4.7 Correlation experiment with down-converted photons 240
4.8 Theory of recurrent runs 246
4.9 Runs and the single photon: lessons and implications 254
Appendices 260
4.10 Chemical potential of massless particles 260
4.11 Evaluation of Bose–Einstein and Fermi–Dirac integrals 267
4.12 Variation in thermal photon energy with photon number
\(\partial \langle E \rangle / \partial \langle N \rangle \) 268
4.13 Combinatorial derivation of the Bose–Einstein probability 269
4.14 Generating function for probability \([Pr(N_n = k)]\) of \(k\) successes in \(n\) trials 270

5 A certain uncertainty 272
5.1 Beyond the “beginning of knowledge” 272
5.2 Simple rules: error propagation theory 274
5.3 Distributions of products and quotients 277
5.4 The uniform distribution: products and ratios 281
5.5 The normal distribution: products and ratios 287
5.6 Generation of negative moments 296
5.7 Gaussian negative moments 299
5.8 Quantum test of composite measurement theory 304
5.9 Cautionary remarks 310
5.10 Diagnostic medical indices: what do they signify? 313
5.11 Secular equilibrium 315
5.12 Half-life determination by statistical sampling: a mysterious Cauchy distribution 318
Appendix 325
5.13 The distribution of \(W = XY/Z\) 325

6 “Doing the numbers” – nuclear physics and the stock market 328
6.1 The stock market is a casino 328
6.2 The details – CREF, AAPL, and GRNG 332
6.3 Theory of information \(H\) 340
6.4 Is there information in a stock market time series? 347
6.5 Stock price and molecular diffusion 350
6.6 Random walk as an autoregressive process 353
6.7 Stocks go UP and UP . . . and DOWN and DOWN 364
6.8 What happened to the law of averages? 372
6.9 Predicting the future 372
6.10 Timing is everything 378
Appendices 384
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11</td>
<td>Information inequality $H(A</td>
<td>B) \leq H(A)$</td>
</tr>
<tr>
<td>6.12</td>
<td>Power spectral density of an autoregressive time series</td>
<td>385</td>
</tr>
<tr>
<td>6.13</td>
<td>Exact maximum likelihood estimate of AR(1) parameters</td>
<td>385</td>
</tr>
<tr>
<td>6.14</td>
<td>Statistics of gambling and law of averages</td>
<td>387</td>
</tr>
<tr>
<td>7</td>
<td>On target: uncertainties of projectile flight</td>
<td>390</td>
</tr>
<tr>
<td>7.1</td>
<td>Knowing where they come down</td>
<td>390</td>
</tr>
<tr>
<td>7.2</td>
<td>Distribution of projectile ranges</td>
<td>392</td>
</tr>
<tr>
<td>7.3</td>
<td>Energy vs speed: a test of hypotheses</td>
<td>401</td>
</tr>
<tr>
<td>7.4</td>
<td>Play ball! – home runs and steroids</td>
<td>404</td>
</tr>
<tr>
<td>7.5</td>
<td>Air resistance</td>
<td>409</td>
</tr>
<tr>
<td>7.6</td>
<td>Theory of flight</td>
<td>419</td>
</tr>
<tr>
<td>7.7</td>
<td>“Fly(ing) ball” – spin and lift</td>
<td>425</td>
</tr>
<tr>
<td>7.8</td>
<td>Falling out of the sky is a drag</td>
<td>432</td>
</tr>
<tr>
<td>7.9</td>
<td>Descent without power: how to rescue a jumbo jet disabled in flight</td>
<td>441</td>
</tr>
<tr>
<td>Appendices</td>
<td>Distribution and variation of projectile range $R(V, \Theta)$</td>
<td>453</td>
</tr>
<tr>
<td>Appendices</td>
<td>Unbiased estimator of skewness</td>
<td>455</td>
</tr>
<tr>
<td>8</td>
<td>The guesses of groups</td>
<td>457</td>
</tr>
<tr>
<td>8.1</td>
<td>A radical hypothesis</td>
<td>457</td>
</tr>
<tr>
<td>8.2</td>
<td>A mathematical truism?</td>
<td>463</td>
</tr>
<tr>
<td>8.3</td>
<td>Condorcet’s jury theorem</td>
<td>465</td>
</tr>
<tr>
<td>8.4</td>
<td>Epimenides “paradox of experts”</td>
<td>470</td>
</tr>
<tr>
<td>8.5</td>
<td>The Silverman GOG experiments</td>
<td>471</td>
</tr>
<tr>
<td>8.6</td>
<td>Interpretation of the GOG experiments</td>
<td>476</td>
</tr>
<tr>
<td>8.7</td>
<td>Mining groups for information: Galton’s democratic model</td>
<td>480</td>
</tr>
<tr>
<td>8.8</td>
<td>Mining groups for information: Silverman’s Mixed-NU model</td>
<td>483</td>
</tr>
<tr>
<td>8.9</td>
<td>The BBC–Silverman experiments: the reach of television</td>
<td>488</td>
</tr>
<tr>
<td>8.10</td>
<td>The log-normal distribution: a fundamental model of group judgment?</td>
<td>495</td>
</tr>
<tr>
<td>8.11</td>
<td>Conclusions: so how “wise” are crowds?</td>
<td>506</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td>509</td>
</tr>
<tr>
<td>8.12</td>
<td>Derivation of the jury theorem</td>
<td>509</td>
</tr>
<tr>
<td>8.13</td>
<td>Solution to logic problem #1: how old are the children?</td>
<td>510</td>
</tr>
<tr>
<td>8.14</td>
<td>Solution to logic problem #2: where is the treasure?</td>
<td>510</td>
</tr>
<tr>
<td>8.15</td>
<td>Origins and features of a log-normal distribution</td>
<td>511</td>
</tr>
<tr>
<td>9</td>
<td>The random flow of energy</td>
<td>515</td>
</tr>
<tr>
<td>Part I</td>
<td>Power to the people</td>
<td>515</td>
</tr>
<tr>
<td>9.1</td>
<td>A different kind of law</td>
<td>515</td>
</tr>
<tr>
<td>9.2</td>
<td>Examining the data: time and autocorrelations</td>
<td>516</td>
</tr>
<tr>
<td>9.3</td>
<td>Examining the data: frequency and power spectra</td>
<td>523</td>
</tr>
</tbody>
</table>
9.4 Seeking a solution: the construction of models 526
9.5 Autoregressive (AR) time series 527
9.6 Moving average (MA) time series 530
9.7 Combinations: autoregressive moving average time series 533
9.8 Phase one: exploration of autoregressive solutions 534
9.9 Phase two: adaptive and deterministic oscillations 543
9.10 Phase three: exploration of moving average solutions 547
9.11 Phase four: judgment – which model is best? 554
9.12 Electric shock! 561
9.13 Two scenarios: coincidence or conspiracy? 565
Appendices 568
9.14 Solution of the AR(12)_{1,12} master equation 568
9.15 Maximum likelihood estimate of AR(n) parameters 569
9.16 Akaike information criterion and log-likelihood 570
9.17 Line of regression to 12-month moving average 570

10 The random flow of energy 573
Part II A warning from the weather under ground 573
10.1 What lies above? 573
10.2 What lies beneath? 577
10.3 Autocorrelation of underground temperature 580
10.4 Fourier transform and power spectrum of underground temperature 582
10.5 Energy diffusion: approach I – deterministic 589
10.6 Energy diffusion: approach II – stochastic 594
10.7 Interpreting the waveforms 597
10.8 Climate implications 602
Appendices 609
10.9 Absorption of solar radiation by a sphere 609
10.10 Autocorrelation of a decaying oscillator 609

Bibliography 611
Index 613
How is it possible that mathematics, which is indeed a product of human thought independent of all experience, accommodates so well the objects of reality?

Here, in my view, is a short answer: In so far as mathematical statements concern reality, they are not certain, and in so far as they are certain, they do not refer to reality.

—Albert Einstein

1 Albert Einstein, from the lecture “Geometrie und Erfahrung” [Geometry and Experience] given in Berlin on 27 January 1921. (Translation from German by M. P. Silverman.)
I have heard it said that a preface is the part of a book that is written last, placed first, and never read. Still, I will take my chances; this is, after all, a book about probability and uncertainty. The purpose of this preface is to explain what kind of book this is, why I wrote it, for whom I wrote it, and what I hope the reader will gain by it.

This book is a technical narrative. It is not a textbook (although you can certainly use it that way); there are no end-of-chapter questions or tests, and the level of material does not presuppose the reader to have reached some envisioned state of preparedness. It is not a monograph; it does not survey an entire field of intellectual activity, and there is no list of references apart from a few key sources that aided me in my own work. It is not a popularization; the writing does not sensationalize its subject matter, and explanations may in part be heuristic or analytical, but (I hope) never shallow and hand-waving.

A narrative is a story – albeit in this book one that is meant to instruct as well as amuse. Each chapter, apart from some background material in the beginning, is an account of a scientific investigation I have undertaken – sometimes because the questions at issue are of utmost scientific importance; other times on a whim out of pure curiosity. The various narratives are different, but through each runs a common thread of probability, uncertainty, randomness, and, often enough, serendipity.

Why, you may be thinking, should my scientific investigations interest you? To this thought, I can give two answers: one brief, the other longer.

The short answer is that I have written six previous books of the same format (narrative descriptions of my researches), which have sold well. Many people who bought (and presumably read) the books found the diversity of subject matter interesting and the expositions clear and informative, to judge from their unsolicited correspondence. It seems reasonable to me, therefore, that a Bayesian forecast of a reader’s response to this book would employ a favorably biased “prior”.

The longer answer concerns how people learn things. The principal objective of this book, after all, is to share with anyone who reads it part of what I have learned in some 50 years (and still counting) as an experimental and theoretical physicist.
In the course of a long and somewhat unusual scientific career, my researches have taken me into nearly every field of physics. In broad outline, I study the structure of matter, the behavior of light, and the dynamics of stars and galaxies. My investigations of quantum phenomena have employed electron interferometry, radiofrequency and microwave spectroscopy, laser spectroscopy, magnetic resonance, atomic beams, and nuclear spectroscopy. I have examined the reflection, refraction, diffraction, polarization and scattering of light as a classical wave, and the absorption, emission, and correlation of light as a quantum particle (photon). I have reported on the quantum statistics of neutron fluids and Bose–Einstein condensates in exploded, collapsed stars, and the classical statistics of fragments of exploded glass in my laboratory. I have studied the interactions (electromagnetic, nuclear, and gravitational) of real matter on Earth and of dark matter in the cosmos. My interests embraced projects of high scientific significance (such as tests of quantum electrodynamics, of the theory of nuclear decay, of Newtonian gravity and of general relativity) and projects to understand the workings of physically simple, yet surprisingly complicated, physics toys (such as a motor comprising only a AA battery, small cylindrical magnet, and a paper clip; or a passive hollow tube that is fed room temperature air at the center and emits hot air from one end and cold air from the other).

The point of the preceding partial enumeration of research interests is simply this: I was not trained to do all the above and more; I had to teach myself – and the motivation for learning what I needed to know in each instance derived from the desire to solve a particular problem that interested me. I did not undertake my physics self-instruction out of a desire to absorb abstract principles!

A narrative – a story – humanizes the starkness of physical principles and abstraction of mathematical expressions, and thereby helps provide motivation to learn both. While the personal situations that prompted me to undertake the studies narrated here are unlikely to pertain to you, the reader, I cannot help but believe that the issues involved are as relevant to you as they were to me.

Do you travel – and fly in an airplane? Then you may want to read my analysis of the survival of a pilot who fell five miles without a parachute – and how, from that, I developed a protocol for bringing down safely a jumbo jet whose engines all fail.

Do you invest in the stock market to save for retirement? Then you may want to read my statistical analysis of how common stocks behave and what you can expect the market to do for you.

Do you take medications of some kind or have an annual physical exam with a blood test? Then you will be interested in what my statistical analysis reveals about the reliability of the clinical laboratory reports.

Do you ever serve on a jury or a committee or some group required to reach a collective judgment? Then you will surely be interested in my theoretical analysis and experimental tests (aided by collaboration with a BBC television show) of the so-called “wisdom-of-crowds” phenomenon.
Do you pay a power company each month for use of electric energy? Are you confident that the meter readings are accurate and that you are being charged correctly? Before answering the second question, perhaps you should read the chapter detailing the statistical analysis of my own electric energy consumption.

Do you enjoy sports, in particular ball games of one kind or another? Then you may be intrigued by my analysis of the ways in which a baseball can move if struck appropriately – or, perhaps of more practical consequence, how I inferred that a certain prominent US ballplayer was probably enhancing his performance with drugs long before the media became aware of it.

Are you concerned about global climate change? Then my statistical study of the climate under ground will give you a perspective on what is likely to be the most serious consequence to occur soonest – a consequence that has rarely been given public exposure.

And if you are a scientist yourself – especially a physicist – then you may be utterly astounded, as I was initially, to learn of persistent claims in the peer-reviewed physics literature of processes that, had they actually occurred, would turn nuclear physics (if not, in fact, all laws of physics) upside down. You should therefore find particularly interesting the chapter that describes my experiments and analyses that lay these extraordinary claims to rest.

The foregoing abbreviated descriptions should not disguise the fact that – as mentioned at the outset – this book is a technical narrative. The book can be read, I suppose, simply for the stories, skipping over the lines of mathematics. However, if your goal is to develop some proficiency in the use of probability and statistical reasoning, then you will want to follow the analyses carefully. I start the book with basic principles of probability and show every step to the conclusions reached in the detailed explanations of the empirical studies. (Some of the detailed calculations are deferred to appendices.)

A textbook, in which material is laid out in a “linear” progression of topics, may teach statistics more efficiently – but this book teaches the application of statistical reasoning in context – i.e. the use of principles as they are needed to solve specific problems. This means there will be a certain redundancy – but that is a good thing. In many years as a teacher, I have found that an important part of retention and mastery is to encounter the same ideas more than once but in different applications and at increasing levels of sophistication.

Virtually every standard topic of statistical analysis is encountered in this book, as well as a number of topics you are unlikely to find in any textbook. Furthermore, the book is written from the perspective of a “practical physicist”, not a mathematician or statistician – and, where useful, my viewpoint is offered, schooled by some five decades of experimentation and analysis, concerning issues over which confusion or controversy have arisen in the past: for example, issues relating to sample size and uncertainty, use and significance of chi-square tests and P-values, the class
boundaries of histograms, the selection of Bayesian priors, the relationship between
principles of maximum likelihood and maximum entropy, and others.

As a final point, it should be emphasized that this book is not merely a “statistics
book”. Rather, the subject matter at root is statistical physics. Every chapter, apart
from the first, involves some experimental aspect, whether measured in a laboratory,
simulated on a computer, or observed in the world at large. The themes of the
narratives concern physical processes from widely different reaches of physics:
dynamics of discrete particles, dynamics of fluids, dynamics of heat flow, statistical
mechanics of bosons and fermions, creation of non-classical forms of light, trans-
formations of radioactive nuclei, and more. In the process of solving particular
problems, there arise – and I will answer – profound questions that are rarely
encountered in physics textbooks. Consider thermodynamics, for example. Why is
the chemical potential of black-body radiation zero? Is it zero for all kinds of
photons? Is it zero because the photon is massless? Would a massless neutrino have
a zero chemical potential? Read this book and find out.

What background do you need to read this book? Clearly, the more mathematics
and physics you know beforehand, the more of the technical details you will be able
to understand. An undergraduate physics major should be able to read all of it by the
time he or she graduates. In fact, some of the content comes from the physics lectures
I give at an undergraduate institution. A person with a knowledge of calculus should
be able to read most of it. But anyone with an interest in probability, statistics, and
physics should be able to take away something useful and thought-provoking from
just the text.

That concludes the short answer, the long answer, and the objectives stated in the
first paragraph of the Preface – if you read it.

Note regarding figures: Color figures for this book are available at the Cambridge
University Press website www.cambridge.org/silverman.

Mark P. Silverman
I would like to thank my son Chris for his invaluable help in formatting the text of many of the figures in the book, for designing the beautiful cover of the book, and for his advice on the numerous occasions when my computers or software suddenly refused to co-operate. It is also a pleasure to acknowledge my long-time colleague, Wayne Strange, whose participation in our collaborative efforts to explore the behavior of radioactive nuclei was essential to the successful outcome of that work.

I very much appreciate the efforts of Dr. Simon Capelin, Elizabeth Horne, Samantha Richter, and Elizabeth Davey of Cambridge University Press to find practical solutions to a number of seemingly insurmountable problems in bringing this project to fruition. And I am especially grateful to my copy-editor, Beverley Lawrence, for her thorough reading and perceptive comments and advice.