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1

Tools of the trade

It is remarkable that a science which began with the consideration

of games of chance should have become the most important object

of human knowledge.

—Pierre-Simon Laplace1

1.1 Probability: The calculus of uncertainty

All measurements and observations, forecasts and inferences, are subject to uncer-

tainty. These uncertainties reflect a lack of precise knowledge arising from the

limitations of one’s time, which restricts the amount of data that can be collected,

or instrumentation, which determines the resolution with which signals or infor-

mation can be acquired, or the fundamental laws of nature, which give rise to

intrinsically random processes whose exact outcomes cannot be predicted irrespect-

ive of the apparatus and observation time. Although a well-ordered world governed

by deterministic laws with no uncertainties may seem desirable at times, such a world

will never be – and, in any event, would make for a rather dull place indeed.

To deal with the vagaries of nature one ordinarily must turn to the principles of

mathematics bearing on probability and statistics. I will make no attempt to define

probability. For one thing, innocuous as the subject may sound, it has spawned two

schools of thought whose members have gone after one another (in a manner of

speaking) like Crips and Bloods. So, from a practical standpoint, I would rather not

begin a book with remarks likely to inflame any group of readers. Second, and more

to the point, probability is a sufficiently basic concept that, in trying to capture its

meaning in a few words, one ends up using tautological expressions like “chance” or

“odds” or “likelihood” that do not really explain anything. The latter term, in fact, is

not even a synonym, but is quite distinct from probability as will become apparent

later when we encounter Bayes’ theorem or make use of the method of maximum

likelihood.

1 Quoted by Mark Kac, “Probability” in The Mathematical Sciences (MIT Press, Cambridge, 1969) 239.
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Let it suffice, therefore, to say that, if you are reading this book, you are already

familiar with the basic idea of probability in at least two contexts.

(a) The first is as the relative frequency of occurrence of an event. Suppose the

sample space – i.e. list of all possible outcomes – of some process comprises

events A, B, C whose frequencies of occurrence in N ¼ 100 observations are

respectively NA ¼ 20, NB ¼ 50, and NC ¼ 30. (The total number must sum to N.)

Then, assuming a random process generated these events, one can estimate the

probability of event A by the ratio P(A) ¼ NA/N ¼ 1/5, with corresponding

expressions for the other events. We read this as one chance in five or a probabil-

ity of 20%.

(b) The second is as a statement of the plausibility of occurrence of an event. Thus,

given meteorological data such as the current temperature, humidity, cloud

cover, wind speed and direction, etc., a meteorologist might pronounce a 40%

chance of rain for tomorrow. Tomorrow’s weather occurs but once; one cannot

replay it one hundred times and construct a table of outcomes and frequencies.

The probability estimate relies in part on prior knowledge of the occurrences of

similar past weather patterns.

The two senses of probability reflect the two schools of thought, referred to

usually as “frequentist” and “Bayesian”. There are subtle issues connected with

both understandings of probability. In the frequentist case (a), for example, a

more complete and accurate definition of probability would have N approach

infinity, which is no problem for a mathematician, but would pose a crushing

burden on an experimental physicist. The Bayesian case (b) avoids resorting to

multiple hypothetical replications of an experiment in order to deduce the

desired probabilities for a particular experiment, but the method seems to entail

a hunch or guess dependent on the analyst’s prior knowledge. Since different

analysts may have different states of knowledge, the subjectivity of a Bayesian-

derived estimate of probability appears to clash with a general expectation

that probability should be a well-defined mathematical quantity. (One would

hesitate to use calculus if he thought the value of an integral depended on who

calculated it.)

At this point I will simply state that both approaches to the calculation of

probability are employed in the sciences (and elsewhere); both are mathematic-

ally justifiable; both often lead to the same or comparable results in “straight-

forward” cases. For all the philosophical differences between the two

approaches, it may be argued that the frequentist deduction of probability is

actually a special case of the Bayesian method. Thus, when the two methods

lead to significantly divergent outcomes, the underlying cause (if all calculations

were executed correctly) arises from different underlying assumptions regarding

the process or system under scrutiny. With that conclusion for the moment, let

us move on.
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1.2 Rules of engagement

Although philosophical differences may persist regarding the estimation or inference

of probabilities, there is no disagreement over the mathematical rules for combining

probabilities once they are known. Suppose A and B are two independent events with

respective probabilities P(A) and P(B). Then

(a) the probability that A and B both occur is

P ABð Þ ¼ P Að ÞP Bð Þ;

(b) the probability that A or B occurs is

P Aþ Bð Þ ¼ P Að Þ þ P Bð Þ:

Note: the simultaneous occurrence of events is expressed symbolically by multiplication

(AB); the exclusive occurrence of events is expressed symbolically by addition (A þ B).

If A and B are not necessarily independent, one might want to know what is the

probability of A occurring, given that B has occurred. This is the conditional prob-

ability of A given B, written as P(AjB) and defined by the relation

P AjBð Þ � P ABð Þ=P Bð Þ: ð1:2:1Þ

From a frequentist point of view, the foregoing expression may be interpreted as the

ratio (theoretically, in the limit of an infinitely large number of trials; practically,

for a “reasonably” large number of trials) of the number of events in which A and

B occur together to the number of events in which B occurred irrespective of the

occurrence of A.

It is common symbolism to represent the non-occurrence of an event by an over-

bar; thus A represents all outcomes that do not include event A. From the foregoing

considerations, therefore, we can succinctly express two fundamental rules of condi-

tional probability:

inclusivity P AjBð Þ þ P AjB
� �

¼ 1, ð1:2:2Þ

Bayes’ theorem P BjAð Þ ¼ P AjBð Þ PðBÞ
P Að Þ : ð1:2:3Þ

The first rule (1.2.2) signifies that, after B occurs, A either occurs or it does not; those

are the two mutually exclusive outcomes that exhaust all possibilities. Note that it

is not generally true that P AjBð Þ þ P AjB
� �

¼ 1. Rather, given P(AjB) and Bayes’

theorem, it is demonstrable that

P AjBð Þ þ P AjB
� �

¼ P Að Þ þ P AjBð Þ � 2P ABð Þ
1� P Bð Þ , ð1:2:4Þ

as shown in an appendix.

1.2 Rules of engagement 3
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The second rule (1.2.3), although called Bayes’ theorem, is a logical consequence

of the laws of probability accepted by frequentists and Bayesians alike. It is regularly

used in the sciences to relate P(HjD), the probability of a particular hypothesis or

model, given known data, to P(DjH), the more readily calculable probability that a

process of interest produces the known data, given the adoption of a particular

hypothesis. In this way, Bayes’ theorem is the basis for scientific inference, used to

test or compare different explanations of some phenomenon.

The parts of Eq. (1.2.3), relabeled as

P HjDð Þ ¼ P DjHð ÞPðHÞ
P Dð Þ , ð1:2:5Þ

are traditionally identified as follows. P(H) is the “prior” probability; it is what one

believes about hypothesis H before doing an experiment or making observations to

acquire more information. P(DjH) is the “likelihood” function of the hypothesis H.

P(HjD) is the “posterior” probability. The flow of terms from right to left is a

mathematical representation of how science progresses. Thus, by doing another

experiment to acquire more data – let us refer to the outcomes of the two experiments

as D1 and D2 – one obtains the chain of inferences

P HjD2D1ð Þ ¼ P D2jD1Hð ÞP D1jHð ÞP Hð Þ
P D2D1ð Þ ð1:2:6Þ

with the new posterior on the left and the sequential acquisition of information

shown on the right.

As an example, consider the problem of inferring whether a coin is two-headed

(i.e. biased) or fair without being able to examine it – i.e. to decide only by means of

the outcomes of tosses. Before any experiment is done, it is reasonable to assign

a probability of ½ to both hypotheses: (a) H0, the coin is fair; (b) H1, the coin is

biased. Thus

ratio of priors:
PðH0Þ
PðH1Þ

¼ 1:

Suppose the outcome of the first toss is a head h. Then the posterior relative

probability becomes

first toss :
P H0jhð Þ
P H1jhð Þ ¼

P hjH0ð ÞP H0ð Þ
P hjH1ð ÞP H1ð Þ ¼

1
2
ð Þ 1

2
ð Þ

1ð Þ 1
2
ð Þ ¼

1

2
:

Let the outcome of the second toss also be h. Assuming the tosses to be independent

of one another, we then have

second toss :
P H0jh2, h1ð Þ
P H1jh2, h1ð Þ ¼

P h2jh1,H0ð ÞP h1jH0ð ÞP H0ð Þ
P h2jh1,H1ð ÞP h1jH1ð ÞP H1ð Þ ¼

1
2
ð Þ 1

2
ð Þ 1

2
ð Þ

1ð Þ 1ð Þ 1
2
ð Þ ¼

1

4
:
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It is evident, then, that the ratio of posteriors following n consecutive tosses resulting

in h would be

nth toss:
P H0jhn . . . h1ð Þ
P H1jhn . . . h1ð Þ ¼

1

2n
:

Thus, although without direct examination one could not say with 100% certainty

that the coin was biased, it would be a good bet (odds of H0 over H1: 1:4096) if

12 tosses led to straight heads.

It is important to note, however, that unlikely events can and do occur. No law of

physics prevents a random process from leading to 12 straight heads. Indeed, the

larger the number of trials, the more probable it will be that a succession of heads of

any specified length will eventually turn up. In the nuclear decay experiments we

consider later in the book, the equivalent of 20 h in a row occurred.

The probability of an outcome can be highly counter-intuitive if thought about in the

wrong way. Consider a different application of Bayes’ theorem. Suppose the probability

of being infectedwithaparticular disease is 5 in 1000andyour diagnostic test comes back

positive. This test is not 100% reliable, however, but let us say that it registers accurately

in 95% of the trials. By that I mean that it registers positive (þ) if a person is sick (s) and

negative (–) if a person is not sick sð Þ. What is the probability that you are sick?

From the given information and the rules of probability, we have the following

numerical assignments.

Probability of infection P(s) ¼ 0.005

Probability of no infection P sð Þ ¼ 0:995

Probability of correct positive: P(þjs) ¼ 0.95

Probability of false negative P(�js) ¼ 1 � P(þjs) ¼ 0.05

Probability of correct negative P �jsð Þ ¼ 0:95

Probability of false positive P þjsð Þ ¼ 1� P �jsð Þ ¼ 0:05:

Then from Bayes’ theorem it follows that the probability of being sick, given a

positive test, is

P sjþð Þ ¼ P þjsð ÞP sð Þ
P þjsð ÞP sð Þ þ P þjsð ÞP sð Þ ¼

0:95ð Þ 0:005ð Þ
0:95ð Þ 0:005ð Þ þ 0:95ð Þ 0:995ð Þ ¼ 0:087

or 8.7%, which is considerably less worrisome than one might have anticipated on

the basis of the high reliability of the test. Bayes’ theorem, however, takes account as

well of the low incidence of infection.

1.3 Probability density function and moments

In the investigation of stochastic2 (i.e. random) processes, the physical quantity being

measured or counted is often represented mathematically by a random variable.

2 The world “stochastic” derives from a Greek root for “to aim at”, referring to a guess or conjecture.

1.3 Probability density function and moments 5
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A random variable is a quantity whose value at each observation is determined by a

probability distribution. For example, the number of radioactive nuclei decaying

within some specified time interval is a discrete random variable; the length of time

between two successive decays is a continuous random variable. Once the probability

distribution is known – or at least approximated – the probability for any outcome

(or combination of outcomes) can be calculated, as well as any statistical moments

(provided they exist).

If we let X stand for a discrete random variable whose set of realizable values

fxi i ¼ 1,2,. . .Ng are the possible outcomes to an experiment with corresponding

probability distribution fpig, then the probability that the experiment leads to some

outcome in the set is the normalization or completeness requirement P ¼
XN

i¼1

pi ¼ 1.

The average – i.e. mean value – of some function of the outcomes, f(X), is expressed

symbolically by angular brackets

f Xð Þh i ¼
XN

i¼1

f xið Þpi: ð1:3:1Þ

Thus the nth moment of the distribution of X is defined to be

¿n � Xnh i ¼
XN

i¼1

xni pi: ð1:3:2Þ

Several particularly significant moments or combinations of moments include:

mean: ¿X � ¿1 ¼ Xh i ¼
XN

i¼1

xi pi, ð1:3:3Þ

variance: var Xð Þ � Ã
2
X ¼

D

X � ¿Xð Þ2
E

¼ ¿2 � ¿
2
1, ð1:3:4Þ

from which the standard deviation ÃX is calculated. We also have

skewness: SkX �
*

X � ¿X

ÃX

� �3
+

¼ ¿3 � 3¿2¿1 þ 2¿31
Ã
3
X

, ð1:3:5Þ

which is a measure of the asymmetry of a probability distribution about its center,

and

kurtosis: KX � X � ¿X

ÃX

� �4
* +

¼ ¿4 � 4¿3¿1 þ 6¿2¿
2
1 � 3¿41

Ã
4
X

, ð1:3:6Þ

which is a measure of the degree of flatness of a distribution near its center. It is

ordinarily not necessary to go beyond the fourth moment in applying statistics to

experimental distributions.
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With regard to notation, the subscript X designating the random variable of

interest may be omitted from the symbols for statistical functions where no confusion

results.

To a continuous random variable X is associated a probability density function

(pdf ) p(x), such that the probability that X lies within the range (x, x þ dx) is p(x)dx.

The normalization requirement and moments of X are now given by integrals rather

than sums:

ð∞

�∞

p xð Þdx ¼ 1 mn ¼
ð∞

�∞

xnp xð Þdx: ð1:3:7Þ

The range of integration can always be taken to span the full real axis by requiring,

if necessary, the pdf to vanish for specific segments. Thus, if X is a non-negative-

valued random variable, then one defines p(x) ¼ 0 for x < 0.

The cumulative distribution function (cdf ) F(x) – sometimes referred to simply as

the distribution – is the probability Pr(X " x), which, geometrically, is the area under

the plot of the pdf up to the point x:

Pr X " xð Þ � FðxÞ ¼
ðx

�∞

pðx0Þdx0: ð1:3:8Þ

It therefore follows by use of Leibnitz’s equation from elementary calculus

d

dx

ð
b xð Þ

a xð Þ

Fðx, yÞdy ¼ db

dx
F x, bð Þ � da

dx
F x, að Þ þ

ð
b xð Þ

a xð Þ

∂Fðx, yÞ
∂x

dy ð1:3:9Þ

that differentiation of the cdf yields the pdf: p xð Þ ¼ dF=dx. This is a practical way to

obtain the pdf, as we shall see later, under circumstances where it is easier to

determine the cdf directly.

1.4 The binomial distribution: “bits” [Bin(1, p)] and “pieces” [Bin(n, p)]

The binomial distribution, designated Bin(n, p), is perhaps the most widely encoun-

tered discrete distribution in physics, and it plays an important role in the research

described in this book. Consider a binomial random variable X with two outcomes

per trial:

X ¼
n
success � 1 with probability p

failure � 0 with probability q ¼ 1� p:
ð1:4:1Þ

The number of distinct ways of getting k successes in n independent trials, which is

represented by the random variable Y ¼ X1 þ X2 þ � � � þ Xn, where each subscript

1.4 The binomial distribution: “bits” [Bin(1, p)] and “pieces” [Bin(n, p)] 7
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labels a trial, is the coefficient of pkqn�k in the binomial expansion pþ qð Þn ¼
Pn

k¼0

�
n

k

�

pkqn�k with combinatorial coefficient
�
n

k

�

¼ n!
k! n�kð Þ!. Thus, the binomial

probability function can be written in the form

P xjn, pð Þ ¼ n

p

� �

pxqn�x n � x � 0ð Þ, ð1:4:2Þ

which shows explicitly the two parameters of the distribution. It is then straightfor-

ward, albeit somewhat tedious, to calculate from (1.3.2) the statistical quantities

¿ ¼ np var ¼ npq Sk ¼ q� pð Þ
ûûûûûûûû
npq

p K ¼ 3 n� 2ð Þpqþ 1

npq
ð1:4:3Þ

and others as needed. If the probability of obtaining either outcome is the same

p ¼ q ¼ 1
2

ð Þ, the distribution is symmetric and the skewness vanishes. For p < q the

skewness is positive, which means the distribution skews to the right as shown in

Figure 1.1. In the limit of infinitely large n, the kurtosis approaches 3, which is the value

for the standard normal distribution (to be considered shortly). A distribution with high

kurtosis is more sharply peaked than one with low kurtosis; the tails are “fatter” (in

statistical parlance), signifying a higher probability of occurrence of outlying events.

In calculating statistical moments with the binomial probability function, the trick

to performing the ensuing summations is to transform them into operations on the

binomial expression ( p þ q)n whose numerical value is 1. For illustration, consider

the steps in calculation of the mean

Xh i ¼
Xn

x¼0

n

x

� �

xpxqn�x ¼ p
d

dp

Xn

x¼0

n

x

� �

pxqn�x¼p
d

dp
pþ qð Þn¼ np pþ qð Þn�1

���!q¼1�p
np

where only in the final step does one actually substitute the value of the sum: pþ q¼ 1.

For higher moments, one applies p d
dp

the requisite number of times. There is a
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Fig. 1.1 Probability of x successes out of n trials for binomial distribution (solid) Bin(n, p) ¼
Bin(60, 0.1) and corresponding approximate normal distribution (dotted) N(¿, Ã2) ¼ N(6,5.4).
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more convenient way to achieve the same goal (with additional advantages as well) by

means of a generating function, which will be introduced shortly.

1.5 The Poisson distribution: counting the improbable

The Poisson distribution, symbolized by Poi(¿), is perhaps second on the list of most

widely encountered discrete distributions in physics. It is the distribution that one

virtually always thinks of in connection with counting particles from disintegrating

nuclei or photons from radiating atoms. More generally, it characterizes the statistics

of phenomena whereby the probability of an occurrence is very low, but the number

of trials is very large. Seen in that light, the Poisson distribution is a special case of

the binomial distribution, and one can derive the probability function of a Poisson

random variable X

P xj¿ð Þ ¼ e�¿
¿
x

x!
x ¼ 0, 1, 2 . . .ð Þ ð1:5:1Þ

directly from P(xjn, p) by appropriately taking limits p ! 0 and n ! ∞ such that the

mean ¿ ¼ np remains constant. This is a tedious calculation, and a more efficient way

is again afforded by use of a generating function.

The moments of the Poisson distribution are calculable from relation (1.3.2) with

substitution of probability function (1.5.1). The sums are completed by the same

device employed in the previous section, except that now one operates with ¿
d
d¿
on the

expression
X∞

x¼0

¿
x

x!
¼ e¿. For example, consider the first and second moments

Xh i ¼ e�¿

X∞

x¼0

x
¿
x

x!
¼ e�¿

¿
d

d¿

� �
X∞

x¼0

¿
x

x!
¼ e�¿

¿e¿ ¼ ¿

X2
" "

¼ e�¿

X∞

x¼0

x2
¿
x

x!
¼ e�¿

¿
d

d¿

� �

¿
d

d¿

� �
X∞

x¼0

¿
x

x!
¼ e�¿

¿
d

d¿

� �2

e¿ ¼ ¿þ ¿
2

from which follows the equality

Xh i ¼ var Xð Þ ¼ ¿, ð1:5:2Þ

which is a characteristic feature of the Poisson distribution. By analogous manipula-

tions one obtains the skewness and kurtosis

Sk ¼ ¿
�1=2 K ¼ 3þ 1

¿
: ð1:5:3Þ

Since ¿ is never negative in a Poisson distribution (physically, it is a distribution

of counted objects), Sk is also seen to be a non-negative function and therefore

the Poisson distribution always skews to the right. Also, since K > 3, the

1.5 The Poisson distribution: counting the improbable 9
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distribution is more sharply peaked and has fatter tails than a standard normal

distribution. The above two expressions suggest, however, that as the mean gets

larger, the Poisson distribution approaches the shape of the normal distribution.

That this is indeed the case will be shown more rigorously by means of generating

functions.

1.6 The multinomial distribution: histograms

The multinomial distribution is a generalization of the binomial distribution. It is the

theoretical basis for a histogram: the graphical representation of counted or meas-

ured data sorted into categories (called classes) of specified value. Consider a random

variable X representing the result of an experiment (i.e. single trial) with a multiplicity

r of possible outcomes fxi i ¼ 1 . . . rg with corresponding probabilities fpig. Then the

probability that in n trials the outcome xi will occur ni times is obtained from

expansion of the nth power of a multinomial form p1 þ p2 þ � � � þ prð Þn, which leads

to the expression

P n1, n2, . . . nr jn; p1, p2, . . . prð Þ � P
�

fnigjn; fpig
�

¼ n

n1 . . . nr

� �

pn11 p
n2
2 . . . pnrr ¼ n!

Yr

i¼1

pnii
ni!

:

ð1:6:1Þ

The two-tiered symbol

n

n1 . . . nr

� �

� n!

Yr

i¼1

ni!

with
Xr

i¼1

ni ¼ n ð1:6:2Þ

defined above is the multinomial combinatorial coefficient.

The form of P(fnigjn;fpig) may be understood in the following way, which

is a generalization of the way one would deduce the binomial probability

distribution.

� The probability that ni independent events of type xi occur is p
ni
i .

� Thus, the probability that a particular sequence of n1 x1s, n2 x2s, . . . nr xrs occurs

is pn11 p
n2
2 . . . pnrr since all trials are independent of one another.

� However, this sequence could occur in
n

n1 . . . nr

� �

different ways.

It is useful to demonstrate this combinatorial statement since the multinomial distri-

bution enters significantly (in the form of a histogram) in all the experimental

investigations to be discussed in the book.

The number of ways one can partition a set of size n into r ordered subsets such

that the first has size n1, the second has size n2, etc., and where n1 þ n2 þ � � � þ nr ¼ n

is the product
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