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Introduction

1.1 Spectral theory in action

In this book, we present the basic tools of spectral analysis and illustrate the
theory by presenting many examples from the theory of Schrödinger operators
and from various branches of physics, including statistical mechanics, super-
conductivity, fluid mechanics, and kinetic theory. Hence we shall alternately
present parts of the theory and use applications in those fields as examples. In
the final chapters, we also give an introduction to the theory of non-self-adjoint
operators with an emphasis on the role of pseudospectra. Throughout the
book, the reader is assumed to have some elementary knowledge of Hilber-
tian and functional analysis and, for many examples and exercises, to have had
some practice in distribution theory and Sobolev spaces. This introduction is
intended to be a rather informal walk through some questions in spectral the-
ory. We shall answer these questions mainly “by hand” using examples, with
the aim of showing the need for a general theory to explain the results. Only in
Chapter 2 will we start to give precise definitions and statements.

Our starting point is the theory of Hermitian matrices, that is, the theory of
matrices satisfying A� = A, where A� is the adjoint matrix of A. When we
are looking for eigenvectors and corresponding eigenvalues of A, that is, for
pairs (u, λ) with u ∈ Ck , u �= 0, and λ ∈ C such that Au = λu, we know
that the eigenvalues will be real and that one can find an orthonormal basis of
eigenvectors associated with those eigenvalues. In this case, we can speak of
eigenpairs.

In order to extend this theory to the case of spaces with infinite dimension
(that is, where the space Cm is replaced by a general Hilbert space H), we
might attempt to develop a theory of compact self-adjoint operators. But it
would be a major task to cover all the interesting cases that arise in quantum
mechanics. So, although our aim is to present a general theory, it is perhaps
good to start by looking at specific operators and asking naive questions about
the existence of eigenpairs (u, λ) with u in some suitable domain, u �= 0 and
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2 Introduction

λ ∈ C, such that Au = λu. We shall discover in particular that the answers to
these questions may depend strongly on the choice of the domain and on the
precise definition of the operator.

1.2 The free Laplacian

In this spirit, let us start with the free Laplacian in Rm . We denote by L2(Rm)

the space of (or class of) measurable functions on Rm that are square integrable
with respect to the Lebesgue measure dx (for dx1, . . . , dxm). The Laplacian

−� = −
m∑

j=1

∂2

∂x2
j

has no eigenfunctions in L2(Rm), i.e., there is not a pair (u, λ) with λ ∈ C

and u �= 0 in L2 such that −�u = λu in the sense of distributions.1 But
it has, for any λ ∈ R+, an eigenfunction in S ′(Rm) (the space of tempered
distributions) (actually, in L∞(Rm)) and, for any λ ∈ C, an eigenfunction in
D′(Rm) (the space of distributions). So what is the right way to extend the
theory of Hermitian matrices on Ck?

On the other hand, it is easy to produce approximate eigenfunctions of the
form un(x) = n−m/2eix ·ξχ(x/n), where χ is a compactly supported C∞ func-
tion with an L2-norm equal to 1 and ξ ∈ Rm . By “approximate” we mean that
if λ = |ξ |2 and A = −�, the norm in L2 of (A−λ)un tends to 0 as n →+∞.

1.3 The harmonic oscillator

As we shall see, the operator of the harmonic oscillator (referred to simply as
the “harmonic oscillator” from now on),

H = − d2

dx2
+ x2,

plays a central role in the theory of quantum mechanics. When we look for
eigenfunctions in S(R) (the Schwartz space of C∞ rapidly decreasing func-
tions at∞, together with all derivatives), we can show that there is a sequence
of eigenvalues λn (n ∈ N∗),

λn = (2n − 1).

1 This means in this case that − ∫ u(x)(�φ) dx = λ
∫

u(x)φ(x) dx , for any function φ in
C∞0 (Rm ). Some other authors use the notion of a weak solution.
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1.3 The harmonic oscillator 3

In particular, the fundamental level (in other words, the lowest eigenvalue) is
λ1 = 1 and the splitting between the first two eigenvalues is 2.

The first (normalized) eigenfunction is given by

φ1(x) = π−1/2 exp− x2

2
, (1.3.1)

and the other eigenfunctions are obtained by applying the so-called2 creation
operator

L+ = − d

dx
+ x . (1.3.2)

We observe that

H = L+ · L− + 1, (1.3.3)

where

L− = d

dx
+ x, (1.3.4)

and L− has the property

L−φ1 = 0. (1.3.5)

Note that if u ∈ L2 is a distributional solution of L+u = 0, then u = 0. Also,
if u ∈ L2 is a distributional solution of L−u = 0, then u = μφ1 for some
μ ∈ R.

The nth eigenfunction is then given by

φn = 2−(n−1)/2 ((n − 1)!)−1/2 (L+)n−1φ1. (1.3.6)

This can be shown by recursion using the identity

L+(H + 2) = H L+. (1.3.7)

It is easy to see that

φn(x) = Pn(x) exp− x2

2
, (1.3.8)

where Pn(x) is a polynomial of order n − 1. It can also be shown that
the φn are mutually orthogonal. The proof of this point is identical to the

2 In quantum mechanics.
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4 Introduction

finite-dimensional case, if we observe the following identity (expressing the
fact that H is symmetric):

〈Hu, v〉L2 = 〈u, Hv〉L2 , ∀u ∈ S(R),∀v ∈ S(R), (1.3.9)

which is obtained by an integration by parts.
We also observe that, by recursion, ||φn|| = 1. It is then a standard

exercise to show that the family (φn)n∈N is total in L2(R) (i.e., the vec-
tor space generated by finite linear combinations of elements of the family
is dense in L2). A direct way is to analyze, for any g ∈ L2, the function
R � ξ → Fg(ξ) =

∫
R

exp−i xξ g(x)φ1(x) dx , and to observe that, owing
to the Gaussian decay of φ1, this is a real analytic function on R. Moreover,
if g is orthogonal to all of the φn , then F (k)

g (0) = 0 for any k. This implies
Fg(ξ) = 0, ∀ξ ∈ R. But Fg(ξ) is the Fourier transform of gφ1, and hence
g = 0. Hence we have obtained an orthonormal Hilbertian basis of L2(R),
which in some sense permits us to diagonalize the operator H .

Another way to understand this completeness is to show that if we start
with an eigenfunction u in S ′(R) associated with λ ∈ R that is a solution (in
the sense of distributions) of

Hu = λu,

then there exist k ∈ N and ck �= 0 such that (L−)ku = ckφ1 and that the
corresponding λ is equal to (2k + 1). For the proof of this, we have to assume
that any eigenfunction is in S(R) (this can be proven independently of any
explicit knowledge of the eigenfunctions) and use the identity

L−(H − 2) = H L− (1.3.10)

and the inequality

〈Hu, u〉 ≥ 0, ∀u ∈ S(R). (1.3.11)

This last property is called the “nonnegativity” of the operator.
Actually, it can be shown in various ways that

〈Hu, u〉 ≥ ||u||2, ∀u ∈ S(R). (1.3.12)

One way is to first establish the Heisenberg uncertainty principle,

||u||2L2(R)
≤ 2||xu||L2 ||u′||L2, ∀u ∈ S(R). (1.3.13)

Before we describe the trick behind the proof, however, let us give a more
“physical” version.
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1.3 The harmonic oscillator 5

If u is normalized by ||u||L2(R) = 1, the measure |u|2 dx is a probability
measure. One can then define the mean value of the position by

〈x〉 =
∫

x |u|2 dx

and the variance by

σx = 〈(x − 〈x〉)2〉.
Similarly, we can consider

〈Dx 〉 :=
∫
(Dx u) · ū(x) dx

(with Dx = −id/dx) and

σDx := ||(Dx − 〈Dx 〉)u||2.

Then (1.3.13) can be extended in the form

σx · σDx ≥
1

4
.

The trick is to observe the identity

1 = d

dx
· x − x · d

dx
. (1.3.14)

We then write, for u ∈ S(R),

u(x) ū(x) =
((

d

dx
· x − x · d

dx

)
u(x)

)
ū(x),

and then integrate over R:∫
R

|u(x)|2 dx =
∫
(xu)′ ū(x) dx −

∫
xu′(x) ū(x) dx .

After an integration by parts, we obtain∫
R

|u(x)|2 dx = −
∫

xu′(x)ū(x) dx −
∫

xu(x)ū′(x) dx .

(1.3.13) is then a consequence of the Cauchy–Schwarz inequality.
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6 Introduction

The inequality (1.3.12) is simply a consequence of the identity

〈Hu, u〉 = ||u′||2 + ||xu||2, (1.3.15)

which can be proved by an integration by parts, and of the application in
(1.3.13) of the Cauchy–Schwarz inequality. Another way is to directly observe
the identity

〈Hu, u〉 = ||L−u||2 + ||u||2, ∀u ∈ S(R). (1.3.16)

1.4 The problem of the boundary

We consider mainly ordinary differential operators of first or second order on
an interval ]0, 1[ and look at various questions that can be asked naively about
the existence of eigenfunctions for the problem in L2(]0, 1[).

1.4.1 Preliminary discussion
We look first at pairs (u, λ) ∈ H1(]0, 1[)× C (u �= 0) such that

−du

dx
= λu, u(0) = 0,

where H1(]0, 1[) is the Sobolev space

H1(]0, 1[) = {u ∈ L2(]0, 1[) | u′ ∈ L2(]0, 1[)}.

Here we recall that H1(]0, 1[) is included in C0([0, 1]), by the Sobolev injec-
tion theorem. It can be seen immediately that no such pairs exist. We shall
come back to this example later when we analyze non-self-adjoint problems.

We now look at pairs (u, λ) ∈ H2(]0, 1[)× C (u �= 0) such that

−d2u

dx2
= λu.

For any λ, we can find two linearly independent solutions.

1.4.2 The periodic problem
We consider pairs (u, λ) ∈ H2,per(]0, 1[)× C (u �= 0) such that

−d2u

dx2
= λu.
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1.4 The problem of the boundary 7

Here,

H2,per(]0, 1[) = {u ∈ H2(]0, 1[), u(0) = u(1) and u′(0) = u′(1)},

where H2(]0, 1[) is the Sobolev space

H2(]0, 1[) = {u ∈ H1(]0, 1[) | u′ ∈ H1(]0, 1[)}.

Here we recall that H2(]0, 1[) is included in C1([0, 1]), by the Sobolev injec-
tion theorem. It is an easy exercise to show that the pairs are described by two
families:

• λ = 4π2n2, un = μ cos 2πnx, for n ∈ N, μ ∈ R \ {0},
• λ = 4π2n2, vn = μ sin 2πnx, for n ∈ N∗, μ ∈ R \ {0}.
We observe that λ = 0 is the lowest eigenvalue and that its multiplicity is one.
This means that the corresponding eigenspace is of dimension one (the other
eigenspaces are of dimension 2). Moreover, an eigenfunction in this subspace
never vanishes in ]0, 1[ . This is quite evident, because u0 = μ �= 0. One
can also obtain an orthonormal basis of eigenfunctions in L2(]0, 1[) by nor-
malizing the family (cos 2πnx (n ∈ N), sin 2πnx (n ∈ N∗)) or the family
exp 2π inx (n ∈ Z).

We are merely recovering the L2-theory of Fourier series here.

1.4.3 The Dirichlet problem
Here we consider spectral pairs (u, λ) ∈ H2,D(]0, 1[) × C (u �= 0) such that
−d2u/dx2 = λu, with H2,D(]0, 1[) = {u ∈ H2(]0, 1[), u(0) = u(1) = 0}. It
is again an easy exercise to show that these pairs are described by

λ = π2n2, vn = μ sinπnx, for n ∈ N∗, μ ∈ R \ {0}.

We observe that λ = π2 is the lowest eigenvalue, that its multiplicity is one
(here, all the eigenspaces are one dimensional), and that an eigenfunction in
this subspace does not vanish in ]0, 1[ .

1.4.4 The Neumann problem
Here we consider eigenpairs (u, λ) ∈ H2,N (]0, 1[)× C (u �= 0), such that

−d2u/dx2 = λu,

where

H2,N (]0, 1[) = {u ∈ H2(]0, 1[), u′(0) = u′(1) = 0}.
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8 Introduction

It is again an easy exercise to show that these pairs are described by

λ = π2n2, vn = μ cosπnx, for n ∈ N, μ ∈ R \ {0}.

We observe that λ = 0 is the lowest eigenvalue, that its multiplicity is one
(here, again, all the eigenspaces are one dimensional), and that the correspond-
ing eigenspace is of dimension one and that an eigenfunction in this subspace
does not vanish in ]0, 1[ .

1.5 Aim and organization of the book

By looking at some rather simple operators, we have demonstrated various
problems that occur when one tries to extend the notion of an eigenpair of
a matrix. Many of the examples involving second-order ordinary differential
operators can be treated by the so-called Sturm–Liouville theory. Our goal in
this book is to develop a theory that is not limited to 1D problems and not
based on explicit computations.

The book is organized into 16 chapters, which are mainly of two types: the
first type presents an introduction to a theory (we sometimes choose to skip
some of the proofs presented in standard, more complete textbooks), and the
second type presents applications, without being afraid to give explicit com-
putations. Hence we hope that the reader will always see how the theory can
be used.

Chapter 2 is an introduction to the theory of unbounded operators. We
assume here that the reader is familiar with basic Hilbertian and Banach the-
ory, together with the theory of linear bounded operators on Hilbert and Banach
spaces.

Chapter 3 presents the Lax–Milgram theorem, which is simply a useful
variant of Riesz’s theorem characterizing the dual of a Hilbert space.

Chapter 4 introduces the notion of semibounded operators (most of the time
semibounded from below) and treats many examples, mainly from quantum
mechanics. On the way, the reader will encounter inequalities that belong to
the common background of the analyst, such as Hardy’s inequality and Kato’s
inequality, which are of interest in their own right.

Chapter 5 recalls some rather basic material on compact operators and
emphasizes examples. We also recall some tools from functional analysis that
permit one to recognize if an operator is compact (precompactness criteria).

Chapter 6 also presents some basic material, about the spectral theory of
bounded operators. This also provides us with an occasion to visit (sometimes
only briefly) various aspects of functional analysis, such as Fredholm theory,
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1.5 Aim and organization of the book 9

index theory, subclasses of the space of compact operators, and the Krein–
Rutman theorem.

Chapter 7 describes applications. The first of these is from statistical
mechanics (continuous models). The other applications describe cases where
the operators involved are unbounded but where one can come back, by con-
sidering the inverse, to the spectral theory of compact operators recalled in
Chapters 5 and 6.

Chapter 8 returns to the more general spectral theory of unbounded oper-
ators, and is mainly standard and devoted to the presentation of an almost
complete proof of the spectral theorem. We focus on elementary conse-
quences of this theorem for functional calculus and for the determination of
approximate eigenvalues.

Chapter 9, in some sense, answers some of the questions asked in Chapter 1.
We give some rather explicit criteria for determining whether an operator is
self-adjoint or whether it can be naturally extended to a self-adjoint operator.
Again, we discuss some examples (mainly Schrödinger operators) thoroughly.

There are several different ways to distinguish between different subsets of
a spectrum. We have chosen in Chapter 10 to present the decomposition of
a spectrum into two parts: the essential spectrum and the discrete spectrum.
As an application, we consider the case of the Schrödinger operator with a
constant magnetic field.

In many situations, the problems considered depend on various parameters,
and a comparison of the spectra of different problems could be difficult with-
out a variational characterization of the eigenvalues, which is the subject of
Chapter 11. This point of view is useful for finite-dimensional matrices.

Chapter 12 presents a short walk through the theory of fluid mechanics,
and this permits us to see “spectral theory in action” with a rather explicit
computation.

Chapter 13 is devoted to some ideas that appear to be important when we
are no longer in the self-adjoint case. We give some basic properties of some
specific families of neighborhoods of the spectrum computed by analyzing
the growth of the resolvent. After recalling some elements of the theory of
semigroups and their generators, we present some recent improvements on the
Gearhart–Prüss theorem.

Since most of the books devoted to the material presented in Chapter 13
are written in a rather abstract way, we have chosen in Chapters 14 and 15 to
discuss how the theorems can be applied in interesting cases. Here, “interest-
ing” may mean either that one can compute everything in great detail or that
an apparently simple model plays an important role in the explanation of a
physical phenomenon, for example in the theory of superconductivity, in fluid
mechanics, or in kinetic theory.
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10 Introduction

Although many examples are given in the body of and at the end of each
chapter, in the last chapter we present various problems that should be solvable
after the reader has understood, say, the first ten chapters.

Instead of giving references in the body of the chapters, we give references
together with remarks and comments at the end of each chapter, in a section
entitled “Notes.”
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