

Mobile Robotics

Mathematics, Models, and Methods

Mobile Robotics offers comprehensive coverage of the essentials of the field suitable for both students and practitioners. Adapted from the author's graduate and undergraduate courses, the content of the book reflects current approaches to developing effective mobile robots. Professor Alonzo Kelly adapts principles and techniques from the fields of mathematics, physics, and numerical methods to present a consistent framework in a notation that facilitates learning and highlights relationships between topics. This text was developed specifically to be accessible to senior-level undergraduates in engineering and computer science, and includes supporting exercises to reinforce the lessons of each section. Practitioners will value the author's perspectives on practical applications of these principles. Complex subjects are reduced to implementable algorithms extracted from real systems wherever possible, to enhance the real-world relevance of the text.

Alonzo Kelly holds undergraduate degrees in aerospace engineering and computer science, and graduate degrees in robotics. Dr. Kelly worked in the aerospace industry for ten years before returning to academia. As a professor at the Robotics institute at Carnegie Mellon University, he teaches mobile robotics at the graduate and undergraduate levels, conducting research in robot simulation, modeling, controls, position estimation, motion planning, and human interfaces.

Mobile Robotics

Mathematics, Models, and Methods

Alonzo Kelly

Carnegie Mellon University

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107031159

© Alonzo Kelly 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Kelly, Alonzo.

Mobile robotics: mathematics, models and methods / Alonzo Kelly.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-03115-9 (hardback)

1. Mobile robots-Textbooks. I. Title.

TJ211.415.K39 2013

629.8'932-dc23 2013022113

ISBN 978-1-107-03115-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication, and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Preface	page xiii
1 Introduction	1
1.1 Applications of Mobile Robots	2
1.2 Types of Mobile Robots	2
1.2.1 Automated Guided Vehicles (AGVs)	2
1.2.2 Service Robots	3
1.2.3 Cleaning and Lawn Care Robots	4
1.2.4 Social Robots	4
1.2.5 Field Robots	5
1.2.6 Inspection, Reconnaissance, Surveillance,	
and Exploration Robots	6
1.3 Mobile Robot Engineering	7
1.3.1 Mobile Robot Subsystems	7
1.3.2 Overview of the Text	8
1.3.3 Fundamentals of Wheeled Mobile Robots	9
1.3.4 References and Further Reading	11
1.3.5 Exercise	11
2 Math Fundamentals	12
2.1 Conventions and Definitions	12
2.1.1 Notational Conventions	13
2.1.2 Embedded Coordinate Frames	17
2.1.3 References and Further Reading	21
2.2 Matrices	21
2.2.1 Matrix Operations	21
2.2.2 Matrix Functions	24
2.2.3 Matrix Inversion	25
2.2.4 Rank-Nullity Theorem	28
2.2.5 Matrix Algebra	29
2.2.6 Matrix Calculus	31
2.2.7 Leibnitz' Rule	39
2.2.8 References and Further Reading	40
2.2.9 Exercises	40

vi CONTENTS

2.3	Fundamentals of Rigid Transforms	41
	2.3.1 Definitions	41
	2.3.2 Why Homogeneous Transforms	42
	2.3.3 Semantics and Interpretations	43
	2.3.4 References and Further Reading	55
	2.3.5 Exercises	56
2.4	Kinematics of Mechanisms	57
	2.4.1 Forward Kinematics	57
	2.4.2 Inverse Kinematics	61
	2.4.3 Differential Kinematics	66
	2.4.4 References and Further Reading	69
	2.4.5 Exercises	69
2.5	Orientation and Angular Velocity	70
	2.5.1 Orientation in Euler Angle Form	70
	2.5.2 Angular Rates and Small Angles	75
	2.5.3 Angular Velocity and Orientation Rates in Euler Angle Form	77
	2.5.4 Angular Velocity and Orientation Rates in Angle-Axis Form	79
	2.5.5 References and Further Reading	81
	2.5.6 Exercises	81
2.6	Kinematic Models of Sensors	82
	2.6.1 Kinematics of Video Cameras	82
	2.6.2 Kinematics of Laser Rangefinders	83
	2.6.3 References and Further Reading	89
	2.6.4 Exercises	90
2.7	Transform Graphs and Pose Networks	90
	2.7.1 Transforms as Relationships	90
	2.7.2 Solving Pose Networks	93
	2.7.3 Overconstrained Networks	95
	2.7.4 Differential Kinematics Applied to Frames in General Position	97
	2.7.5 References and Further Reading	102
• •	2.7.6 Exercises	103
2.8	Quaternions	103
	2.8.1 Representations and Notation	104
	2.8.2 Quaternion Multiplication	105
	2.8.3 Other Quaternion Operations	107
	2.8.4 Representing 3D Rotations	109
	2.8.5 Attitude and Angular Velocity	111
	2.8.6 References and Further Reading	114
	2.8.7 Exercises	114
	merical Methods	116
3.1	Linearization and Optimization of Functions of Vectors	116
	3.1.1 Linearization	117
	3.1.2 Optimization of Objective Functions	120
	3.1.3 Constrained Optimization	124
	3.1.4 References and Further Reading	130
	3.1.5 Exercises	130
3.2	Systems of Equations	131
	3.2.1 Linear Systems	131
	3.2.2 Nonlinear Systems	136

	CONTENTS	vii
	3.2.3 References and Further Reading	138
	3.2.4 Exercises	139
3.3	Nonlinear and Constrained Optimization	140
	3.3.1 Nonlinear Optimization	140
	3.3.2 Constrained Optimization	146
	3.3.3 References and Further Reading	150
	3.3.4 Exercises	150
3.4	Differential Algebraic Systems	151
	3.4.1 Constrained Dynamics	151
	3.4.2 First- and Second-Order Constrained Kinematic Systems	154
	3.4.3 Lagrangian Dynamics	157
	3.4.4 Constraints	162
	3.4.5 References and Further Reading	166
2.5	3.4.6 Exercises	167
3.5	Integration of Differential Equations	168
	3.5.1 Dynamic Models in State Space	168
	3.5.2 Integration of State Space Models	168
	3.5.3 References and Further Reading	172
	3.5.4 Exercises	172
4 Dy	namics	173
4.1	Moving Coordinate Systems	173
	4.1.1 Context of Measurement	174
	4.1.2 Change of Reference Frame	175
	4.1.3 Example: Attitude Stability Margin Estimation	180
	4.1.4 Recursive Transformations of State of Motion	182
	4.1.5 References and Further Reading	186
	4.1.6 Exercises	186
4.2	Kinematics of Wheeled Mobile Robots	187
	4.2.1 Aspects of Rigid Body Motion	187
	4.2.2 WMR Velocity Kinematics for Fixed Contact Point	191
	4.2.3 Common Steering Configurations	195
	4.2.4 References and Further Reading	200
	4.2.5 Exercises	201
4.3	Constrained Kinematics and Dynamics	201
	4.3.1 Constraints of Disallowed Direction	202
	4.3.2 Constraints of Rolling Without Slipping	207
	4.3.3 Lagrangian Dynamics	211
	4.3.4 Terrain Contact	217
	4.3.5 Trajectory Estimation and Prediction	220
	4.3.6 References and Further Reading	224
	4.3.7 Exercises	225
4.4	Aspects of Linear Systems Theory	226
	4.4.1 Linear Time-Invariant Systems	227
	4.4.2 State Space Representation of Linear Dynamical Systems	234
	4.4.3 Nonlinear Dynamical Systems	239
	4.4.4 Perturbative Dynamics of Nonlinear Dynamical Systems	240
	4.4.5 References and Further Reading	244
	4.4.6 Exercises	244

viii CONTENTS

	4.5	Predictive Modeling and System Identification	245
		4.5.1 Braking	245
		4.5.2 Turning	247
		4.5.3 Vehicle Rollover	250
		4.5.4 Wheel Slip and Yaw Stability	253
		4.5.5 Parameterization and Linearization of Dynamic Models	256
		4.5.6 System Identification	259
		4.5.7 References and Further Reading	268
		4.5.8 Exercises	269
5	Op	timal Estimation	270
	_	Random Variables, Processes, and Transformation	270
		5.1.1 Characterizing Uncertainty	270
		5.1.2 Random Variables	272
		5.1.3 Transformation of Uncertainty	279
		5.1.4 Random Processes	289
		5.1.5 References and Further Reading	294
		5.1.6 Exercises	295
	5.2	Covariance Propagation and Optimal Estimation	296
		5.2.1 Variance of Continuous Integration and Averaging Processes	296
		5.2.2 Stochastic Integration	301
		5.2.3 Optimal Estimation	307
		5.2.4 References and Further Reading	315
		5.2.5 Exercises	315
	5.3	State Space Kalman Filters	316
		5.3.1 Introduction	316
		5.3.2 Linear Discrete Time Kalman Filter	319
		5.3.3 Kalman Filters for Nonlinear Systems	321
		5.3.4 Simple Example: 2D Mobile Robot	327
		5.3.5 Pragmatic Information for Kalman Filters	338
		5.3.6 Other Forms of the Kalman Filter	344
		5.3.7 References and Further Reading	344
		5.3.8 Exercises	345
	5.4	Bayesian Estimation	346
		5.4.1 Definitions	346
		5.4.2 Bayes' Rule	349
		5.4.3 Bayes' Filters	353
		5.4.4 Bayesian Mapping	358
		5.4.5 Bayesian Localization	365
		5.4.6 References and Further Reading	369
		5.4.7 Exercises	369
6	Sta	te Estimation	370
	6.1	Mathematics of Pose Estimation	370
		6.1.1 Pose Fixing versus Dead Reckoning	371
		6.1.2 Pose Fixing	372
		6.1.3 Error Propagation in Triangulation	376
		6.1.4 Real Pose Fixing Systems	384
		6.1.5 Dead Reckoning	385
		6.1.6 Real Dead Reckoning Systems	396
		6.1.7 References and Further Reading	396
		6.1.8 Exercises	397

	CONTENTS	ix
6.2	Sensors for State Estimation	398
0	6.2.1 Articulation Sensors	398
	6.2.2 Ambient Field Sensors	400
	6.2.3 Inertial Frames of Reference	401
	6.2.4 Inertial Sensors	403
	6.2.5 References and Further Reading	409
	6.2.6 Exercises	410
6.3	Inertial Navigation Systems	410
	6.3.1 Introduction	410
	6.3.2 Mathematics of Inertial Navigation	411
	6.3.3 Errors and Aiding in Inertial Navigation	416
	6.3.4 Example: Simple Odometry-Aided Attitude	
	and Heading Reference System	420
	6.3.5 References and Further Reading	423
	6.3.6 Exercises	424
6.4	Satellite Navigation Systems	425
	6.4.1 Introduction	425
	6.4.2 Implementation	425
	6.4.3 State Measurement	426
	6.4.4 Performance	430
	6.4.5 Modes of Operation	431
	6.4.6 References and Further Reading	433
	6.4.7 Exercises	434
7 Co	ontrol	435
7.1	Classical Control	435
	7.1.1 Introduction	435
	7.1.2 Virtual Spring-Damper	439
	7.1.3 Feedback Control	441
	7.1.4 Model Referenced and Feedforward Control	447
	7.1.5 References and Further Reading	452
	7.1.6 Exercises	452
7.2	State Space Control	453
	7.2.1 Introduction	453
	7.2.2 State Space Feedback Control	454
	7.2.3 Example: Robot Trajectory Following	458
	7.2.4 Perception Based Control	463
	7.2.5 Steering Trajectory Generation	466
	7.2.6 References and Further Reading	472
	7.2.7 Exercises	472
7.3	Optimal and Model Predictive Control	473
	7.3.1 Calculus of Variations	473
	7.3.2 Optimal Control	476
	7.3.3 Model Predictive Control	482
	7.3.4 Techniques for Solving Optimal Control Problems	484
	7.3.5 Parametric Optimal Control	487
	7.3.6 References and Further Reading	492
	7.3.7 Exercises	492

X CONTENTS

7.	4 Intelligent Control	493
	7.4.1 Introduction	493
	7.4.2 Evaluation	496
	7.4.3 Representation	499
	7.4.4 Search	507
	7.4.5 References and Further Reading	512
	7.4.6 Exercises	513
Q P	erception	514
	1 Image Processing Operators and Algorithms	514
ο.	8.1.1 Taxonomy of Computer Vision Algorithms	514
	8.1.2 High-Pass Filtering Operators	517
	8.1.3 Low-Pass Operators	523
	8.1.4 Matching Signals and Images	524
	8.1.5 Feature Detection	526
		529
	8.1.6 Region Processing	532
	8.1.7 References and Further Reading	
0	8.1.8 Exercises 2. Physics and Principles of Redictive Consers	533 534
0.	2 Physics and Principles of Radiative Sensors 8.2.1 Radiative Sensors	534
		535
	8.2.2 Techniques for Range Sensing 8.2.3 Radiation	539
		545
	8.2.4 Lenses, Filters, and Mirrors8.2.5 References and Further Reading	
	8.2.6 Exercises	550
0		551 551
٥.	3 Sensors for Perception	
	8.3.1 Laser Rangefinders	551
	8.3.2 Ultrasonic Rangefinders	555
	8.3.3 Visible Wavelength Cameras	557
	8.3.4 Mid to Far Infrared Wavelength Cameras	560
	8.3.5 Radars	562
	8.3.6 References and Further Reading	564
0	8.3.7 Exercises A Agnosts of Coometrie and Sementic Commuter Vision	565 565
0.	4 Aspects of Geometric and Semantic Computer Vision	
	8.4.1 Pixel Classification	565
	8.4.2 Computational Stereo Vision	568
	8.4.3 Obstacle Detection	572
	8.4.4 References and Further Reading	576
_	8.4.5 Exercises	576
	ocalization and Mapping	579
9.	1 Representation and Issues	580
	9.1.1 Introduction	580
	9.1.2 Representation	580
	9.1.3 Timing and Motion Issues	583
	9.1.4 Related Localization Issues	585
	9.1.5 Structural Aspects	586
	9.1.6 Example: Unmanned Ground Vehicle (UGV) Terrain Mapping	588
	9.1.7 References and Further Reading	592
	9.1.8 Exercises	593

CONTENTS	xi
9.2 Visual Localization and Motion Estimation	593
9.2.1 Introduction	593
9.2.2 Aligning Signals for Localization and Motion Estimation	600
9.2.3 Matching Features for Localization and Motion Estimation	606
9.2.4 Searching for the Optimal Pose	612
9.2.5 References and Further Reading	621
9.2.6 Exercises	622
9.3 Simultaneous Localization and Mapping	623
9.3.1 Introduction	623
9.3.2 Global Consistency in Cyclic Maps	624
9.3.3 Revisiting	630
9.3.4 EKF SLAM for Discrete Landmarks	632
9.3.5 Example: Autosurveying of Laser Reflectors	636
9.3.6 References and Further Reading	638
9.3.7 Exercises	639
10 Motion Planning	640
10.1 Introduction	640
10.1.1 Introducing Path Planning	641
10.1.2 Formulation of Path Planning	642
10.1.3 Obstacle-Free Motion Planning	643
10.1.4 References and Further Reading	646
10.1.5 Exercises	646
10.2 Representation and Search for Global Path Planning	646
10.2.1 Sequential Motion Planning	647
10.2.2 Big Ideas in Optimization and Search	653
10.2.3 Uniform Cost Sequential Planning Algorithms	656
10.2.4 Weighted Sequential Planning	661
10.2.5 Representation for Sequential Motion Planning	669
10.2.6 References and Further Reading	672
10.2.7 Exercises	672
10.3 Real-Time Global Motion Planning:	
Moving in Unknown and Dynamic Environments	673
10.3.1 Introduction	673
10.3.2 Depth-Limited Approaches	674
10.3.3 Anytime Approaches	677
10.3.4 Plan Repair Approach: D* Algorithm	678
10.3.5 Hierarchical Planning	686
10.3.6 References and Further Reading	689
10.3.7 Exercise	690
Index	691

Preface

Robotics can be a very challenging and very satisfying way to spend your time. A profound moment in the history of most roboticists is the first moment a robot performed a task under the influence of his or her software or electronics. Although a productive pursuit of the study of robotics involves aspects of engineering, mathematics, and physics, its elements do not convey the magic we all feel when interacting with a responsive semi-intelligent device of our own creation.

This book introduces the science and engineering of a particularly interesting class of robots – mobile robots. Although there are many analogs to the field of robot manipulators, mobile robots are sufficiently different to justify their treatment in an entirely separate text. Although the book concentrates on wheeled mobile robots, most of its content is independent of the specific locomotion subsystem used.

The field of mobile robots is changing rapidly. Many specialties are evolving in both the research and the commercial sectors. Any textbook offered in such an evolving field will represent only a snapshot of the field as it was understood at the time of publication. However, the rapid growth of the field, its several decades of history, and its pervasive popular appeal suggest that the time is now right to produce an early text that attempts to codify some of the fundamental ideas in a more accessible manner.

Another indication of timeliness might be the fact that much useful information must be omitted. Many topics, such as perception, are treated only briefly, and others, including legged locomotion, calibration, simulation, human interfaces, and multirobot systems, are omitted completely. The goal of this book is to extract from both the underlying specialties and the depth of mobile robotics research literature a coherent exposition of the concepts, methods, and issues that rise to the forefront in practice, and to represent the core that is unique about this field.

To that end, as much as possible of the material is restricted to two-dimensional wheeled vehicle motion and to structured environments. These assumptions produce a consistent exposition with just enough richness to be relevant and illustrative without overwhelming the reader with details irrelevant to the purpose.

The book follows a logical progression, mimicking the order in which mobile robots are constructed. Each chapter represents a new topic or capability that depends on what came before, and the concepts involved span the fields of numerical methods,

xiv PREFACE

signal processing, estimation and control theory, computer vision, and artificial intelligence in that order.

As of this writing, the Mars Science Laboratory Rover named *Curiosity* has recently arrived on Mars. It is our third mobile robotic mission to Mars and the legacy of the last (MER) mission is already historic. This book is not for everyone, but for those who are prepared and motivated, if you master the content of the text you will have a very good idea of what is going on inside the brain of a mobile robot, and you will be well prepared to make one of your own.