

AC susceptibility	atomic susceptibilities calculation, 9-16
magnetic measurements, 40-41	antiferromagnetism, 12-16
Néel-Brown equation, 40-41	diamagnetism, 9-10
acoustic tweezers, 108–9	ferromagnetism, 12-16
standing acoustic wave (SAW) based acoustic	paramagnetism, 11
tweezers, 108–9	axial magneto-aerotaxis, magnetosomes, 258-60
two-dimensional particle and cell delivery, 109	
active drug targeting, magnetic drug delivery,	Beer's law, spectrophotometry, 87
112–15	Bingham fluid model, fluid and fluid flow, 154
aggregation of nanoparticles	biocompatibility of MNCs for use in vivo, 116-18
Kendall growth law, 163-64	cell toxicity, 118
nanoparticle capture, 163-64	magnetic drug delivery, 116-18
alcohols tests, quantification, 87-88	positron emission tomography (PET), 117
aldehydes/tosyl	single photon emission computed tomography
epoxides, 84–85	(SPECT), 117
MNPs functionalization, 84–85	surface coating, MNCs, 117-18
Ampère's law, atomic magnetic moments, 3	biological molecules attachment,
anisotropic magnetoresistance (AMR), 184-85	magnetosomes, 268
detectivity limits, 204	biomineralization of magnetosomes, 262-64
sensor properties, 183–84	biosorbents for heavy metals, magnetotactic
antibodies, magnetic drug delivery, 118-20	bacteria, 267
antiferromagnetism, 12-16, 18-19, see also	Bloch domain walls, 20–22
ferromagnetism	Bloch T3/2 law
aptamers, magnetic drug delivery, 118-20	magnetic measurements, 31-32
aqueous co-precipitation routes	spontaneous magnetization, 31-32
Massart method, 54–55	Bloch wave, 8
MNPs synthesis, 54–55	Bohr magneton, atomic magnetic moments, 3, 4-6
Arrott plots	Bohr radius, diamagnetism, 10
Curie–Weiss law, 35–36	Brillouin function, ferromagnetism, 12-13
magnetic measurements, 35–36	Brillouin zone, 8
temperature dependence of	Brownian relaxation, magnetization of
magnetization, 35–36	nanoparticles, 30
atomic magnetic moments, 3-7	
Ampère's law, 3	camptothecin, magnetic drug targeting, 127-28
Bohr magneton, 3, 4–6	capture of nanoparticles, see nanoparticle capture
Hund's rules, 4–6	carbodiimides
Landé g-factor, 3–4	epoxides, 81
Pauli exclusion principle, 4–5	linker molecules, 81
quantum mechanical wavefunction of two	self-assembled monolayers (SAMs), 72
identical fermions, 4–5	Casson model, fluid and fluid flow, 155
quenching of the orbital angular momentum, 5–6	catalytic tweezers, 104–8
Russell–Saunders coupling, 4	applications, 107–8
total atomic moment, 4	performance improvement, 106

cell separation, magnetosomes, 268	examples of diamagnets, 10
cell sorting and separation, magnetotactic	Landau diamagnetism, 10
bacteria, 267	Landau susceptibility, 10
cell toxicity	Larmor diamagnetism, 9, 10
biocompatibility of MNCs for use in vivo, 118	Lenz's law, 9
magnetic drug delivery, 118	sources of diamagnetism, 10
changes in the physical properties of materials,	dipole magnets, magnetic drug targeting, 124
nanometer scale, 1	doxorubicin, magnetic drug targeting, 127-28
Clausius-Mossotti factor	drug targeting, see magnetic drug delivery;
electric tweezers, 100–2	magnetic drug targeting
rotating nanowires, 100–2	
clustered magnetic nanoparticles, MR relaxivity,	eigenstates, 2
240–43	electric tweezers, 96–103
coating effect, 244-45, see also gold-coated	applications, 99-103
particles	Clausius–Mossotti factor, 100–2
MR relaxivity of MNPs, 236–37	rotating nanowires, 98–103
collection of magnetic moments, crystals, 8	transporting nanocapsules, 102–3
contrast agents	transporting nanowires, 96–98, 99
gadolinium complexes, 233	electrochemical deposition
magnetic resonance imaging (MRI), 228–29,	gold-coated particles, 76–78
233, 246	photolithography, 76–78
MNPs for MRI contrast agents, 228-29	electrochemical potential for electrons (Fermi
relaxation, MRI contrast agents, 233	level), 1
types, 233	enzyme immobilization, magnetosomes, 268
co-precipitation, MNPs synthesis, 115–16	epichlorohydrin, epoxides, 79–80
critical exponents of phase transitions, magnetic	epoxides, 79–85
measurements, 38–40	aldehydes/tosyl, 84–85
crystals, collection of magnetic moments, 8	carbodiimides, 81
Curie–Weiss law	epichlorohydrin, 79–80
Arrott plots, 35–36	ethanolamine, 79
ferromagnetism, 12–13	linker molecules, 81–83
magnetic measurements, 35–36	MNPs functionalization, 79-85
temperature dependence of magnetization, 35–36	organic vs. aqueous, 80–81
	spacer molecules, 84
de Broglie wavelength of the electron, 1	SU8 epoxy resin, 79
detecting MNRs	tosyl/aldehydes, 84–85
configurations, MR sensors, 195-96	ESIONs (extremely small iron oxide
detectivity limits, 201–4	nanoparticles), MR relaxivity of MNPs, 238,
fringe fields, 195–96	246
magnetoresistive (MR) sensors, 195-201	ethanolamine, epoxides, 79
principle, MR sensors, 195-96	exchange (bias) anisotropy, 18-19
detectivity limits	externally applied magnetic field
anisotropic magnetoresistance (AMR), 204	aggregation of nanoparticles, 163-64
giant magnetoresistance (GMR), 204	nanoparticle capture, 160-64
magnetoresistive (MR) sensors, 201-4	nature of, 160-63
non-white noise, 203–4	extremely small iron oxide nanoparticles (ESIONs),
sensor noise, 201–4	MR relaxivity of MNPs, 238, 246
shot noise, 202–3	
spin valves (SV), 204	Fehling's test (for aldehydes), quantification, 87
thermal noise, 202–3	Fermi function, paramagnetism, 11
tunnel magnetoresistance (TMR), 204	Fermi level (electrochemical potential for
white noises, 202–3	electrons), 1
diamagnetism, 9-10	ferrimagnetic iron oxide nanoparticles (FIONs),
atomic susceptibilities calculation, 9-10	MR relaxivity of MNPs, 236-37, 246
Bohr radius, 10	ferrite nanoparticles, composition effects,
diamagnetic susceptibility of some materials	MR relaxivity of MNPs, 238
around 293 K, 11t1.4	ferromagnetic nanoparticles, MR relaxivity, 239-40

More Information

Index

289

ferromagnetism, 12–16	chemical suppliers, 76
atomic susceptibilities calculation, 12-16	electrochemical deposition, 76-78
Brillouin function, 12–13	fluorescence quenching/enhancement, 76
Curie-Weiss law, 12-13	mixed SAMs, 73–75
exchange interactions, 13–15	MNPs functionalization, 68-79
Hamiltonian of the system, 13–14	photolithography, 76–78
Heisenberg exchange mechanism, 13–14	SAM monomers, 70–73
magnons, 15–16	self-assembled monolayers (SAMs), 68–75
Ruderman–Kittel–Kasuya–Yosida (RKKY)	growth under confinement
model, 15	MNPs synthesis, 57–58
Stoner criterion, 14–15	reverse microemulsions, 57–58
susceptibility of local moments, 12–13	Teverse intercentaisions, 37 30
Weiss molecular field, 12–13	Halbach arrays, magnetic drug targeting, 124–25
Zeeman energy, 12–13	Hall effect, 172–77
field dependence of the order parameter along the	discovery, 172
critical isotherm, magnetic measurements, 37	quantifying the Hall effect, 173–74
FIONs (ferrimagnetic iron oxide nanoparticles),	Hall effect biosensors, 179–81
MR relaxivity of MNPs, 236–37, 246	compound semiconductors, 179
fluid and fluid flow	integrated current lines for rapid detection,
Bingham fluid model, 154	179–81
Casson model, 155	MNPs detection for medical
Herschel–Bulkley fluid model, 154, 155	diagnostics, 179–81
mammalian vasculature, 155–56	silicon-based bio-Hall sensors, 179
nanoparticle capture, 152–56	Hall effect sensors
Navier–Stokes equations, 155–56	advantages, 177
Newtonian fluid behavior, 152–56	applications, 172–73
fluorescence quenching/enhancement, gold-coated	design considerations, 176–77
particles, 76	material selection, 174–76
force balance, MNPs modeling, 158–60	sensitivity, 174–76
fringe fields, detecting MNRs, 195–96	sensor arrangements, 177
Fullprof profile refinement program, structural	thermal stability, 176–77
analysis, 46	Hamiltonian of the system,
functionalization of MNCs for in vivo drug	ferromagnetism, 13–14
targeting, 118–20	Hartree–Fock approximation, paramagnetism, 11
future directions of research, 270–71	Hartree–Fock method, 3
	Heisenberg exchange mechanism,
gadolinium complexes, magnetic resonance imaging	ferromagnetism, 13–14
(MRI), 233	Herschel-Bulkley fluid model, fluid and fluid flow
gas and solid routes	154, 155
laser pyrolysis of carbonyl precursors, 61–62	high gradient magnetic separation (HGMS),
MNPs synthesis, 61–62	magnetic drug targeting, 122, 125
genomics of magnetotactic bacteria, 260-61	hot organic solvents, MNPs synthesis, 55-57
giant magnetoimpedance (GMI)	Hund's rules
biosensor prototypes, 214-18	atomic magnetic moments, 4–6
magnetic fields present, 215	calculation, 46
sensing of living systems, 218	hydrodynamic size, magnetic nanoparticles
sensor sensitivity, 211–12	(MNPs), 53
sensors in microfluidic systems, 219-20	hydrogels, MNPs synthesis, 59-60
giant magnetoresistance (GMR), 186-88	hydrothermal synthesis, MNPs synthesis, 116
detectivity limits, 204	hyperthermia, magnetic, magnetic drug targeting,
sensor properties, 183–84	125–26, 269
spin valves (SV), 187–88	
GMI, see giant magnetoimpedance	inorganic matrices
GMR, see giant magnetoresistance	MNPs synthesis, 60–61
gold/SU8 microcarrier, MNPs functionalization, 88	Stöber method, 60
gold-coated particles, 68–79, see also coating effect	iron oxides, magnetic nanoparticles
alternative directions, 78–79	(MNPs), 52–53

Kaiser test (for primary amines),	peptides, 118–20
quantification, 86–87	positron emission tomography (PET), 117
Kendall growth law, aggregation of nanoparticles, 163–64	single photon emission computed tomography (SPECT), 117
Kretschmann–Raether configuration, plasmonic	surface coating, MNCs, 117–18
micro-trapping, 111	virus-MNP hybrids, 120
mero trapping, 111	magnetic drug targeting, 120–34
Landau diamagnetism, 10	camptothecin, 127–28
Landau diamagnetism, 10 Landau susceptibility, 10	dipole magnets, 124
Landau theory, magnetic measurements, 35–36	doxorubicin, 127–28
Landau–Lifshitz–Gilbert (LLG) equation,	forces, 121–25
magnetization reversal, 25–26	Halbach arrays, 124–25
Landé g-factor, atomic magnetic moments, 3–4	•
•	high gradient magnetic separation (HGMS), 122, 125
Langevin equation	hyperthermia, magnetic, 269
magnetization of nanoparticles, 27, 30	
superparamagnets analysis, 12	magnetic hyperthermia, 125–26
Larmor (molar) diamagnetic susceptibility,	magnetic induced therapy, 132
calculation, 47	magnetic resonance imaging (MRI), 132–34
Larmor diamagnetism, 9, 10	magnetically induced drug release, 128
laser pyrolysis of carbonyl precursors, MNPs	magnetofection, 132
synthesis, 61–62, 116	methotrexate–MNP conjugates, 127–28
Lenz's law, diamagnetism, 9	Niobe® Stereotaxis System, 124–25
linker molecules, 81–83	paclitaxel, 127–28
carbodiimides, 81	studies, 127–28, 134
cyclisation, 82–83	thermoablation, 125–26, 269
electrophiles, 81–83	magnetic force for transporting nanoparticles,
epoxides, 81–83	magnetic tweezers, 94
homo-bifunctional linkers, 81	magnetic hyperthermia, magnetic drug targeting,
MNPs functionalization, 81–83	125–26
nucleophiles, 81–83	magnetic induced therapy, magnetic drug
liposomes, MNPs synthesis, 58-59	targeting, 132
loading level, MNPs functionalization, 88	magnetic measurements, 30–44
localized surface plasmon (LSP), plasmon nano-	AC susceptibility, 40–41
optical tweezers, 109–10	Arrott plots, 35–36
	Bloch T3/2 law, 31–32
macroscopic considerations, 7–8	critical exponents of phase transitions, 38-40
magnetic antibodies, magnetosomes, 268	critical phenomena, 36-40
magnetic domains, 19–26	Curie–Weiss law, 35–36
Bloch domain walls, 20–22	field dependence of the order parameter along the
classification, 20	critical isotherm, 37
domain walls, 20–22	Landau theory, 35–36
magnetization reversal, 22-26	magnetocaloric effect, 32-34
Néel domain walls, 20–22	magnetometers, 30-31
neutron scattering, 20	Mössbauer spectroscopy, 41–42
magnetic drug delivery, 112-34	neutron scattering, 37-40, 42-44
active drug targeting, 112–15	specific heat, 37
antibodies, 118–20	spin density fluctuations close to Tc , thermal
aptamers, 118–20	variation, 37–40
biocompatibility of MNCs for use in vivo,	spontaneous magnetization, 31-32
116–18	temperature dependence of magnetization,
cell toxicity, 118	31–36
functionalization of MNCs for in vivo drug	thermal dependence of the initial
targeting, 118–20	susceptibility, 37
magnetic drug targeting, 120–34	thermal dependence of the order
MNPs as the base unit, 115–16	parameter, 36–37
MNPs synthesis, 115–16	X-ray magnetic circular dichroism
passive drug targeting, 112–15	(XMCD), 44

More Information

Index

291

magnetic nanoparticles (MNPs)	magnetofection, magnetic drug targeting, 132
force balance, 158–60	magnetoimpedance, 208-11
hydrodynamic size, 53	magnetoimpedance biosensors, 206-20
iron oxides, 52–53	development, 206-8
medical applications, 269	GMI biosensor prototypes, 214–18
MNPs for MRI contrast agents, 228-29	GMI sensing of living systems, 218
nature of, 156–60	GMI sensor sensitivity, 211–12
properties re MRI, 234–36	GMI sensors in microfluidic systems, 219-20
synthesis, see synthesis of MNPs	magnetism related sensing steps, 207–8
toxicity, 245–46	magnetoimpedance, 208–11
magnetic relaxation switch (MRS), MR relaxivity	MNPs synthesis, 212–13
of MNPs, 241	magnetometers, 30–31
magnetic resonance imaging (MRI), see also	magneto-optical Kerr effect (MOKE), 30–31
MR relaxivity of MNPs	superconducting quantum interference device
contrast agents, 228–29, 233, 246	(SQUID), 30–31
detection, 230–31	magneto-optical Kerr effect (MOKE),
gadolinium complexes, 233	magnetometers, 30–31
magnetic drug targeting, 132–34	magnetoresistive (MR) sensors, 181–201
MNPs properties, 234–36	advantages, 205–6
potentials, 230	anisotropic magnetoresistance (AMR), 183–85
principles, 228–29	applications, 205–6
proton alignment, 230	competing technologies, 205–6
relaxation, 231–32	configurations, 195–96
relaxation, MRI contrast agents, 233	detecting MNRs, 195–201
spatial information, 232	detectivity limits, 201–4
magnetic tweezers, 94–96	fringe fields, 195–96
magnetic force for transporting nanoparticles, 94	giant magnetoresistance (GMR), 183–84, 186–88
rotating nanowires, 94–96	non-white noise, 203–4
unique applications, 94	principle, 195–96
Magnetically Induced Drug Release, magnetic drug	sensor noise, 201–4
targeting, 128	shot noise, 202–3
magnetization of nanoparticles, 26-30	technological development, 205-6
Brownian relaxation, 30	thermal noise, 202–3
Langevin equation, 12, 27, 30	tunnel magnetoresistance (TMR), 183-84,
Néel relaxation time, 27	189–92
Stern-Gerlach type experiment, 28	types, 183–84
superparamagnetic relaxation, 30	white noises, 202–3
magnetization processes, 16–30	magnetoresistive effect, 181–92
exchange (bias) anisotropy, 18-19	magnetoresistive sensor linearization, 192-95
magnetic anisotropies, 16-19	Stoner-Wohlfarth model, 194
magnetic domains, 19–26	magnetosomes, 251, see also magnetotactic bacteria
magnetization of nanoparticles, 26-30	applications, 267–70
magneto-crystalline anisotropy constants, 17t1.6	arrangement, 255–57
magneto-elastic anisotropy, 18	axial magneto-aerotaxis, 258-60
magnetization reversal	biological molecules attachment, 268
Landau-Lifshitz-Gilbert (LLG) equation, 25-26	biomineralization, 262–64
magnetic domains, 22–26	cell separation, 268
magnetization dynamics, 24–26	composition, 255–57
Néel relaxation time, 24–26	enzyme immobilization, 268
Néel-Brown equation, 24-26	function, 257–60
thin films and particles, 22–24	magnetic antibodies, 268
magneto-aerotaxis, magnetosomes, 257-60	magneto-aerotaxis, 257-60
magnetocaloric effect	magnetotaxis, 257-60
magnetic measurements, 32–34	morphology, 255–57
temperature dependence of magnetization, 32–34	nanobodies, 269
magneto-crystalline anisotropy constants, 17t1.6	nucleic acids isolation, 269
magneto-elastic anisotropy, 18	polar magneto-aerotaxis, 258–60

magnetosomes (cont.)	MIR relaxivity of MINPS, 250–45
proteins applications, 268–69	clustered MNPs, 240-43
purification, 265–66	coating effect, 243–45
size, 255–57	control, 236–45
toxicity, 270	extremely small iron oxide nanoparticles
Magnetospirillum spp.	(ESIONs), 238, 246
biomineralization of magnetosomes, 262-64	ferrimagnetic iron oxide nanoparticles (FIONs),
magnetosomes purification, 265-66	236–37
mass culture, 265–66	ferrite nanoparticles, composition
magnetotactic bacteria, 251-71, see also	effects, 238
magnetosomes	ferromagnetic nanoparticles, 239-40
applications, 267–70	magnetic relaxation switch (MRS), 241
biosorbents for heavy metals, 267	mesoporous silica nanoparticle (MSN), 242-43
cell sorting and separation, 267	size-dependent MR relaxivity, 236-38
defined, 251	MRI, see magnetic resonance imaging
distribution, 253–54	MRS (magnetic relaxation switch), MR relaxivity
diversity, 251, 252–55	of MNPs, 241
genomics, 260–61	MSN (mesoporous silica nanoparticle), MR
mass culture, 265–66	relaxivity of MNPs, 242-43
meteorites/rocks magnetic poles	
determination, 267	nanobodies, magnetosomes, 269
micro-robots applications, 267	nanocapsules, transporting, electric tweezers,
nitrogen fixation, 254–55	102–3
phylogeny, 252–55	nanocomposites from solution routes, MNPs
physiology, 252–55	synthesis, 58–61
sulfur compounds metabolism, 254	nanogels, MNPs synthesis, 59-60
toxicity, 270	nanometer scale, changes in the physical properties
magnetotaxis, magnetosomes, 257-60	of materials, 1
magnons, ferromagnetism, 15–16	nanoparticle capture, 151-68
mammalian vasculature, fluid and fluid flow,	aggregates capture, 164–68
155–56	aggregation of nanoparticles, 163-64
manipulation, see magnetic drug delivery;	capture angle approach, 164–66
tweezers	capture of nanoparticles or nanoparticle
Massart method, MNPs synthesis, 54–55	aggregates, 164-68
Maxwell's equations, nanoparticle	externally applied magnetic field, 160-64
capture, 160–61	fluid and fluid flow, 152-56
medical applications, MNPs, 269	Maxwell's equations, 160-61
medical diagnostics, Hall effect biosensors, MNPs	MNPs modeling, 156–60
detection, 179–81	MNPs, nature of, 156–60
mesoporous silica nanoparticle (MSN), MR	modeling considerations, 151
relaxivity of MNPs, 242–43	Newtonian fluid behavior, 152–56
metal-organic frameworks (MOFs), MNPs	partial capture, 166–68
synthesis, 60	physical mechanisms, 151-68
meteorites/rocks magnetic poles determination,	total capture, 166–68
magnetotactic bacteria, 267	nano-trapping with plasmonic antennas,
methotrexate-MNP conjugates, magnetic drug	tweezers, 111
targeting, 127–28	nanowires, rotating
micelle microemulsion, MNPs synthesis, 116	electric tweezers, 98–103
micelles, MNPs synthesis, 58–59	magnetic tweezers, 94–96
micro-robots applications, magnetotactic	nanowires, transporting, electric tweezers,
bacteria, 267	96–98, 99
MNPs, see magnetic nanoparticles	Navier-Stokes equations, fluid and fluid flow,
MOFs (metal-organic frameworks), MNPs	155–56
synthesis, 60	Néel domain walls, 20–22
Mössbauer spectroscopy	Néel relaxation time
magnetic measurements, 41–42	magnetization of nanoparticles, 27
superparamagnetic relaxation, 41–42	magnetization reversal, 24-26

More Information

Index

293

Néel-Brown equation	plasmonic micro-trapping, tweezers, 111
AC susceptibility, 40–41	polar magneto-aerotaxis, magnetosomes,
magnetization reversal, 24-26	258–60
neutron scattering	polymer matrices, MNPs synthesis, 58
magnetic domains, 20	positron emission tomography (PET)
magnetic measurements, 37–40, 42–44	biocompatibility of MNCs for use in vivo, 117
Ninhydrin test (for primary amines),	magnetic drug delivery, 117
quantification, 86–87	productivity (yield), MNPs synthesis, 63
Niobe® Stereotaxis System, magnetic drug	proteins applications, magnetosomes, 268–69
targeting, 124–25	1
non-white noise	quantification, 85–88
detectivity limits, 203–4	alcohols tests, 87–88
magnetoresistive (MR) sensors, 203-4	Fehling's test (for aldehydes), 87
nucleic acids isolation, magnetosomes, 269	Kaiser test (for primary amines), 86–87
nucleic acids, RNA transcription, optical	MNPs functionalization, 85–88
tweezers, 93	Ninhydrin test (for primary amines), 86–87
,	spectrophotometry, 87
optical tweezers, 91–94	quantum mechanical concepts, 2–3
advantages, 94	quantum mechanical wavefunction of two identical
Rayleigh particle gradient force, 91–92	fermions, 4–5
RNA transcription, 93	quenching of the orbital angular momentum, atomic
scattering force, 92–93	magnetic moments, 5–6
optoelectronic tweezers, 103	magnetic moments, b
organic matrices, MNPs synthesis, 58–60	Rayleigh particle, gradient force, 91–92
hydrogels, 59–60	relaxivity of MNPs, MR, see MR relaxivity
liposomes, 58–59	of MNPs
metal-organic frameworks (MOFs), 60	research future directions, 270–71
micelles, 58–59	reverse microemulsions, MNPs synthesis, 57–58
nanogels, 59–60	RNA transcription, optical tweezers, 93
polymer matrices, 58	rocks/meteorites magnetic poles determination,
solid lipid nanoparticles, 59–60	magnetotactic bacteria, 267
organized surfactant assemblies, MNPs	rotating nanowires
synthesis, 57–58	electric tweezers, 98–103
syndicolo, e, eo	magnetic tweezers, 94–96
paclitaxel, magnetic drug targeting, 127-28	Ruderman–Kittel–Kasuya–Yosida (RKKY) model,
paramagnetism	ferromagnetism, 15
atomic susceptibilities calculation, 11	Russell–Saunders coupling, atomic magnetic
Fermi function, 11	moments, 4
Hartree–Fock approximation, 11	momento, .
paramagnetic susceptibility of some transition	SAMs, see self-assembled monolayers
metals around 293 K, 11	SAW (standing acoustic wave) based acoustic
Zeeman splitting, 11	tweezers, 108–9
passive drug targeting, magnetic drug delivery,	Schrödinger equation, 2–3
112–15	self-assembled monolayers (SAMs)
Pauli exclusion principle, atomic magnetic	amines, 72
moments, 4–5	biotin, 73
peptides, magnetic drug delivery, 118–20	carbodiimides, 72
PET, see positron emission tomography	carboxylic acids, 72
photoelectron emission microscopy (PEEM),	chain, 71
structural analysis, 45	chemical suppliers, 76
photolithography	gold-coated particles, 68–75
alternative directions, 78–79	head groups, 71–73
electrochemical deposition, 76–78	hydroxyls, 71
gold-coated particles, 76–78	mixed SAMs, 73–75
plasmon nano-optical tweezers, 109–10	NHS esters, 73
localized surface plasmon (LSP), 109–10	SAM monomers, 70–73
surface plasmon polariton (SPP), 109–10	tail groups, 70–71
r	0F

superparamagnetism, 50, 115
bead array counter concept, 207
superparamagnetic beads (SPBs), 179, 195–96, 219–20
superparamagnetic behavior, 194–95
superparamagnetic labels, 207–8
superparamagnetic nanoparticles, 234–36
surface coating, MNCs, see gold-coated
particles
biocompatibility of MNCs for use in vivo,
117–18
magnetic drug delivery, 117-18
surface plasmon polariton (SPP), plasmon nano-
optical tweezers, 109–10
SV, see spin valves
synthesis of MNPs, 52–63, 115–16
aqueous co-precipitation routes, 54-55
co-precipitation, 115–16
gas and solid routes, 61–62
growth under confinement, 57-58
hot organic solvents, 55–57
hydrothermal synthesis, 116
inorganic matrices, 60-61
laser pyrolysis of carbonyl precursors, 61-62, 110
magnetoimpedance biosensors, 212–13
Massart method, 54–55
micelle microemulsion, 116
nanocomposites from solution routes, 58-61
organic matrices, 58–60
organized surfactant assemblies, 57–58
particle aggregation prevention, 116
reverse microemulsions, 57–58
solid routes, 62
Stöber method, 60
T1 (positive) contrast agents, 61
thermal decomposition, 116
yield (productivity), 63
T1 ('positive') contrast agents, MNPs
synthesis, 61
targeting, drug, see magnetic drug delivery;
magnetic drug targeting
TEM (transmission electron microscopy), structural
analysis, 45
temperature dependence of magnetization, 31-36
Arrott plots, 35–36
Curie-Weiss law, 35-36
magnetocaloric effect, 32-34
spontaneous magnetization, 31-32
thermal decomposition, MNPs synthesis, 116
thermal dependence of the initial susceptibility,
magnetic measurements, 37
thermal dependence of the order parameter,
magnetic measurements, 36–37
thermal noise
detectivity limits, 202–3
magnetoresistive (MR) sensors, 202–3

More Information

Cambridge University Press 978-1-107-03109-8 — Magnetic Nanoparticles in Biosensing and Medicine Edited by Nicholas J. Darton , Adrian Ionescu , Justin Llandro Index

Index

295

thermoablation, magnetic drug targeting, plasmonic micro-trapping, 111 125-26, 269 self-induced back-action (SIBA) trapping, TMR, see tunnel magnetoresistance 111-12 tosyl/aldehydes two-dimensional particle and cell delivery, acoustic epoxides, 84-85 tweezers, 109 MNPs functionalization, 84-85 toxicity ultrasmall superparamagnetic iron oxide cell toxicity, biocompatibility of MNCs for use nanoparticles (USPIO), MR relaxivity of in vivo, 118 MNPs, 238 magnetic nanoparticles (MNPs), 245-46 virus-MNP hybrids, magnetic drug magnetosomes, 270 magnetotactic bacteria, 270 delivery, 120 transmission electron microscopy (TEM), structural Weiss molecular field, ferromagnetism, 12-13 analysis, 45 transporting nanocapsules, electric tweezers, white noises detectivity limits, 202-3 102 - 3magnetoresistive (MR) sensors, 202-3 transporting nanowires, electric tweezers, 96-98, 99 tunnel magnetoresistance (TMR), 189-92 shot noise, 202-3 detectivity limits, 204 thermal noise, 202-3 sensor properties, 183-84 tweezers, 91–112 X-ray magnetic circular dichroism (XMCD), acoustic tweezers, 108-9 magnetic measurements, 44 catalytic tweezers, 104-8 yield (productivity), MNPs synthesis, 63 electric tweezers, 96-103 magnetic tweezers, 94-96 nano-trapping with plasmonic antennas, 111 Zeeman energy, ferromagnetism, 12-13 optical tweezers, 91-94 Zeeman splitting optoelectronic tweezers, 103 Mössbauer spectroscopy, 41–42 plasmon nano-optical tweezers, 109-10 paramagnetism, 11