

Energy: Supply and Demand

Focusing on trends in energy supply and demand, this text provides students with a comprehensive account of the subject and an understanding of how to use data analysis and modeling to make future projections and study climate impacts.

Developments in technology and policy are discussed in depth, including the role of coal, the fracking revolutions for oil and gas, the electricity grid, wind and solar power, battery storage, and biofuels. Trends in demand are also detailed, with analysis of electrical demands such as LEDs, air conditioning, heat pumps, and information technology, and the transportation demands of railroads, ships, and cars (including electric vehicles). The environmental impacts of the energy industry are considered throughout, and a full chapter is dedicated to climate change. Real-life case studies and examples add context, and over 400 full-color figures illustrate key concepts.

Accompanied by a package of online resources including solutions, video examples, sample data, and PowerPoint slides, this is an ideal text for courses on energy and is accessible to a range of students from engineering and related disciplines.

David B. Rutledge is the Tomiyasu Professor of Engineering, emeritus, at Caltech. He is a founder of the Wavestream Corporation (a manufacturer of transmitters for satellite uplinks) and his recent research has focused on modeling for projections of energy supply. He is a Fellow of the IEEE and a recipient of the Teaching Award of the Associated Students at Caltech.

Energy: Supply and Demand

David B. Rutledge

California Institute of Technology

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107031074

DOI: 10.1017/9781139381208

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in Singapore by Markono Print Media Pte Ltd. 2020

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Rutledge, David B., 1952- author.

Title: Energy: supply and demand / David B. Rutledge, California Institute of Technology.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, [2020]

Includes bibliographical references and index.

Identifiers: LCCN 2019015702 | ISBN 9781107031074 (hardback : alk. paper)

Subjects: LCSH: Fossil fuels.

Classification: LCC TP318 .R88 2020 | DDC 553.2-dc23 LC record available at https://lccn.loc.gov/2019015702

ISBN 978-1-107-03107-4 Hardback

Additional resources for this publication at www.cambridge.org/rutledge

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my wife

Dale

Contents

Pref	ace		page xv
Prel	Preliminaries		
1.1	1.1 Plan of the Book		
1.2	Units		5
	1.2.1	Capacity Factors	8
	1.2.2	Payback Times	9
1.3	Efficiency		10
	1.3.1	Conservation and Efficiency	11
	1.3.2	The Jevons Paradox	12
1.4	Energ	y Production	14
	1.4.1	The Alternatives	15
	1.4.2	Per-Person Consumption	16
1.5	Popul	ation	17
	1.5.1	Doubling Times	18
	1.5.2	The United Nations Projections	19
	1.5.3	Growth-Rate Plots	21
1.6	Energ	y and the Economy	26
	1.6.1	Oil Consumption and GDP	27
	1.6.2	Electricity Generation and GDP	29
	1.6.3	Electricity Access and Poverty	31
1.7	Agric	ulture	33
	1.7.1	Life Expectancy and the Green Revolution	35
	1.7.2	Thomas Malthus on Population	37
1.8	Fossil	-Fuel Independence	38
	1.8.1	Europe Turns toward the New Alternatives	40
	1.8.2	Calculating Annualized Growth Rates	41
1.9	Carbo	n-Dioxide Emissions	42
	1.9.1	The Kyoto Protocol and the Paris Agreement	43
	1.9.2	Fossil-Fuel Production and Carbon-Dioxide Levels	45
Con	cepts to	Review	47
Prob	olems		47
Furt	her Rea	ading	48

viii Contents

2	Horses, Whales, and Wood			49
	2.1	Horse	es	49
		2.1.1	Horses and Mules at Work	53
		2.1.2	The Transition from Horses and Mules to Tractors and Cars	55
	2.2 Whales			
		2.2.1	Yankee Whalers	58
		2.2.2	Whale Oil and Kerosene	59
		2.2.3	A Logistic Model for Whale Oil Production	60
		2.2.4	The Sperm Candle Lighting Efficacy Standard	62
	2.3	Wood	l	63
		2.3.1	Wood Fuel and Industrial Roundwood Production	63
		2.3.2	Charcoal and Wood Gas	66
		2.3.3	The Transition from Wood to Coal	68
		2.3.4	Timber Density	72
2.4	The	Norse	Greenland Colony	73
		2.4.1	The Greenland Colony and Climate	75
		2.4.2	The Inuit in Greenland	76
		-	o Review	77
		olems		77
	Furt	her Rea	ading	78
3	Mod	dels		80
	3.1	Intro	duction	80
		3.1.1	Types of Statements about the Future	80
		3.1.2	The R/P Ratio	81
	3.2	The D	Decaying Exponential Model	82
		3.2.1	The Prudhoe Bay Oil Field	82
		3.2.2	The Laherrere Linearization for Prudhoe Bay	84
	3.3	The L	ogistic Model	87
		3.3.1	The Hubbert Linearization	87
		3.3.2	The Logit Transform Linearization	90
	3.4	Reser	ves, Resources, and Occurrences	94
		3.4.1	Original Reserves	97
		3.4.2	Oil Reserves History	99
		3.4.3	Coal Resources History	100
	3.5	An E	conomic Model	101
	3.6	3.6 Statistical Formulas		103
	Con	cepts to	o Review	104
	Problems			104
	Further Reading			

				Contents	ix
4	Coa	I		106	
	4.1		duction	106	
		4.1.1	Coal consumption	106	
		4.1.2	Coal in Electricity Generation	109	
	4.2		•	112	
			Formation of Coal	112	
		4.2.2	Ranks of Coal	114	
	4.3	Minir	ng Coal	116	
			Longwall Mining	116	
		4.3.2	Surface Mining	119	
	4.4	Impa	•	121	
		_	The Aberfan Disaster	121	
		4.4.2	Air Pollution from Coal	124	
	4.5	Britis	h Coal	127	
		4.5.1	Stanley Jevons and The Coal Question	128	
		4.5.2	The Royal Commission on Coal Supplies	132	
	4.6	The N	Mature Regions	136	
			German Hard Coal	136	
		4.6.2	Pennsylvania Anthracite	139	
		4.6.3	Summary for the Mature Regions	142	
	4.7	The A	Active Regions	143	
		4.7.1	Western US Coal	146	
		4.7.2	Chinese Coal	149	
		4.7.3	Summary for the Active Regions	154	
	Con	cepts to	o Review	157	
	Prob	olems		157	
	Furt	her Rea	ading	158	
5	Hyd	rocarb	ons	159	
	5.1	Intro	duction	159	
		5.1.1	Edwin Drake and His Well	161	
		5.1.2	John D. Rockefeller and Standard Oil	163	
		5.1.3	Oil and War	166	
		5.1.4	The Texas Railroad Commission and OPEC	168	
	5.2	0rigi:	ns	173	
		5.2.1	The Oil Window	174	
		5.2.2	Hydrocarbon Traps	177	
		5.2.3	Dad Joiner and the East Texas Oil Field	178	
	5.3	Drilli	ng for Oil and Gas	184	
		5.3.1	Fracking Technology	186	
		5.3.2	Enhanced Oil Recovery (EOR)	188	

x Contents

	5.4	Impac	ets	192
		5.4.1	The First Gulf War	192
		5.4.2	The Long Beach Subsidence	193
	5.5	King l	Hubbert and Peak Oil	197
	5.6	Natur	al Gas	202
		5.6.1	George Mitchell and the Barnett Shale	202
		5.6.2	American Shale Gas Production	206
		5.6.3	Natural Gas Infrastructure	207
	5.7	Projec	ctions	209
	Con	cepts to	Review	213
	Prob	lems		214
	Furt	her Rea	ading	216
6	Farn	ning ar	nd Fishing	217
	6.1	Introd	luction	217
		6.1.1	Norman Borlaug and the Green Revolution	217
		6.1.2	The Role of Nitrogen in Agriculture	217
		6.1.3	The Brazilian Cerrado	219
		6.1.4	The Food Supply	221
		6.1.5	Oil and Food	223
	6.2	The H	aber-Bosch Process	225
		6.2.1	The Guano Islands	225
			Fritz Haber and Ammonia Synthesis	227
		6.2.3	Carl Bosch and Ammonia Production	229
	6.3	Cerea	ls	232
		6.3.1	Corn	233
		6.3.2	Regional Cereal Production	235
	6.4	Livest	rock	239
	6.5	Impac	ets	244
		6.5.1	Agricultural Land	244
			The Destruction of the Aral Sea	245
		6.5.3	The American Endangered Species Act	247
		6.5.4	Agriculture and Water	255
	6.6	Fish		256
		6.6.1	The Destruction of the Newfoundland Cod Fishery	260
		6.6.2	The Pacific Sardine and the Pacific Decadal Oscillation (PDO)	263
		6.6.3	Fish Farming	267
	6.7	Biofu	els	270
		6.7.1	Gobar Gas	272
		6.7.2	Liquid Biofuels Production History	273

				Contents	хi
	6.8	Prosp	ects	277	
		_		277	
	Concepts to Review Problems			278	
		her Rea	ading	280	
	Ture	ner nec	tuing	200	
7	Elec	tricity	281		
	7.1	Introd	luction	281	
		7.1.1	Thomas Edison and the Electrical Grid	282	
		7.1.2	Electricity Generation History	285	
		7.1.3	Daily Demand Curves	286	
		7.1.4	Capital Investments in Electricity Grids	290	
		7.1.5	European Residential Electricity	292	
		7.1.6	The Electricity Alternatives	294	
	7.2	Trans	mission Lines and Transformers	295	
	7.3	Electr	icity Generators	299	
		7.3.1	Three-Phase Systems	301	
		7.3.2	Fuel Costs in Fossil-Fuel Generation	302	
	7.4	Hydro	pelectric	304	
		7.4.1	Hydroelectric Generation History	304	
		7.4.2	The Pelton Wheel and Hydroelectric Power in California	305	
		7.4.3	The Francis Turbine and the Hoover Dam	310	
	7.5	Nucle	ar	314	
		7.5.1	The Atomic Bomb	314	
		7.5.2	Failed Dreams	317	
		7.5.3	Nuclear Generation History	318	
		7.5.4	The Chernobyl Disaster	320	
		7.5.5	The Great Tohoku Tsunami	321	
	7.6	Geoth	ermal	323	
		7.6.1	The Geysers Field in California	324	
		7.6.2	Geothermal Heating in Iceland	326	
		7.6.3	The Japanese Onsen	327	
	7.7	Wind		328	
		7.7.1	Wind Resources	330	
		7.7.2	Wind Generation History	331	
		7.7.3	The Betz Limit	331	
		7.7.4	Wind Variability	336	
	7.8	Solar		338	
		7.8.1	Solar Resources	338	
		7.8.2	The Ivanpah Solar Thermal Plant	338	
		7.8.3	Solar Cell Efficiency	340	

xii Contents

		7.8.4	Solar Generation History	341
		7.8.5	Solar Variability	342
	7.9	Batte	ries	344
		7.9.1	Battery Grid Storage	345
		7.9.2	A Model Renewable Grid for California	346
	7.10	Prosp	ects	353
	Con	cepts to	o Review	354
	Prob	olems		354
	Furt	her Rea	ading	356
8	Stationary Demand			
	8.1	Introd	luction	358
		8.1.1	Passive Cooling	359
		8.1.2	Temperature and Mortality	361
		8.1.3	OECD vs. Non-OECD Stationary Demand	363
	8.2	Lighti	ing	365
		8.2.1	Nick Holonyak and His Light-Emitting Diode (LED)	367
		8.2.2	LED Efficacy Limits	368
		8.2.3	Prospects for LEDs	370
	8.3	Electr	ric Motors	372
		8.3.1	The Universal Motor	373
		8.3.2	Nikola Tesla and His Induction Motor	374
	8.4	Heati	ng and Cooling	379
		8.4.1	The Comfort Zone	379
		8.4.2	Heating with a Stove	380
		8.4.3	Evaporative Coolers	382
		8.4.4	Air Conditioners and Heat Pumps	383
		8.4.5	Inline Water Heaters	386
		8.4.6	Split-Zone Systems	388
	8.5	Inform	mation Technology	389
		8.5.1	The Jevons Paradox in Information Technology	389
		8.5.2	Bitcoin Mining	391
	8.6 The Rosenfeld Effect		tosenfeld Effect	393
		8.6.1	Refrigerator Efficiency	393
		8.6.2	A State Residential Efficiency Model	395
	8.7	3.7 Trends in Residential Energy Demand		399
			o Review	404
	Prob	Problems		
	Furt	her Rea	ading	406

				Contents	xiii
9	Trar	sporta	tion Demand	407	
	9.1	-	luction	407	
			Henry Ford and His Model T	408	
			Transportation Energy Demand	412	
			Electric Vehicles	414	
		9.1.4	Transportation Oil Demand	416	
			Commuting	416	
		9.1.6	Freight	420	
	9.2	Roads	<u> </u>	422	
		9.2.1	The American Interstate Highway System	424	
		9.2.2	Vehicle Fuel Efficiency	426	
	9.3	Rails	J	429	
		9.3.1	The Japanese Shinkansen	429	
		9.3.2	American Rail Freight	431	
	9.4	Impac		436	
		-	The Wreck of the MMA-002 Oil Train	436	
		9.4.2	"A Brown LA Haze"	441	
		9.4.3	The Volkswagen Diesel Scandal	445	
	9.5	By Se	_	446	
		·	From Sails to Engines	446	
			Ocean Freight	447	
	9.6	By Ai	<u> </u>	449	
		•	Flight Range	450	
			Airline Passenger Travel	452	
	9.7	Prospe	ects for Self-Driving Cars	454	
	Concepts to Review		456		
	Prol	olems		457	
	Furt	her Rea	ding	459	
10	Clin	nate Ch	ange	461	
	10.1	Introd	luction	461	
		10.1.1	The Callendar Effect	461	
		10.1.2	California Forest Fires	464	
	10.2	Carbo	n Dioxide	465	
	10.3	Sea Le	evel	468	
	10.4	Tempe	erature Indexes	473	
		10.4.1	The Central England Temperature Index	476	
		10.4.2	The HadCRUT4 Index	478	
		10.4.3	Radiative Forcing and HadCRUT4	479	
		10.4.4	Summer Maximums and Winter Minimums in		
			the United States	482	

xiv Contents

10.5 Projections	484			
10.6 Summary	488			
Concepts to Review	491			
Problems	491			
Further Reading				
Index	493			

Preface

Where does our energy come from? How do we use it? This book is an introduction to the fossil fuels and the alternatives, the electrical grid, energy use in buildings and transportation, agriculture, and climate-change policy for fossil fuels. Modeling is emphasized for understanding trends and for making projections. It is important to appreciate what models can tell us about how energy systems are evolving. Students should learn the distinction between physical laws that allow precise predictions and model projections that can be wrong. Models did not predict the shale gas revolution.

The material evolved from years of teaching classes to Caltech students at all levels. The students in the courses complete homework and laboratory exercises and they take tours of a natural gas power plant and a solar power station. At the end of the term, each student selects a topic to investigate and makes a presentation to the other students. After completing the course, students should be comfortable making energy calculations and developing models for energy systems. In addition, students should be able to critically assess articles, books, and films on energy. They should be familiar with the strengths and weaknesses of the arguments made by early writers like Stanley Jevons and King Hubbert. They should appreciate the potential of new energy technology. Finally, students should be able to recognize when government policies are working and when they are not.

Some homework problems involve locating energy databases online and down-loading and analyzing the data. The online databases often provide their information in Excel format. Some students lack experience in Excel, and it is helpful for an instructor to demonstrate the functions that are used in the homework.

It is a pleasure to acknowledge people who have helped me in writing this book. Dale Yee took photographs and drew figures. Professor Joseph Shepherd at Caltech has been a collaborator in the classes. I have not found a question on combustion that he could not answer. Kent Potter at Caltech developed exercises and critiqued many of the ideas. Dr. Romeo Flores, formerly of the United States Geological Survey and the nation's foremost expert on coal, encouraged the work at the early stages. Jean Laherrere, formerly of the Total oil company, graciously provided production statistics. Jean taught many of us how to look at data. Several people read early drafts and made thoughtful suggestions, including the late Tom Tombrello, professor of physics at Caltech and erstwhile director of research at Schlumberger, Dr. Euan Mearns of Aberdeen, Scotland, founder of the blog Energy Matters, and

xvi Preface

my brother John Rutledge, Vice-President and Water Resources Group Manager at Freese and Nichols, Inc., consulting civil engineers in Fort Worth, Texas. At the Cambridge University Press, I would like to thank Julie Lancashire, who has supported the project from the beginning, Nicola Chapman, who managed a challenging production process, and my wonderful editor, Heather Brolly.

Please let me know of errors by email at rutledge@caltech.edu.