

The Design and Statistical Analysis of Animal Experiments

Written specifically for animal researchers, this is the first book to provide a comprehensive guide to the design and statistical analysis of animal experiments. It has long been recognised that the proper implementation of these techniques can help to optimise the number of animals used in an experiment. By using real-life examples to make them more accessible, this book explains the statistical tools that are routinely employed by practitioners.

A wide range of design types are considered in detail, including block, factorial, nested, crossover, dose-escalation and repeated measures. Alongside each design, techniques are introduced to analyse the experimental data generated. Each analysis approach is described in nonmathematical terms, helping readers without a statistical background to understand key techniques such as: *t*-tests, ANOVA, repeated measures, analysis of covariance, multiple comparison tests, non-parametric methods and survival analysis.

This is also the first text to describe technical aspects of InVivoStat, a powerful open-source software package developed by the authors to enable animal researchers to analyse their data and obtain informative results. InVivoStat can be downloaded at www.invivostat.co.uk.

Simon T. Bate is a Principal Statistician at GlaxoSmith-Kline, supporting pre-clinical research. He has spent over 12 years supporting the design and statistical analysis of animal experiments, including drug discovery research, toxicology studies and safety assessment. He presents many statistics courses around Europe, including the statistics module of the British Association for Psychopharmacology's Pre-Clinical Certificate.

Robin A. Clark is a Senior Analyst Programmer at Huntingdon Life Sciences, Alconbury. Originally qualified as a marine ecologist, he is now a software architect producing data collection and statistical applications for the pharmaceutical industry. Robin produced the user interface and designed the system architecture for InVivoStat.

The Design and Statistical Analysis of Animal Experiments

Simon T. Bate

GlaxoSmithKline, UK

and

Robin A. Clark

Huntingdon Life Sciences, UK

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107030787

© S. T. Bate and R. A. Clark 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

 $Library\ of\ Congress\ Cataloguing\ in\ Publication\ data$

Bate, Simon T., 1975-

The design and statistical analysis of animal experiments / Simon Bate, GlaxoSmithKline, UK, Robin Clark, Huntingdon Life Sciences, UK.

pages cm

Includes bibliographical references and index.

 $ISBN\,978\text{-}1\text{-}107\text{-}03078\text{-}7\ (hardback) - ISBN\,978\text{-}1\text{-}107\text{-}69094\text{-}3\ (paperback)}$

 $1. \ Animal experimentation-Statistical methods. \quad 2. \ Experimental design. \quad I. \ Clark, Robin A., software developer. \quad II. \ Title. \ HV4930.D47\ 2002$

590.72'4-dc23

2013033851

ISBN 978-1-107-03078-7 Hardback

ISBN 978-1-107-69094-3 Paperback

 $Additional\ resources\ for\ this\ publication\ at\ www.cambridge.org/9781107030787$

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To

RB, NRB, MTB, EC, EJC, ZMC

Contents

Pre	face			page xii						
Ack	nowle	edgmen	ats	XV						
1	Intro	Introduction								
	1.1	Struct	3							
		1.1.1	Introductory sections	4						
		1.1.2	Approaches to consider when							
			setting up a new animal model	4						
		1.1.3	Approaches to consider when							
			generating hypotheses	5						
		1.1.4	Approaches to consider when							
			testing hypotheses	5						
	1.2	Statis	tical problems faced by animal							
		resear	rchers	5						
	1.3									
		statist	tics in practice	6						
		1.3.1	Pitfalls with experimental design	6						
		1.3.2	Pitfalls with randomisation	9						
		1.3.3	Pitfalls with statistical analysis	10						
		1.3.4	Pitfalls when reporting animal							
			experiments	13						
	1.4	So wh	nere does statistics fit in?	15						
	1.5	The A	RRIVE guidelines	15						
2	Stati	Statistical concepts								
	2.1	Decis	ion-making: the signal-to-noise rat	io 18						
	2.2	Proba	bility distributions	19						
		2.2.1	The frequency distribution	20						
		2.2.2	The density distribution	20						
		2.2.3	The probability distribution	21						
		2.2.4	The normal distribution	21						
		2.2.5	The chi-squared distribution	22						
		2.2.6	The <i>t</i> -distribution	22						
		2.2.7	The F-distribution	23						

٧i

Contents vii

2.3	2.3	The h	ypothesis	s testing procedure	23		3.2.8	Repeate	edly measuring the	
		2.3.1	The nul	l and alternative				animal		45
			hypoth		23	3.3		-	esign types	46
		2.3.2	The p -v		25		3.3.1	Block d	-	46
		2.3.3	The sign	nificance level	25		3.3.2	Factoria	al designs	47
		2.3.4	Signific	ant stars	26		3.3.3	Dose-re	esponse designs	47
		2.3.5	Type I a	and Type II errors	26		3.3.4	Nested	designs	47
	2.4	Explo	ratory vs.	. confirmatory			3.3.5	Split-pl	ot designs	48
		exper	iments		28		3.3.6	Repeate	ed measures and	
	2.5	The es	stimation	process	29			dose-es	scalation designs	48
							3.3.7	Designs	applied in practice	48
3	Expe	erimen	tal desigr	ı	30	3.4	Block	designs		49
	3.1	Why c	lesign ex	periments?	30		3.4.1	Practica	al reasons to block	49
		3.1.1	Practica	al reasons	30		3.4.2	Statistical reasons to block		49
		3.1.2	Statistic	cal reasons:				3.4.2.1	Variance reduction	49
			variabil	lity, the signal and bias	31			3.4.2.2	Bias reduction	51
	3.2	What	does an	experimental			3.4.3	How to	block	51
		design	design involve?				3.4.4	Comple	ete block designs	53
		3.2.1	Variable	es to be recorded	32			3.4.4.1	Efficiency	53
			3.2.1.1	Types of response	32			3.4.4.2	Randomisation	53
			3.2.1.2	Reporting responses	34			3.4.4.3	Statistical analysis	
			3.2.1.3	Baseline responses	34				of block designs	54
			3.2.1.4	=			3.4.5	Incomp	olete block designs	54
				during the experiment	35		3.4.6	Balance	ed incomplete	
		3.2.2	Set of tr	reatments	35			block d	_	55
		3.2.3	The exp	erimental unit and					Efficiency	55
			_	ervational unit	36				Randomisation	55
		3.2.4	Effects	and factors	37			3.4.6.3	Statistical analysis	55
			3.2.4.1	Defining factor			3.4.7		nan one block: the	
				level labels	39				lumn block design	56
			3.2.4.2	Defining the factors in					Efficiency	56
				an experimental design	39				Randomisation	56
		3.2.5	Fixed a	nd random factors	39			3.4.7.3	Statistical analysis	56
		0.2.0		Fixed factors	40		3.4.8		lumn block	00
			3.2.5.2	Random factors	40		0.1.0		based on Latin squares	57
				Random or fixed?	41				Efficiency	58
		3.2.6		rical factors and	11				Randomisation	58
		3.2.0	_	ious factors	42			3.4.8.3	Statistical analysis	58
		3.2.7		d factors and	72		3.4.9		ver designs	59
		3.2.1	nested		42		3.4.3	3.4.9.1	-	33
				Nested factors	42			5.4.5.1	designs	59
			3.2.7.1		42			3/02	Incomplete crossover	JJ
			3.2.7.3					3.4.3.4	designs	60
			3.2.7.4	•				3.4.9.3	The benefits of crossove	
			3.4.1.4	and crossed factors	ea 45			3.4.3.3	designs	1 61
				and clossed factors	40				UCSIEUS	ŊΙ

viii **Contents**

		3.4.9.4	The issues with crossove	r			3.6.3.3	Adding an offset to	
			designs	62				the dose	88
		3.4.9.5	Treatment carry-over		3.7	Neste	d designs	S	90
			effects	62		3.7.1	Types o	f nested design	91
3.5	Facto	rial desig	n	63			3.7.1.1	Single-order nested	
	3.5.1	Randor	nisation	64				design	91
	3.5.2	Catego	rical factors and				3.7.1.2	Higher-order	
		interact	tions	64				nested design	91
	3.5.3	Small fa	actorial designs	66		3.7.2	Sample	size and power	93
	3.5.4	Large fa	actorial designs	68			3.7.2.1	Factors that influence	
		3.5.4.1	Strategies when setting					sample size	93
			up a new animal model	68			3.7.2.2	Calculating sample	
		3.5.4.2	Graphical representation	1				sizes	95
			of large factorial				3.7.2.3	When not to calculate	
			designs	70				the statistical power	97
		3.5.4.3	Hidden replication	70		3.7.3	Higher-order nested		
		3.5.4.4	Fractional factorial				designs		99
			designs to reduce				3.7.3.1	Identifying nested	
			animal use	72				factors	99
		3.5.4.5	Two-stage procedure to				3.7.3.2	Investigating the source	es
			reduce animal use	75				of variability in higher-	
	3.5.5	Factoria	al designs with					order nested designs	101
		continu	ious factors	77			3.7.3.3	1	
		3.5.5.1	Strategies for setting up a	a				estimating the observa-	
			new animal model	78				tional unit variability	102
		3.5.5.2	Drug combination				3.7.3.4	Predicting the	
			studies	81				experimental unit	
		3.5.5.3	Continuous vs.					variability	103
			categorical factors	83			3.7.3.5	Investigating alternative	е
	3.5.6	Final th	oughts on factorial					nested designs	105
		designs	;	83			3.7.3.6	Pseudo-replication	106
3.6	Dose-	-	e designs	84	3.8	_	ted measures and dose-		
	3.6.1	The fou	r- and five-			escala	ation desi	igns	110
		-	parameter logistic curves			3.8.1	Repeate	ed measures	
	3.6.2	Experin	nental design				designs		110
		conside	erations	85			3.8.1.1	The repeated factor	110
		3.6.2.1	Increasing the number				3.8.1.2	The core experimental	
			of doses	86				design	112
		3.6.2.2	Decreasing the number				3.8.1.3	Nested repeated	
			of animals	86				measures designs	112
	3.6.3		ng the control group	87			3.8.1.4	More complex repeated	l
		3.6.3.1	Analysing a change from	1				measures designs	114
			the control response	87		3.8.2		scalation designs	116
		3.6.3.2	Using a dual statistical				3.8.2.1	More complex	
			model	88				dose-escalation designs	s 117

Contents ix

	3.9	Split-p	olot desig	gns	117			5.2.1.3	The predicted mean	137
		3.9.1	Animals	s as whole plots	117			5.2.1.4	The geometric mean	137
		3.9.2	Animals	s as subplots	118		5.2.2	Parame	tric measures of	
	3.10	Exper	imental d	lesigns in practice	119			spread		138
	3.11	A goo	d design :	should result in	120			5.2.2.1	Variance	138
4	Ranc	lomisa	tion		122			5.2.2.2	Standard deviation	138
7	4.1			ns to randomise	122			5.2.2.3	Standard error of the	
	7.1		Bias red		122				mean	138
		1.1.1		Removing unforeseen	122			5.2.2.4	Confidence intervals	139
			1.1.1.1	trends	123			5.2.2.5	Coefficient of	
			4112	Humans are systematic					variation	139
		412	Blinding	•	124		5.2.3	Non-pa	rametric measures	
	4.2		,	ons to randomise	124			of locati	ion	139
	1.2			ing the variability	125		5.2.4	_	rametric measures	
				g upon the	120			of sprea		140
		1.2.2		al analysis strategy	125	5.3	Graph	nical tools		140
				Including interactions	120		5.3.1	Scatter		140
			1121211	in the statistical model	126		5.3.2	Box-plo		142
			4.2.2.2	Including blocking	120		5.3.3	Histogra		143
			1121212	factors	127		5.3.4	-	rised case profiles	
		4.2.3	Repeate	edly measured				plot		144
			respons	•	127		5.3.5		with SEMs plot	145
			4.2.3.1	Repeated factors and				5.3.5.1	Problems with the	
				randomised factors	127				means with SEMs plot	145
			4.2.3.2	Block and dose-escalati	on			5.3.5.2		
				designs	127				with SEMs plot	151
			4.2.3.3	Crossover and		5.4		netric ana	•	151
				dose-escalation designs	128		5.4.1	1		152
			4.2.3.4	Including interactions				5.4.1.1	Numeric and	
				involving the repeated					continuous responses	152
				factor	129			5.4.1.2	Normally distributed	
	4.3	What	to randor	mise	129				residuals	153
	4.4	How t	o randon	nise	130			5.4.1.3	Homogeneity of	
_	O		, .		100				variance	155
5			nalysis		132			5.4.1.4	1	150
	5.1		luction		132				responses	158
			InVivoS		133				Removal of outliers	159
		5.1.2		nmended five-stage					Additivity	162
	= 0	0	-	tric analysis procedure	133		5.4.2	The <i>t</i> -te		163
	5.2		nary statis		135			5.4.2.1	The unpaired <i>t</i> -test	163
		5.2.1		tric measures of	105			5.4.2.2		105
			location		135			E 400	unpaired <i>t</i> -test	165
			5.2.1.1	The true mean and the	105			5.4.2.3	The paired <i>t</i> -test	167
			E010	sample mean	135			5.4.2.4		
			5.2.1.2	The observed mean	136				paired <i>t</i> -test	168

x Contents

5.4.3	Analysis	s of variance	5.4.6.5	Predicted group means	203			
	(ANOVA	A)	168			5.4.6.6	Assumptions for	
	5.4.3.1	One-way ANOVA	169				ANCOVA	204
	5.4.3.2	Including the positive				5.4.6.7	Strategy for when the	
		control	173				independence	
	5.4.3.3	Two-way ANOVA	174				assumption does	
	5.4.3.4	Two-way vs. one-way					not hold	207
		ANOVA	176			5.4.6.8	ANCOVA and stratified	
	5.4.3.5	Dealing with missing					randomisation	208
		factor combinations	177			5.4.6.9	Change from baseline	
5.4.4	Repeate	ed measures					responses	208
	analysis	S	179		5.4.7	Regressi	ion analysis	211
	5.4.4.1	Categorised case			5.4.8	Multiple	e comparison	
		profiles plot	181			procedu	ires	212
	5.4.4.2	Analysis of summary				5.4.8.1	The risk of finding	
		measures	181				false positives and false	
	5.4.4.3	Repeated measures					negatives	212
		analysis	189			5.4.8.2	Choosing the family	
	5.4.4.4	The mixed-model					of tests	214
		approach vs. the ANOV	A-			5.4.8.3	Unadjusted tests	215
		based approach	191			5.4.8.4	Stepwise multiple	
	5.4.4.5	Advantages and					comparison procedures	S
		disadvantages of the					that control the FDR	218
		repeated measures				5.4.8.5	Simultaneous multiple	
		analysis	195				comparison procedures	8
5.4.5	Predicte	ed means from the					that control the FWE	218
	parame	tric analysis	196			5.4.8.6	Stepwise multiple	
	5.4.5.1	Least square (predicted)				comparison procedures	S
		means	196				based on group	
	5.4.5.2	Variability of the least					differences that control	
		square (predicted)					the FWE	222
		means	197			5.4.8.7	Stepwise-based multipl	e
	5.4.5.3	Geometric means and					comparison procedures	
		confidence intervals	197				based on <i>p</i> -values that	
	5.4.5.4	Reliability of the					control the FWE	223
		predicted means	198			5.4.8.8	The gateway ANOVA	
5.4.6	Analysis	s of covariance					approach	224
	(ANCO	VA)	199			5.4.8.9	Multiple comparison	
	5.4.6.1	What is a covariate?	200				procedures in statistical	l
	5.4.6.2	Best-fit lines and					software packages	227
		predicted lines	201			5.4.8.10		228
	5.4.6.3	Categorised scatterplot	201	5.5	Other	useful an	ıalyses	228
	5.4.6.4	Predictions from			5.5.1	Non-par	rametric analyses	228
		ANCOVA	202			5.5.1.1	When to use a	

Contents

χi

				non-parametric test	229			6.3.3.5	Analysis of designs	
			5.5.1.2	Non-parametric tests	230				with missing factor	
		5.5.2	Testing	the difference					combinations	252
			between	n proportions	231	6.4	Repeat	ed Mea	sures Parametric	
			5.5.2.1	Analysis procedure	232		Analysi	is modu	ıle	252
			5.5.2.2	Chi-squared test	232		6.4.1	Analysi	s procedure	252
			5.5.2.3	Fisher's exact test	233				l example	255
		5.5.3	Survival	l analysis	234				cal details	255
			5.5.3.1	The survival function	235	6.5	P-Value	e Adjust	ment module	258
			5.5.3.2	Comparing groups	236		6.5.1	Analysi	s procedure	259
									l example	259
6	Anal	ysis usi	ng InViv	oStat	238	6.6	Non-Pa	arametr	ic Analysis module	260
	6.1		g started		238		6.6.1	Analysi	s procedure	260
		6.1.1	Data im	port	238		6.6.2	Worked	l example	262
			6.1.1.1	Single measure		6.7	Graphi	cs mod	ule	262
				format	238		6.7.1	Analysi	s procedure	262
			6.1.1.2	Repeated measures			6.7.2	Exampl	e plots	263
				format	239	6.8			s module	263
		6.1.2	Importi	ng a dataset into			6.8.1	Analysi	s procedure	263
			InVivoS	tat: Excel import	240		6.8.2	Worked	l example	265
		6.1.3	Importi	ng a dataset into		6.9	Unpair	ed <i>t</i> -tes	t Analysis module	267
			InVivoS	tat: text file import	240		6.9.1	Analysi	s procedure	267
		6.1.4	Data ma	anagement	240		6.9.2	Worked	l example	271
		6.1.5	Running	g an analysis	240	6.10	Paired	t-test/w	rithin-subject	
		6.1.6	Warning	g and error messages	241		Analysi	is modu	ıle	272
		6.1.7	Log file		241		6.10.1	Analys	is procedure	272
		6.1.8	Exporti	ng results	241		6.10.2	Worke	d example	276
	6.2	Summ	nary Statistics module		241	6.11	Dose-Response Analysis module			
		6.2.1	Analysis	s procedure	242		6.11.1	Techni	ical details on	
		6.2.2	Worked	example	243			curve f	fitting	277
	6.3	Single	Measure			6.11.2	Fitting l	logistic curves to data	278	
		Analys	sis modu	le	243		6.11.3	Analys	is of quantitative	
		6.3.1	Analysis	s procedure	243			assays		278
		6.3.2	Worked	example	245		6.11.4	Analys	is procedure	279
		6.3.3	Technic	al details	248		6.11.5	Worke	d example: a	
			6.3.3.1	Analysis of large				biologi	ical assay	281
				factorial experiments	248		6.11.6	User-d	efined equation	
			6.3.3.2	Analysis of small				option		282
				factorial experiments	248	6.12	Chi-sq	uared To	est and Fisher's	
			6.3.3.3	Analysis of experiments	S		-	est mod		282
				involving blocking			6.12.1	Analys	is procedure	283
				factors	249			-	d example	284
			6.3.3.4	Analysis of crossover		6.13	R-Runr		_	285
				trials	251				Analysis module	285

xii Contents

	6.14.1 Analysis procedure	286	7 Conclusion 2	293
	6.14.2 Worked example	289		
	Survival Analysis module	289	Glossary	295
	6.15.1 Analysis procedure	289	References 2	297
	6.15.2 Worked example	291	Index 3	303

Preface

This book is aimed at practitioners who do not have a statistics degree and yet wish to apply statistics to help them arrive at valid and reliable conclusions while minimising the animal numbers required. Descriptions of the mathematical methods underpinning the topics covered in the book are purposefully kept to a minimum. If readers wish to gain a better understanding of the mathematics behind experimental design and statistical analysis then reading a more advanced textbook would help further their understanding.

The solutions to practical problems encountered when conducting animal experiments are explained using non-technical approaches. We believe that in many situations advanced statistical ideas can be employed successfully by researchers with no statistical qualification, using a combination of common sense and modern statistical analysis software packages. In our experience statistical ideas are often introduced to scientists using mathematical terminology. This can be off-putting to non-mathematicians and can leave researchers with, at best, only rudimentary statistical tools and at worst a fear of statistics.

To keep the descriptions of the statistical tools covered in this book as simple as possible, we shall occasionally give pragmatic explanations. While such explanations may not apply in all cases and in all scientific disciplines, this approach does allow us to introduce methods in a clear and concise way. By allowing ourselves the freedom to simplify the problems pragmatically, we aim to make statistical tools more accessible. The reader is invited, once they have familiarised themselves with (and hopefully found the benefit of using) the tools described in this book, to read more advanced texts on the subject.

xiii

xiv **Preface**

This book is divided into seven chapters which loosely correspond to the procedure a researcher should take when planning the experimental design, running the experiment and evaluating the data generated. Following an introductory chapter and a second describing certain statistical concepts, the third chapter covers different types of designs. Designs are outlined, where possible, in simple non-technical language. This is followed by a chapter describing the randomisation of the experimental material. The fifth chapter discusses the statistical analysis of animal experiments and this is followed by a chapter describing how these methods can be applied within the statistical software package

InVivoStat. The final chapter draws some conclusions about the ideas contained within the text.

A scientist can apply all of the methodology described in this book. Certain topics covered are more advanced than others and while we aim to make all subjects accessible, the reader should be aware that the help of a professional statistician may be advisable when first implementing some of the more advanced tools. However, once the readers have familiarised themselves with the ideas contained within this book, we hope they will have a fuller appreciation of the help statistics can offer to improve the conclusions that can be made when running animal experiments.

Acknowledgments

We would like to thank all our colleagues, both past and present, for providing so much inspiration for this book. We hope this text reflects the discussions, consultations and the range of examples that we have worked on together. There are simply too many scientists to mention, but you know who you are! We hope the wide variety of interesting practical problems we have faced together is reflected throughout this book.

Special thanks also to the statisticians who have advised us over the years and shaped our views on this subject matter. Simon would especially like to thank Philip Overend and Andrew Lloyd for their input and encouragement and Janet and Ed Godolphin for their help and support over the years.

We would like to give an extra special thanks to Gillian Amphlett, Gill Fleetwood, David Willé, Clare Stanford and Nathalie Percie du Sert for giving up their time to review sections of the book, and providing ideas, advice and feedback. Their input has been most helpful and improved the text considerably.

Finally we would like to thank our friends and family for putting up with the long unsociable hours we spent writing this book.